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ABSTRACT 
This paper proposes a new efficient buffer management technique 
called shift buffering for automatic code synthesis from 
synchronous dataflow graphs (SDF). Two previous buffer 
management methods, linear buffering and modulo (or circular) 
buffering, assume that samples are queued in the arc buffers in the 
arrival order and are accessed by moving the buffer indices. But 
both methods have significant overhead for general multi-rate 
systems: the linear buffering method requires large size buffers 
and the modulo buffering method needs run-time overhead of 
buffer index computation. The proposed shift buffering method 
shifts samples rather than moving buffer indices. We develop 
optimal shift buffering algorithms to minimize the number of 
shifted samples. Our experimental results show that the proposed 
algorithm saves up to 90% of performance overhead while 
requiring the same amount of buffer memory as modulo buffering. 
Considering the sample copy overhead, shift buffering is 
applicable when memory size is more crucial than performance 
overhead, and the shifting overhead is less than the modulo 
addressing overhead. Another advantage of the shift buffering 
technique is that it supports the library code written with the 
linear buffering assumption, which is practically more important. 

Categories and Subject Descriptors 
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED 
SYSTEMS]:Real-time and embedded systems – real-time and 
embedded systems, Signal processing systems. 

General Terms 
Algorithms, Languages. 

Keywords 
buffer management, automatic code synthesis, synchronous 
dataflow, shift buffering, modulo buffering 

1. Introduction 
As system complexity increases and fast design turn-around time 
becomes important, it attracts more attention to use high level 

software design methodology: automatic code generation from 
block diagram specification. COSSAP [1], GRAPE [2], and 
Ptolemy [3] are well-known design environments, especially for 
digital signal processing applications, with automatic code 
synthesis facility from graphical dataflow programs. 

In a hierarchical dataflow program graph, a node, or a block, 
represents a function that transforms input data streams into 
output streams. The functionality of an atomic node is described 
in a high-level language such as C or VHDL. An arc represents a 
channel that carries streams of data samples from the source node 
to the destination node. The number of samples produced (or 
consumed) per node firing is called the output (or the input) 
sample rate of the node. In case the number of samples consumed 
or produced on each arc is statically determined and can be any 
integer, the graph is called a synchronous dataflow graph (SDF) 
[4] which is widely adopted in aforementioned design 
environments. We illustrate an example of SDF graph in Figure 
1(a). Each arc is annotated with the number of samples consumed 
or produced per node execution.  
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Figure 1. (a) SDF graph example, (b) a scheduling result, (c) a 
code template, and (d) the associated buffer allocation 

To generate a code from the given SDF graph, the order of block 
executions is determined at compile time, which is called 
scheduling. Since a dataflow graph specifies only partial orders 
between blocks, there are usually more than one valid schedules. 
Figure 1(b) shows one of many possible scheduling results in a 
list form, where 2(A) means that block A is executed twice. The 
schedule will be repeated with the streams of input samples to the 
application. A code template according to the schedule of Figure 
1(b) is shown in Figure 1(c). 

When synthesizing software from an SDF graph, a buffer space is 
allocated to each arc to store the data samples between the source 
and the destination blocks. The number of allocated buffer entries 
should be no less than the maximum number of samples 
accumulated on the arc at run-time. After block A is executed 
twice, two data samples are produced on each output arc as 
explicitly drawn in Figure 1(d).  

Since we assume that the kernel code of each function block of an 
SDF graph is given, the efficiency of data transfer between nodes 
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is the crucial performance factor of the automatically synthesized 
code from the graph. For a graph with large sample-rate changes, 
a naive buffering technique may require too large memory space 
to fit in the on-chip data memory. Therefore we are concerned 
with optimal buffer management in automatic code synthesis from 
SDF graphs in this paper. 

Previous works have used three buffer management methods:  
static buffering, linear buffering, and modulo buffering. These 
methods assume that samples are queued in the arc buffers in the 
arrival order and are accessed by moving the buffer indices. But 
these methods are not optimal for general multi-rate systems. The 
static buffering is applicable only to a limited case that the buffer 
indices do not change at run time. Linear and modulo buffering 
methods have significant overhead for general multi-rate systems: 
the linear buffering method requires large size buffers and the 
modulo buffering method needs run-time overhead of buffer index 
computation. This paper proposes a new efficient buffer 
management technique called shift buffering. The shift buffering 
method shifts samples rather than moving buffer indices. We 
present optimal shift buffering algorithms to minimize the number 
of shifted samples.  

The main contributions of this paper can be summarized as 
follows:  

• It allows us to use the library block whose kernel code 
is written with linear buffering assumption.   

• It supports code sharing between the nodes of the same 
function block by generating function style code. 

• It makes an optimal tradeoff between performance and 
memory size. 

• It reduces performance overhead compared with modulo 
buffering. 

In section 2 we define some terminologies. We will discuss the 
previous buffer management techniques in section 3 and propose 
a new buffer management technique in section 4. In section 5, we 
explain optimal buffering algorithms and show experimental 
results in section 6. We make a conclusion in section 7. 

2. Notations 
We use the following notations to represent parameters of arc a in 
an SDF graph. 

src(a) : the source node of arc a that produces samples. 

sink(a) : the sink node of arc a that consumes samples. 

p(a) : the number of samples produced per execution of src(a).  

c(a) : the number of samples consumed per execution of sink(a). 

d(a) : the number of initial delay samples on arc a. 

bs(a) : the buffer size allocated on arc a. 

For the example of arc AB in Figure 1(d), src(AB) = A, 
sink(AB)=B, p(AB)=1, c(AB)=2, d(AB)=0, and bs(AB)=2. 

3. Previous Buffer Management Techniques 
In this section, we explain three existent buffer management 
techniques: static buffering, linear buffering, and modulo (or 
circular) buffering [5] with a simple multi-rate example as shown 
in Figure 2. 

We assume that the arc buffer is contiguous. For each contiguous 
buffer, we must determine whether modulo operation is necessary 
for accessing the buffer. If we should access the buffer with 

modulo operation then we call it modulo buffering; otherwise it is 
called linear buffering. The static buffering is a special case of the 
linear buffering where the buffer indices return to the original 
positions after iterating the static schedule. Apparently modulo 
operation requires performance overhead of modulo operation for 
each buffer access, especially for general purpose RISC 
microprocessors which do not support modulo addressing in 
hardware. 

Consider Figure 2(a) with a schedule of Figure 2(b). The schedule 
is by no means optimal. But we use this schedule to reduce the 
buffer requirement with modulo addressing (Figure 3). Linear 
buffering requires that the minimum buffer size should be 15 that 
is the LCM of p(a) and c(a). As shown in Figure 2(c) the read and 
write indices can be safely incremented in the body of blocks A 
and B without reaching the buffer boundary. When node A is 
executed twice, 6 samples are produced and the write index 
becomes 6. When node B consumes 5 samples, the read index 
becomes 5. After an iteration of schedule, both the read index and 
the write index are reset to zero: So it is static buffering. Figure 
2(d) represents the generated code template with linear buffering 
in which each buffer access code requires an addition operation to 
compute the memory address. 
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main()
{
int a[15],r=0,w=0,i,j;
for(;;) {

for(i=0;i<2;i++) {
for(j=0;j<2;j++) {

// A’s invocation. 
// access of a[w],a[w+1],a[w+2];
w += 3;

}
// B’ invocation
// access of a[r],…,a[r+4];
r += 5;

}
// A’s invocation. 
// access of a[w],a[w+1],a[w+2];
w = 0;
// B’ invocation
// access of a[r],…,a[r+4];
r=0;

} (d)(c)
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Figure 2. (a) An SDF graph, (b) its schedule, (c) read and write 
indices movement in linear buffering, and (d) the generated 
code. 

Since the code for buffer access is simple and independent of the 
buffer size in linear buffering, a library block is usually written 
assuming linear buffering. If a library code is provided by a 
function prototype and is not liable to change, only linear 
buffering is allowed even though it requires large buffer memory.  

But if there is an initial sample on the arc, linear buffering is not 
possible. Suppose that there is an initial sample on arc a in Figure 
2. Then no buffer size is suitable for linear buffering. Only 
modulo buffering is able to handle the initial samples, to make it 
the most general buffering method of SDF graphs.  

The modulo buffering method enables us to reduce the buffer size: 
the buffer size can decrease to 7 in Figure 2(a). But the buffer 
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access code should be changed in the block definition in the 
modulo buffering method: memory accesses should be wrapped-
around when an index exceeds the buffer size. For instance, at the 
second invocation of node B in Figure 3(a), the values of the read 
index become {5,6,0,1,2}, and modulo operations are required to 
access the buffer in the order of {5,6,0,1,2}. Therefore the 
generate code has run time overhead of modulo operation for 
buffer index computation whenever the buffer is accessed as 
shown in Figure 3(b).  

Note that if we want to eliminate modulo operations in the first 
invocation of node B, we should generate two different definitions 
of node B, with linear buffering and modulo buffering. But it is 
not a good solution since it is against the code reuse principle.  

main()
{
int a[7],r=0,w=0,i,j;
for(;;) {
for(i=0;i<2;i++) {

for(j=0;j<2;j++) {
// A’s invocation. 
// access of a[w%7],a[(w+1)%7],a[(w+2)%7];
w += 3;

}
// B’ invocation
// access of a[r%7],…,a[(r+4)%7];
r += 5;

}
// A’s invocation. 
// access of a[w%7],a[(w+1)%7],a[(w+2)%7];
w = 0;
// B’ invocation
// access of a[r%7],…,a[(r+4)%7];
r=0;

} (b)(a)
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Figure 3. (a) Modulo buffering for both write and read indices 
and (b) the generated code. 

In short, the modulo buffering is preferable to the memory-
constrained systems while it costs non-negligible performance 
overhead of index computation. For example, in Figure 3(b) we 
need 30 modulo operations, which take 0.27 us on Pentium 4 
3GHz for an iteration of schedule. Moreover it may not reuse the 
library blocks that are written assuming linear buffering without 
extra sample copy overhead. 

4. Proposed Shift Buffer Management 
We propose a new buffer management technique called shift 
buffering in order to reduce the performance overhead of the 
modulo buffering as well as to support library blocks written 
based on the linear buffering assumption. The shift buffering is 
different from the previous buffer management schemes since it 
shifts samples rather than moving index pointers. 

In shift buffering, the requirement buffer size is equal to that in 
modulo buffering. For the example of Figure 2(a), Figure 4 shows 
a shift buffering in which some samples are shifted to keep an 
index from exceeding the buffer size. For instance, one sample is 
shifted after B is executed at the first invocation. Otherwise the 
write index would reach the buffer boundary during the next 
invocation of node A. 

Note that the generated code of Figure 4(b) is similar to the linear 
buffering in Figure 2(d) except that the shift buffering copies data 
samples between block invocations. The performance overhead of 

shift buffering is the memory copy overhead of three samples for 
an iteration of the schedule, which takes 0.02 us on Pentium 4 
3GHz that is much shorter than 0.27 us in the modulo buffering 
case. 

main()
{
int a[7],r=0,w=0,i,j;
for(;;) {

for(i=0;i<2;i++) {
for(j=0;j<2;j++) {

// A’s invocation. 
// access of a[w],a[w+1],a[w+2];
w += 3;

}
// B’ invocation
// access of a[r],…,a[r+4];
r += 5;
// shift. 
if(i=0) { a[0]=a[r]; r=0; w=1; }
else { a[0]=a[r]; a[1]=a[r+1]; r=0; w=2; }

}
// A’s invocation. 
// access of a[w],a[w+1],a[w+2];
w = 0;
// B’ invocation
// access of a[r],…,a[r+4];
r=0;

}
(b)(a)
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Figure 4. Shift buffering for Figure 2(a) and (b): (a) index 
movements and (b) the generated code with shift buffering. 

#include “library.h”
main()
{

int a[7],r=0,w=0,i,j;
for(;;) {

for(i=0;i<2;i++) {
for(j=0;j<2;j++) {

// A’s invocation. 
library_code_call(&a[w]);

…
}

void library_code_call(int[3]);

(a)

(b)

library.h

 

Figure 5. Importing a library: (a) a library header file and (b) 
node A calls a function in the library in Figure 4(b).  

Since all buffer accesses inside the block use linear buffering, we 
can import a library code written with linear buffering assumption. 
For instance, assume that a library block is provided with 
functions declaration as header file as shown in Figure 5(a). Then 
the function arguments or input buffers should be contiguously 
accessible with linear buffering. 

When a graph has multiple nodes associated with the same 
function block, function style shared code can be generated as 
shown in Figure 6. In the shared code generation, a single block 
definition should be provided as a function. Therefore the modulo 
buffering is not applicable for the block definition.  

Thus the shift buffering is a novel buffer management technique 
to minimize the buffer size while preserving the linear buffering 
inside the block definition. It has benefits over modulo buffering 
when the memory copy overhead is less than the modulo 
operation overhead and the memory size is more critical than the 
performance overhead especially in multirate systems.  
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void A(int x[3])  { … }

main()
{
int a[7],b[3],wa=0,wb=0,i,j;
for(;;) {

…
// A1’s invocation
A(&a[wa])
wa += 3;

…
// A2’s invocation
A(&b[wb])
wb +=3;

…
}

A1 B
3 5

(a)

A2
3 3

C

a

b

(b)
 

Figure 6. Code sharing example: (a) a graph in which node A1 
and A2 have common codes and (b) shared code. 

The key question in shift buffering is when we have to shift the 
samples. Since it requires memory copy overhead to shift each 
sample, the optimal shift buffering problem is to minimize the 
number of shifted samples for an iteration of the schedule. It is a 
rather obvious observation on the shift position that we should 
shift samples after a sink node is fired and before a source node is 
executed. Let A=src(a) and B=sink(a) on arc a. Moreover ka  and 

kb  denotes the repetition counter (or looping number) of A and B 

respectively. Since we are interested in the buffer on arc a, we 
reduce the overall schedule to the schedule of block A and B 
omitting other blocks in the schedule. For example, if the 
schedule is 2ABCDAB, where C and D are other blocks, then we 
reduce it to 2ABAB. Then the shift position should lie between B 
and A, not between A and B. We summarize it as the following 
theorem.  

Theorem 1. An optimal shift should be occurred before 
executions of src(a) and after sink(a) of an arc a. 

By theorem 1, the optimum shift buffering problem is to 
determine the shift position between B and A in the schedule to 
minimize the number of shifted sample on the condition that 
indices accessing the buffer should not exceed the buffer size. 

We can formalize the problem as follows: Let is  be a binary 

variable in 111 BsAba 222 BsAba ...... kkk BsAba  nnn BsAba  where 

is =0 indicates that we do not shift samples and is =1 does we 

shift them. And let )(awk  be a write index accessed by the kth 

lexical appearance of src(a) and )(ark  a read index accessed by 

the kth of sink(a) in the schedule. Then the optimal shift buffering 

problem is to minimize ∑
=

n

i
ii se

1
*  where ie  is the number of 

remained samples at shift position of is while )()( absawi ≤  for 

all i. Note that ∑
=

−=
k

i
iik acbapae

1
)(*)(*  and )()( awar ii ≤  since 

the read index may not be ahead of the write index. 

5. Algorithm for Optimal Shift Buffering 
In this section we present the algorithms for optimal shift 
buffering. First, we introduce an algorithm for an arc with no 
initial delay sample, of which the time complexity is O(n2). And 
we extend it for an arc with initial delay samples, of which the 
time complexity is O(n3).  

5.1 Algorithm for an arc with no initial delay 
sample 
Let i

n

ki
ik seekf ∑

+=
+=

1
*)(  to indicate the minimum number of 

shifted samples from sk to sn assuming that we shift samples at sk, 
that is sk=1 in f(k). Then the f(0) represents the total number of 
shifted samples where e0 is defined as 0. 

In order to compute f(k), we examine the write index w(a) that 
should not exceed the buffer size. When samples are shifted at sk 

and are not from sk+1 to sk+m-1, w(a) becomes ∑
+

+=
+

mk

ki
ik apae

1
)(* . 

Suppose that ∑+<≤∑+
++

+=

+

+=

1

11
)(*)()(*

mk

ki
ik

mk

ki
ik apaeabsapae . Then 

we should shift samples at least once between sk+1 and sk+m. Since 
f(k+h) represents optimal shift result from sk+h to sn, f(k) chooses 
the minimum value among f(k+1), f(k+2) ,…, f(k+m).  

 

Algorithm 1. 
0)( == nenf . 

))(),...,2(),1(min()( mkfkfkfekf k ++++=  where m is 

maximum while )()(*)(
1

absapaeaw
mk

ki
ik ≤+= ∑

+

+=
.  

Since f(0) represents the minimum number of shifted samples, we 
can find the optimal shift occurrences by retracing f(0). Since 
O(n) time is required to compute f(k), the time complexity of the 
given algorithm is O(n2). 

Consider Figure 7 and assume that schedule is 2AB 6(AB) and 
buffer size of bs(a) is 25. The required buffer size for the linear 
buffering is 56. The optimal shift buffering problem is to 
determine s1 ,…,s7 in 2ABs1ABs2ABs3ABs4ABs5ABs6ABs7. 
Compute the number of remained samples at each shift position : 
(e1, e2, e3, e4, e5, e6, e7)=(6,5,4,3,2,1,0). 

Now let us compute f(k). 

.0)7( 7 == ef .1)7()6( 6 =+= fef  

2))7(),6(min()5( 5 =+= ffef , 2516)(*25 ≤=+ ape . 

3))7(),6(),5(min()4( 4 =+= fffef , 4e =+ )(*3 ap  2524 ≤ . 

5))6(),5(),4(min()3( 3 =+= fffef  , 3e 2525)(*3 ≤=+ ap .

8))4(),3(min()2( 2 =+= ffef , 2e 2519)(*2 ≤=+ ap .

11))3(),2(min()1( 1 =+= ffef , 1e 2520)(*2 ≤=+ ap . 

80))2(),1(min()0( 0 +=+= ffef , 2521)(*30 ≤=+ ape . 

The minimum number of shifted samples is 8 and 2s = 4s = 7s =1 

since f(2), f(4) and f(7) are used for computing f(0). Therefore we 
make a schedule of  2AB AB (shift) 2(AB) (shift) 3(AB) (shift). 

A B
7 8 2AB 6(AB)

Buffer size = 25

a

 
Figure 7. An SDF graph without initial delay samples. 

Note that we flatten the looped schedule when computing the 
optimal shift position and re-loop the modified schedule after 
inserting the shift operation. Thus the proposed technique 
restructures a given looped schedule with the reduced buffer size.  
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5.2 Algorithm for an arc with delay samples 
When an arc has initial delay samples, we are not sure whether the 
optimal shift buffering result shifts samples at sn. Therefore we 
assume that we shift samples at sq. By combining f(k) with this sq, 
we introduce a new function f(k,q) that indicates the minimum 
number of shifted samples when we shift samples at sk and sq but 
do not shift samples after sq. Or let f(k,q) denote the minimum 
number of shifted samples where sk =1, sq =1, and sq+1 = sq+2 

=…=sn =0. We know simply that i

q

ki
iqk seeeqkf ∑++=

−

+=

1

1
*),(  

since i

q

ki
i se∑

−

+=

1

1
*  represents the minimum number of shifted 

samples from sk+1 to sq-1. f(k,q) is defined when k ≤  q and f(k,k) = 
ek. 

Similarly to algorithm 1, we compute f(k,q) by choosing the 
minimum value among f(k+1,q), …, f(k+m,q) where 

∑+<≤∑+
++

+=

+

+=

1

11
)(*)()(*

mk

ki
ik

mk

ki
ik apaeabsapae .  

The initial value of w(a) is dependent on q that is last shift 
position. If samples are shifted at sq and are not shifted at sq+1,...,sn  

then the initial value of w(a) is ∑
+=

+
n

qi
iq apae

1
)(* .  

Since f(0,q) is defined as min(f(1,q),f(2,q),…,f(m,q)) where 

)()(*)(*)(
11

absapaapaeaw
m

i
i

n

qi
iq ≤++= ∑∑

=+=
 we can find the 

optimal shift buffering positions by choosing the minimum f(0,q) 
among 0 ≤ q ≤ n. 

Algorithm 2. 

f(k,k) = ek. 

f(k,q) = ek + min(f(k+1,q),f(k+2,q),…,f(k+m,q)) where m is the 

maximum value satisfying )()(*)(
1

absapaeaw
mk

ki
ik ≤+= ∑

+

+=
 and 

qmk ≤+ . 

f(0,q) = min(f(1,q),f(2,q),…,f(m,q)) where m is the maximum value 

satisfying )()(*)(*)(
11

absapaapaeaw
m

i
i

n
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iq ≤++= ∑∑

=+=
. 

),0(min)0(
,...,1

qff
nq=

=  

Since this algorithm requires n times more than the previous 

algorithm for q, the time complexity is )( 3nO . 

Consider Figure 8 in which arc a has 4 initial delay samples. 
Assume that the schedule is 4(AB) 2AB 2(AB) and the buffer size 
is 25. Then the number of shifted samples vector (e1, …, e7) is 
(3,2,1,0,6,5,4) and repetition vector for node A (a1,…, a7) = 
(1,1,1,1,2,1,1). Now we compute f(7,7), f(6,7), … , f(0,7). 

4)7,7( 7 == ef  9)7,7()7,6( 6 =+= fef  

10)7,7(6))7,7(),7,6(min()7,5( 5 =+=+= fffef

25207*26)(*)( 765 ≤=+=++ apaae   

9)7,6(0))7,6(),7,5(min()7,4( 4 =+=+= fffef

25217*30)(*)( 654 ≤=+=++ apaae  

10)7,4(1))7,5(),7,4(min()7,3( 3 =+=+= fffef  

25227*31)(*)( 543 ≤=+=++ apaae

11)7,4(2))7,4(),7,3(min()7,2( 2 =+=+= fffef

25167*22)(*)( 432 ≤=+=++ apaae

12)7,4(3))7,4(),7,3(),7,2(min()7,1( 1 =+=+= ffffef  

25247*33)(*)( 4321 ≤=+=+++ apaaae

10))7,3(),7,2(),7,1(min()7,0( == ffff

25257*34)(*)( 3217 ≤=+=+++ apaaae  

Similarly we can compute f(k,6) values shown as the third column 
in Table 1. After computing all f(0,q) values like the last row in 
Table 1, we choose the minimum value among f(0,q), which is 
f(0,6) (= 8). Hence the total number of shifted samples is 8. 
Moreover shift positions are s1, s4 and s6 since f(0,6) is computed 
by f(1,6), f(4,6) and f(6,6).  

A B
7 8 4(AB) 2AB 2(AB)

Buffer size = 25

4

a

 

Figure 8.  An SDF graph with initial delay samples. 

Table 1. f(k,q) computation of Figure 8. 

q 7 6 5 4 3 2 1 

7 4       
6 9 5      
5 10 11 6     
4 9 5 6 0    
3 10 6 7 1 1   
2 11 7 8 3 3 2  
1 12 8 9 4 4 5 3 
0 10 8 N/A N/A N/A N/A N/A 

 

Although we can prove the algorithm is optimal, we skip the proof 
due to the space limitation. 

Theorem 2. If d(a) is no larger than p(a)+c(a)-g(a) on arc a, 
then the lower bound of buffer size is p(a)+c(a)-g(a)+md(a). 
Then the minimum number of shifted samples is 
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 where 

g(a)=g.c.d.(p(a),c(a)), m(a)=min(p(a), c(a))/ g(a) and md(a) = 
d(a) mod g(a). 

For the example of Figure 8, the optimal buffer size is 14(=7+8-
1+(4 mod 1)) and the minimum number of shifted samples is 
21(=1*7*6/2+7*(4 mod 1)).  

Unfortunately, if the number of delay samples is larger than 
p(a)+c(a)-gcd(p(a),c(a)) then it is hard to make a formulation 
since it does not guarantee that at every shift position samples are 
shifted.  

6. Experiments 
In this section, we show the tradeoff between performance 
overhead and buffer size in our shift buffering and compare the 
shift buffering algorithm with modulo buffering in terms of 
performance overhead. Comparison with linear buffering in terms 
of buffer size is too obvious to be repeated in the experiments.  

First we examined the tradeoff between the number of instruction 
and the buffer size in the example of Figure 8. Figure 9 represents 
the tradeoff where x axis indicates the buffer size and y axis does 
the number of shifted samples. The number of shifted samples is 

k 
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inversely proportional to some power of buffer size when the 
graph is curve-fitted. 
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Figure 9. Tradeoff between buffer size and the number of 
shifted samples in Figure 8 

When we compare shift buffering with modulo buffering we use a 
simple conditional execution “(x<M?x:x-M)” replacing a modulo 
operation “(x%M)” since the conditional execution is about three 
times as fast as the modulo operation. 

Figure 10 illustrates a CD2DAT application that converts CD 
format (44.1 KHz sampling data) to DAT format (48 KHz). Each 
arc requires 4, 10, and 11 size buffers at least to hold the live 
samples while each functional node has additional buffers since it 
need to store the previous samples. The repetitions counts for 
FIR1, FIR2, FIR3 and FIR4 are respectively 147, 98, 56 and 40 
invocations per period. 

FIR1 FIR2 FIR3 FIR4
2 3 4 7 5 71 4

a b c  

Figure 10. A CD2DAT algorithm 

In this application, the total number of shifted samples is 213. On 
arc a, 49 samples are shifted since g(a)*m(a)*(m(a)-
1)/2=1*2*1/2=1 and (2FIR1)(FIR2)(FIR1)(FIR2) are called 49 
times. On arc b, 84 samples since 1*4*3/2=6 and 
(3((2FIR2)(FIR3)))(FIR2)(FIR3) are called 14 times. On arc c, 80 
samples since 1*5*4/2=10 and 
(2((2FIR3)(FIR4)(FIR3)(FIR4)))(FIR3)(FIR4) are called 8 times. 

On the other hand, 1638 modulo operations are required for 
modulo buffering. The read index of FIR2 needs 294 mod 
operations and the write index requires 392 mod operations since 
the number of invocations of FIR2 is 98 times and at each time it 
reads 3 samples and writes 4 samples. The read index and the 
write index of FIR3 need 392 and 280 mod operations 
respectively due to 56 invocations of FIR3. The read index of 
FIR4 requires 280 mod operations due to 40 invocations of FIR4.  

Another example is a non-uniform filter bank in which the low 
pass filters retain 2/3 of the spectrum while the high pass filters 
retain 1/3 [7]. 

Table 2. Performance overhead improvements of shift 
buffering over modulo buffering 

 ARM720T ARM920T XScale P4 

CD2DAT 42.4% 59.08% 66.62% 61.11% 

Filter bank 78.78% 79.17% 81.32% 90.45% 

Table 2 summarizes the performance overhead improvement of 
shift buffering over modulo buffering, which is computed by 

(modulo buffering time-shift buffering time)/(modulo buffering 
time). We have measured buffering execution time on ARM720T, 
ARM920T, XScale and Pentium4 3GHz. We reduce the 
performance overhead of buffer management up to 90% by using 
shift buffering. 

7. Conclusions 
In this paper, we propose a new buffer management algorithm 
called shift buffering. The shift buffering is motivated to 
overcome the performance overhead of the modulo buffering. In 
order to minimize the number of shifted samples, we propose 
optimal algorithms to find the optimal shift positions for an arc 

without and with initial delay samples in )( 2nO  and )( 3nO  time 
complexities respectively. The proposed shift buffering provides a 
unique implementation possibility where the library block is 
written in linear buffering and there is an initial delay samples on 
the arc. 

The experimental result shows that the proposed shift buffering 
algorithm reduces up to 90% of the buffer access overhead 
compared with modulo buffering algorithm. In the future, we will 
extend it to hardware synthesis in which shift buffering is more 
beneficial in terms of hardware area and power consumption as 
well as cycle overhead. 
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