Formal assurance cases
as programs
for machine-checking
and checklisting
(meta-verification?)

for Panel discussion in ASSURE 2013
Makoto Takeyama

Kanagawa University
(Research funded by JST CREST DEOS project)

(DEOS project, D-Case)

e DEOS project: developing a lifecycle to achieve
“Open Systems Dependability”

~ “Service continuity under uncertainty and incompleteness” via
— Consensus building (stakeholders’ Agreement)

— Accountability achievement

— Failure response

— Change accommodation

e D-Case: Assurance Case with DEOS extension

— Control-doc/data for the DEOS proc. -

— Not just for humans; Electronically |_lwlml‘”[=N
Integrated with DEOS Runtime Env. in Case, -

(monitoring, action scripting, ...)
\\ AN B

mmuuz,

(Tokoro. DEOS project Whitepaper, 2011)

A very mundane checking

/

Context: Hazard types are

\those listed in 1ISO14121-1 -

Goal:

All identified hazards

of all hazard types are mitigated.

' Are all listed types
really covered?

O goal:ge-2

1) deve loged / e
Thermal | Noise | Vibration | Radiation Ergonomlc
Electrical

o

|_I\'/Iaterial

Enwronment

Goal: All identified Mechanical hazards are mitigated

|

LU S

Combination

a not-so-mundane but mechanical checking

C
f

variables

/Context: Redundant \
system configuration

O context:c2 Y

exampleModel = A 8% B || C 8 (D || E 88 F)

Goal: For any combination of component failures
that fails the system, ...

O Goal:G-Top
F"’“"Mé‘?!‘fffi“,{‘;ﬂ . Does the decomposition

i really matches the
73trategy:33 / ‘i configu ration?

rgue-over-cut -

4
| O Goal:G3-1

iFailEd (Azcz=

O Goal:G3-2

Failed (A =D = E = [1)

O Goal:G3-3 O Goal:G3-4 O Goal:G3-5 O Goal:G3-6

Failed (A =D = F = [1) Failed (B = C = [1) Failed (B =D = E = [1) Failed (B =D = F = [1)

- X > X > X > X > X X
N/ N /N VAN

|IfAandC | [IfA, D, E If A, D, F B, C |B,D,E B, D, F
;t fail, fail, fail, <

| | then ... then ... then ...

Problem

%w \E w% e Reviewer must do mundane
— " checking by reading informal
o jﬁ%@ 3 i contents of argument
B B 00000 © - 000
o e ¥ T i T elements
: ol 0%) L
E?fw\\aj sy 3 3 (beside exercising judgment).
E'E\g ﬁ ’ e Points to check are
f????@ ﬁ%h%] 6 interspersed across 100s of
these, each of which is
gl $oo i frequently updated
o o i g y up :
00

* Let machines check what they can check
to let reviewers concentrate on exercising expert judgment.

Formal AC as (Theory , Proof)

e Checking can only be w.r.t. the basis of argument.

Vocabulary / ontology of concepts and things;

models of system/environment;
reasoning principles both inductive and deductive, ...

e Let each AC be(decl./def. of the basis , arg. on that basis)
formulated as (formal theory (model) , formal proof in it)

e All mundane checks are turned into
“Is this a formal proof in this theory?”

* Expert reviewer exercises judgment on

“Is this theorising valid in Real World ?”
A 4 Claim

Formal
Theory/ | g machine-checked
formal proof

‘ Model
Theory andgu malldated by.

reviewers

Claim

ds
\ review) \

“Arguments are not proofs” ?
 They should be, in an explicitly declared theory.

Theory

Gl
Safe as a shorthand for E)ostulate $1:G2->G3->G1 }
/
S1 Product and Gl
process arg.

/ \ / modus ponens (x2) /
G2 G3 —
Hazards Developed G2->G3>G1 G2 G3

Handled to SIL4 ¥

®

e Declare inductive and other extra-logical aspects explicitly in the theory.
— arguments need not be “from the first principles” to be a formal proof.

* Separate

— declarations and definitions to be agreed on / validated and
— their usage in arguments to be checked / verified.

e Conventional formulation of formal proofs lacks mechanism for
large-scale development (no definitional mech., no structuring, ...

e Write an AC as (library defn., program) using a prog. lang.

Formal AC as Programs

)

supporting “Proofs as Programs” with rigorous semantics, e.g., Agda.

e Checking an argument

Checking 100 connected args
 For constructing understandable, maintainable, large arguments,

= type-checking a program
= doing a build on a project

all the programming / sw-eng. techniques can be imported wholesale.

(abstraction, recursive defn, modularisation, change-management, ...

(like pseudo-code)

-

Claim

)

(like compilable code)

Library

Library def. a‘ln‘ validated .

Claim
type-checked

proof constructing
program

reviewers

)

Formal AC as Programs

* Proposition = Type of data that counts as direct evidence
* Proof = Program that produces the direct-evidence data when run

e Write an AC as (library defn., program) using a prog. lang.
supporting “Proofs as Programs” with rigorous semantics, e.g., Agda.

* Checking an argument = type-checking a program
Checking 100 connected args = doing a build on a project

 For constructing understandable, maintainable, large arguments,
all the programming / sw-eng. techniques can be imported wholesale.
(abstraction, recursive defn, modularisation, change-management, ...)

(like pseudo-code) (like compilable code)

-

Claim
type-checked

Library
proof constructing

‘ program
Library def. a‘ln‘ validated .

y \ reviewers

Claim

Formal AC as Programs

* Proposition = Type of data that counts as direct evidence
* Proof = Program that produces the direct-evidence data when run

e Write an AC as (library defn., program) using a prog. lang.

* Issues ALL SORTED OUT: free-/bound-variables, scoping, safe-looping,...
e | * Type checked patterns / templates guarantee that any legal instantiation
results in “correct” argument.

 For constructing understandable, maintainable, large arguments,
all the programming / sw-eng. techniques can be imported wholesale.
(abstraction, recursive defn, modularisation, change-management, ...)

(like pseudo-code) (like compilable code)

-

Claim
type-checked

Library
proof constructing

‘ program
Library def. a‘ln‘ validated .

y \ reviewers

Claim

(From GSN Standard Figure 6, simplified)

c1 51 c2

Operating Role } gscnetrct)l S!y STET :ts B Control System

and Context e o Definition
operate

G3

Scoftware in the Control System
has been developed to SIL

G2

c3

Hazards identified
from FHA (Ref Y)

———{ All identified hazards have

been eliminated or

sufficiently mitigated appropriate to hazards
involved

* &

Argument over each
identified hazard

Tolerability
targets (Ref Z)

S1

'/_ - N\
G4 G5 G6
Hazard H1 has been Probability of Hazard H2 Probability of Hazard H3
eliminated occuring < 1x10-6 per occuring < 1x10-3 per
year year
g,

Sn1

Fault Tree
Analysis

Formal
Verification

(Fig 6 in arguments-as-programs form)

“Theory” part:

e Declares and defines the basis of the argument:
Primitive terms for primitive things and concepts,
Defined terms for defined things and concepts,

> Presumptive relationship among legal terms.

* Gives definite meaning to any legal combination of terms.

e Must be agreed / approved through supporting process.

e Organized into modules corresponding to contexts.

“Evidence” part
* Declares presumptive existence of evidence to some claim-terms

o o o Must be agreed / approved through supporting process

—

“Reasoning” part
>—e Exhibits a combined term as a proof for the top claim-term

Whether it is a legal proof or not is machine-checkable.
e The top claim-term must be agreed / approved.

D-Case/Agda (“D-Case in Agda” Verification Tool)

e Provides translation between arg. in graphical form and in Agda program form.

e AC as an Agda program is checked in Agda dev. environment, which also
is a proof-assistant for constructing args as programs.

* Google “D-Case/Agda” for download.

dcase-en dcase-agda code-agda

-

IGraphical edit, domain-expert review

Checking, construction, generation using Agda proof
“assistant

]

IO

T

D R TR IR IR

Y

wsilig -Cese Fellior

0 Goal:G1

DemoLineTracker-Robot clears the DemoCourse within 35 sec

FStrategy:S1
Risk mitigation argument

OContext:C2

identified risks:
Start command not received wirelessl

Line tracking too slow
Losing the course line
Collision with other robots

Course lighting interfering with 1lir

(
(

O Goal:G3

Each identified risk is mitigated to its mitigation

o Goal:G2

Risk
identification
and mitigation
targets setting
are adequate

[

FStrategy:52
Argue over identified risks

O Evide...
Risk
Analysis
Report

switchable

e "

O Goal: G4
Communication
failure
activates auto-
start

(vs. Start
command not
received
wirelessly)

CEvidence:E2
Sub D-Case-3

)

O Goal:G5

Tracking pecision
is auto-adjusted
for speed

(vs. Line tracking
too slow)

O Goal:G6

Losing the line

activates

Search-mode
Losing the
course line)

(vs.

OEvidence:E3
Sub D-Case-1

OEvidence:E4
Sub D-Case-2

BasicStage.agda [E=8|EoR(E>T|
File Edit Options Buffers Tools Agda Help

{ DemoGoal "35 sec" i
/ "DemoLineTracker-Robot clears the DemoCourse within 35 »
Context["identified risks:\n\ \ Start command not recei-»

/ (% / "Risk mitigation argument"”)

{ (R.AllMitigated - R.Objective) / "Risk identificat»
3 (Risk-Analysis_Report / "Risk Analysis Report” })»
{ ((x Identified_Risk) - Mitigated x) / "Each iden-»
2 (R.riskCase Mitigated / "Argue over identified ri»
- ({ Mitigated Cmd_not_received / "Communication f»
9 (sub-d-case Cmd_not_received / "Sub D-Case-3»
({ Mitigated Tracking_too_slow / "Tracking pecis»
(sub-d-case Tracking-too-slow / "Sub D-Case-»
\w Mitigated Losing_-line / "Losing the line acti-»

D (sub-d-case Losing_line / "Sub D-Case-2"))
({ Mitigated Collision-with_-other_robots / "Dist»
9 (sub-d-case Collision-with_other_robots / "S»
({ Mitigated Course_lighting_interfering_with_1i-»
D (sub-d-case Course_lighting_interfering_with>

m

-U**- BasicStage.agda 56% L117 (Agda:Checked)--<v> ----
Auto-saving...done i
/= | | interfering with
line sensing)
O Evidence:E5
Sub D-Case-4 \\\ ////‘AJ“\‘\\ =
s E e @ A//

Checklisting and meta-verification (speculative)

e Proving is primarily about
Verification : “Are we building the system right?”
(w.r.t. given, specified criteria : sys. spec, operational conditions, ...)
and not about
Validation : “Are we building the right system?”

(w.r.t. “Real World” : user needs, actual environment, ...)

n

No definitions for “right claims to make”, “right structure to argue’, ...

e But checklists / requirements for AC in guides and standards
are there to help.

e Template libraries can be prepared to enforce required

forms and contents of AC.
(But no explanation of why it’s good. Little room for adaptation.)

Checklisting and meta-verification (speculative)

* Part of validation can be verification about system-verif.:
Meta-verification: “Are we verifying the system right?”,
(w.r.t. checklists / requirements for AC in guides and standards)

* Formal AC as data with rigorous semantics can be
a target for such verification.

* The rationale for checklists for AC could be codified in a
“theory of validation” about properties of AC, and
Meta-AC about AC could argue for the ‘goodness’ of AC.

e AC ~ Traceability matrix on steroids (R. Chapman, ‘08)
Meta-AC ~ Checklists on steroids

A Vieta-A

Claims on Verification ~ Validation as Verification Validation in Real World — open ended
Claims on

System S
Verification

proof

proof process /
Theory of Theoryof artefact Evolution of theories

System Validation at both levels

Evidence

Recommendations?

Explicitly declare / define the basis of the argument.
AC is not just an argument.

Make the argument machine-checkable w.r.t. that basis
via “arguments as proofs.”

Apply programming and software engineering techniques
for constructing and maintaining large AC,
directly via “arguments as programs.”

Develop libraries of verified patterns / frameworks

— to ease construction of formal AC,
— to enforce recommended forms and contents of AC.

Formulate the rationale behind requirements for AC in
standards as a theory of meta-verification about verification

