
063174

Degree Examinations 1997

DEPARTMENT OF COMPUTER SCIENCE

Real-Time Systems and Programming Languages

Time allowed: Three (3) hours

Candidates should answer not more than four questions



1 (25 marks)

(i) [5 marks] Distinguish between an active and a passive resource in the context
of concurrent programming.

(ii) [5 marks] How does Ada support active and passive resources?

(iii) [15 marks] The following code illustrates three interfaces to different semaphore
implementations in Ada.

package Semaphore_Package is
protected type Semaphore(Initial : Natural := 1) is

entry Wait;
procedure Signal;

private
Value : Natural := Initial;

end Semaphore;
end Semaphore_Package;

package Semaphore_Package is
task type Semaphore(Initial : Natural := 1) is

entry Wait;
entry Signal;

end Semaphore;
end Semaphore_Package;

package Semaphore_Package is
type Semaphore(Initial : Natural := 1) is limited private ;
procedure Wait (S : in out Semaphore);
procedure Signal (S : in out Semaphore);

private
type Semaphore is ...; -- you decide

end Semaphore_Package;

Describe how each of the package bodies would be implemented, and discuss
the advantages and disadvantages of the approaches.

2



063174

2 (25 marks)

(i) [10 marks] Describe the POSIX message queue facilities.

(ii) [15 marks] Figure 1 represents a particular process in POSIX.

Figure 1: A particular process in POSIX

Integers are read down message queues in1 , in2 , in3 . The process takes these
integers in the order they arrive. Initially, all input integers are output to mes-
sage queue out1 . If there is any input down message queue switch then out-
put is moved to message queue out2 . Subsequent inputs down switch will
change the output queue. Sketch how this process would be implemented using
POSIX message queues.

3 (25 marks)

(i) [13 marks] Compare and contrast the Modula-1 and occam2 facilities for de-
vice driving.

3 Continued.



(ii) [12 marks] Devices on a particular machine are controlled by memory-mapped
registers which are 16 bits long. Bit 0 is the least significant bit of a register. The
most common types of registers used are: control and status registers which
contain all the information on a device’s status, and allow the device’s inter-
rupts to be enabled and disabled. Data buffer registers act as buffer registers
for temporarily storing data to be transferred into or out of the machine via the
device.

A control and status register for a VDU display has the following structure:

bits

11 : Busy -- set when the device is busy
7 : Done/ready -- I/O completed or device ready
6 : Interrupt enable -- when set enables interrupts
0 : Device enable -- set to enable the device

The register is located at address hexadecimal AA12.

The structure of the VDU’s data buffer register is:

bits
15 - 8 : Unused

7 - 0 : Data

The register is located at address hexadecimal AA14.

Interrupts allow devices to notify the processor when they require service; they
are vectored. Interrupts for the VDU display occur through vector location hex-
adecimal 40.

To send data to the VDU device, the data is placed in the data buffer register
then the device and interrupts are enabled. New data can be loaded into the
data buffer register once the device indicates that it is ready.

Show how a device driver for the VDU can be implemented in occam2. You
should assume that the VDU has a display but no keyboard and that the device
is error free. Your solution should buffer data for the user and handle interrupts.

4



063174

4 (25 marks)

(i) [12 marks] Exceptions can be used as a framework for error recovery. Define
the following:

1. a synchronous exception

2. an asynchronous exception

3. an application-detected error

4. an execution environment-detected error

and give examples of

1. a synchronous exception detected by the application

2. an asynchronous exception detected by the application

3. a synchronous exception detected by the execution environment

4. an asynchronous exception detected by the execution environment

(ii) [13 marks] Consider the following Ada code fragment:

Error_1, Error_2 : exception ;
task Watch;

task Signaller;

protected Atc is
entry Go;
procedure Signal;

private
Flag : Boolean := False;

end Atc;

5 Continued.



protected body Atc is
entry Go when Flag is
begin

raise Error_1;
end Go;

procedure Signal is
begin

Flag := True;
end Signal;

end Atc;

task body Watch is
begin

...
select

Atc.Go;
then abort

-- code taking 100 millisecond
raise Error_2;

end select ;
...

exception
when Error_1 =>

Put_Line("Error_1 Caught");
when Error_2 =>

Put_Line("Error_2 Caught");
when others =>

Put_Line("Other Errors Caught");
end Watch;

task body Signaller is
begin

...
Atc.Signal;
...

end Signaller;

Describe carefully the possible executions of this program fragment. You should
assume that context switches between tasks can happen at anytime.

6



063174

5 (25 marks)

(i) [8 marks] Describe fully the semantics of the Ada requeue facility.

(ii) [7 marks] Explain how the following resource controller protected object al-
locates resources. Include in your description the order in which resources are
serviced.

Max : constant Positive := 20;
type Request_Range is range 0..Max;
type Resource is ...; -- details not needed for this question

protected Resource_Controller is
entry Request(R : out Resource; Amount : Request_Range);
procedure Free(R : Resource; Amount : Request_Range);

private
entry Assign(R : out Resource; Amount : Request_Range);
Free_For_Allocation : Request_Range := Request_Range’Last;
New_Resources_Released : Boolean := False;
To_Try : Natural := 0;

end Resource_Controller;

protected body Resource_Controller is
entry Request(R : out Resource; Amount : Request_Range)

when Free_For_Allocation > 0 is
begin

if Amount <= Free_For_Allocation then
Free_For_Allocation := Free_For_Allocation - Amount;
-- allocate the resource

else
requeue Assign;

end if ;
end Request;

7 Continued.



entry Assign(R : out Resource; Amount : Request_Range)
when New_Resources_Released is

begin
To_Try := To_Try - 1;
if To_Try = 0 then

New_Resources_Released := False;
end if ;
if Amount <= Free_For_Allocation then

Free_For_Allocation := Free_For_Allocation - Amount;
-- allocate

else
requeue Assign;

end if ;
end Assign;

procedure Free(R : Resource; Amount : Request_Range) is
begin

Free_For_Allocation := Free_For_Allocation + Amount;
-- free resources
if Assign’Count > 0 then

To_Try := Assign’Count;
New_Resources_Released := True;

end if ;
end Free;

end Resource_Controller;

(iii) [10 marks] How would you modify the above program to service requests
according to the priority of the calling task?

8



063174

6 (25 marks)

(i) [12 marks] The following equation allows the worst-case response time (Ri)
for task i to be obtained from its computation time (Ci) and the computation
times and periods (T ) of higher priority tasks.

Ri := Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj

• Under what assumptions is this equation valid?

• Derive this equation for task i - i.e. show why this equation is valid.

• Explain how this equation can be solved to find Ri.

• How is this equation used to prove that all task deadlines are met?

(ii) [5 marks] What modifications are necessary if the deadline of a task is greater
than its period?

(iii) [8 marks] Consider the following task set. What is the worst-case response
time for Task 5 if rate monotonic priority ordering is used?

name T C
Task 1 6 1
Task 2 13 3
Task 3 17 3
Task 4 40 4
Task 5 20 5

9


