
Shift Buffering Technique for Automatic Code Synthesis
from Synchronous Dataflow Graphs

Hyunok Oh
CECS

University of California Irvine
CA, 92697, USA

+1 (949) 824-6725

oho@iris.snu.ac.kr

Nikil Dutt
CECS

University of California Irvine
CA, 92697, USA

+1 (949) 824-7219

dutt@ics.uci.edu

Soonhoi Ha
School of EECS

Seoul National University
Seoul, Korea

+82 (2) 880-7292

sha@iris.snu.ac.kr

ABSTRACT
This paper proposes a new efficient buffer management technique
called shift buffering for automatic code synthesis from
synchronous dataflow graphs (SDF). Two previous buffer
management methods, linear buffering and modulo (or circular)
buffering, assume that samples are queued in the arc buffers in the
arrival order and are accessed by moving the buffer indices. But
both methods have significant overhead for general multi-rate
systems: the linear buffering method requires large size buffers
and the modulo buffering method needs run-time overhead of
buffer index computation. The proposed shift buffering method
shifts samples rather than moving buffer indices. We develop
optimal shift buffering algorithms to minimize the number of
shifted samples. Our experimental results show that the proposed
algorithm saves up to 90% of performance overhead while
requiring the same amount of buffer memory as modulo buffering.
Considering the sample copy overhead, shift buffering is
applicable when memory size is more crucial than performance
overhead, and the shifting overhead is less than the modulo
addressing overhead. Another advantage of the shift buffering
technique is that it supports the library code written with the
linear buffering assumption, which is practically more important.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED
SYSTEMS]:Real-time and embedded systems – real-time and
embedded systems, Signal processing systems.

General Terms
Algorithms, Languages.

Keywords
buffer management, automatic code synthesis, synchronous
dataflow, shift buffering, modulo buffering

1. Introduction
As system complexity increases and fast design turn-around time
becomes important, it attracts more attention to use high level

software design methodology: automatic code generation from
block diagram specification. COSSAP [1], GRAPE [2], and
Ptolemy [3] are well-known design environments, especially for
digital signal processing applications, with automatic code
synthesis facility from graphical dataflow programs.

In a hierarchical dataflow program graph, a node, or a block,
represents a function that transforms input data streams into
output streams. The functionality of an atomic node is described
in a high-level language such as C or VHDL. An arc represents a
channel that carries streams of data samples from the source node
to the destination node. The number of samples produced (or
consumed) per node firing is called the output (or the input)
sample rate of the node. In case the number of samples consumed
or produced on each arc is statically determined and can be any
integer, the graph is called a synchronous dataflow graph (SDF)
[4] which is widely adopted in aforementioned design
environments. We illustrate an example of SDF graph in Figure
1(a). Each arc is annotated with the number of samples consumed
or produced per node execution.

A
1 2
1

1

2

2
2(A)CB2(D)

main() {
for(i=0;i<2;i++){A}
{C}
{B}
for(i=0;i<2;i++){D}

}
(a) (b) (c) (d)

B D

C

A
1 2
1

1

2

2
B D

C

A
1 2
1

1

2

2
2(A)CB2(D)

main() {
for(i=0;i<2;i++){A}
{C}
{B}
for(i=0;i<2;i++){D}

}
(a) (b) (c) (d)

B D

C

A
1 2
1

1

2

2
B D

C

Figure 1. (a) SDF graph example, (b) a scheduling result, (c) a
code template, and (d) the associated buffer allocation

To generate a code from the given SDF graph, the order of block
executions is determined at compile time, which is called
scheduling. Since a dataflow graph specifies only partial orders
between blocks, there are usually more than one valid schedules.
Figure 1(b) shows one of many possible scheduling results in a
list form, where 2(A) means that block A is executed twice. The
schedule will be repeated with the streams of input samples to the
application. A code template according to the schedule of Figure
1(b) is shown in Figure 1(c).

When synthesizing software from an SDF graph, a buffer space is
allocated to each arc to store the data samples between the source
and the destination blocks. The number of allocated buffer entries
should be no less than the maximum number of samples
accumulated on the arc at run-time. After block A is executed
twice, two data samples are produced on each output arc as
explicitly drawn in Figure 1(d).

Since we assume that the kernel code of each function block of an
SDF graph is given, the efficiency of data transfer between nodes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009...$5.00.

51

is the crucial performance factor of the automatically synthesized
code from the graph. For a graph with large sample-rate changes,
a naive buffering technique may require too large memory space
to fit in the on-chip data memory. Therefore we are concerned
with optimal buffer management in automatic code synthesis from
SDF graphs in this paper.

Previous works have used three buffer management methods:
static buffering, linear buffering, and modulo buffering. These
methods assume that samples are queued in the arc buffers in the
arrival order and are accessed by moving the buffer indices. But
these methods are not optimal for general multi-rate systems. The
static buffering is applicable only to a limited case that the buffer
indices do not change at run time. Linear and modulo buffering
methods have significant overhead for general multi-rate systems:
the linear buffering method requires large size buffers and the
modulo buffering method needs run-time overhead of buffer index
computation. This paper proposes a new efficient buffer
management technique called shift buffering. The shift buffering
method shifts samples rather than moving buffer indices. We
present optimal shift buffering algorithms to minimize the number
of shifted samples.

The main contributions of this paper can be summarized as
follows:

• It allows us to use the library block whose kernel code
is written with linear buffering assumption.

• It supports code sharing between the nodes of the same
function block by generating function style code.

• It makes an optimal tradeoff between performance and
memory size.

• It reduces performance overhead compared with modulo
buffering.

In section 2 we define some terminologies. We will discuss the
previous buffer management techniques in section 3 and propose
a new buffer management technique in section 4. In section 5, we
explain optimal buffering algorithms and show experimental
results in section 6. We make a conclusion in section 7.

2. Notations
We use the following notations to represent parameters of arc a in
an SDF graph.

src(a) : the source node of arc a that produces samples.

sink(a) : the sink node of arc a that consumes samples.

p(a) : the number of samples produced per execution of src(a).

c(a) : the number of samples consumed per execution of sink(a).

d(a) : the number of initial delay samples on arc a.

bs(a) : the buffer size allocated on arc a.

For the example of arc AB in Figure 1(d), src(AB) = A,
sink(AB)=B, p(AB)=1, c(AB)=2, d(AB)=0, and bs(AB)=2.

3. Previous Buffer Management Techniques
In this section, we explain three existent buffer management
techniques: static buffering, linear buffering, and modulo (or
circular) buffering [5] with a simple multi-rate example as shown
in Figure 2.

We assume that the arc buffer is contiguous. For each contiguous
buffer, we must determine whether modulo operation is necessary
for accessing the buffer. If we should access the buffer with

modulo operation then we call it modulo buffering; otherwise it is
called linear buffering. The static buffering is a special case of the
linear buffering where the buffer indices return to the original
positions after iterating the static schedule. Apparently modulo
operation requires performance overhead of modulo operation for
each buffer access, especially for general purpose RISC
microprocessors which do not support modulo addressing in
hardware.

Consider Figure 2(a) with a schedule of Figure 2(b). The schedule
is by no means optimal. But we use this schedule to reduce the
buffer requirement with modulo addressing (Figure 3). Linear
buffering requires that the minimum buffer size should be 15 that
is the LCM of p(a) and c(a). As shown in Figure 2(c) the read and
write indices can be safely incremented in the body of blocks A
and B without reaching the buffer boundary. When node A is
executed twice, 6 samples are produced and the write index
becomes 6. When node B consumes 5 samples, the read index
becomes 5. After an iteration of schedule, both the read index and
the write index are reset to zero: So it is static buffering. Figure
2(d) represents the generated code template with linear buffering
in which each buffer access code requires an addition operation to
compute the memory address.

A B
3 5

(a)

2(2AB) AB

(b)

a

main()
{
int a[15],r=0,w=0,i,j;
for(;;) {

for(i=0;i<2;i++) {
for(j=0;j<2;j++) {

// A’s invocation.
// access of a[w],a[w+1],a[w+2];
w += 3;

}
// B’ invocation
// access of a[r],…,a[r+4];
r += 5;

}
// A’s invocation.
// access of a[w],a[w+1],a[w+2];
w = 0;
// B’ invocation
// access of a[r],…,a[r+4];
r=0;

} (d)(c)

2A

r

w

w

r

r

w

r

w

r

w

r

w

w

r

2A

B

A

B

B

Figure 2. (a) An SDF graph, (b) its schedule, (c) read and write
indices movement in linear buffering, and (d) the generated
code.

Since the code for buffer access is simple and independent of the
buffer size in linear buffering, a library block is usually written
assuming linear buffering. If a library code is provided by a
function prototype and is not liable to change, only linear
buffering is allowed even though it requires large buffer memory.

But if there is an initial sample on the arc, linear buffering is not
possible. Suppose that there is an initial sample on arc a in Figure
2. Then no buffer size is suitable for linear buffering. Only
modulo buffering is able to handle the initial samples, to make it
the most general buffering method of SDF graphs.

The modulo buffering method enables us to reduce the buffer size:
the buffer size can decrease to 7 in Figure 2(a). But the buffer

52

access code should be changed in the block definition in the
modulo buffering method: memory accesses should be wrapped-
around when an index exceeds the buffer size. For instance, at the
second invocation of node B in Figure 3(a), the values of the read
index become {5,6,0,1,2}, and modulo operations are required to
access the buffer in the order of {5,6,0,1,2}. Therefore the
generate code has run time overhead of modulo operation for
buffer index computation whenever the buffer is accessed as
shown in Figure 3(b).

Note that if we want to eliminate modulo operations in the first
invocation of node B, we should generate two different definitions
of node B, with linear buffering and modulo buffering. But it is
not a good solution since it is against the code reuse principle.

main()
{
int a[7],r=0,w=0,i,j;
for(;;) {
for(i=0;i<2;i++) {

for(j=0;j<2;j++) {
// A’s invocation.
// access of a[w%7],a[(w+1)%7],a[(w+2)%7];
w += 3;

}
// B’ invocation
// access of a[r%7],…,a[(r+4)%7];
r += 5;

}
// A’s invocation.
// access of a[w%7],a[(w+1)%7],a[(w+2)%7];
w = 0;
// B’ invocation
// access of a[r%7],…,a[(r+4)%7];
r=0;

} (b)(a)

2A

r

w

w

r

r

w

r

w

w

w

r

2A

B

A

B

B

r

w

r

Figure 3. (a) Modulo buffering for both write and read indices
and (b) the generated code.

In short, the modulo buffering is preferable to the memory-
constrained systems while it costs non-negligible performance
overhead of index computation. For example, in Figure 3(b) we
need 30 modulo operations, which take 0.27 us on Pentium 4
3GHz for an iteration of schedule. Moreover it may not reuse the
library blocks that are written assuming linear buffering without
extra sample copy overhead.

4. Proposed Shift Buffer Management
We propose a new buffer management technique called shift
buffering in order to reduce the performance overhead of the
modulo buffering as well as to support library blocks written
based on the linear buffering assumption. The shift buffering is
different from the previous buffer management schemes since it
shifts samples rather than moving index pointers.

In shift buffering, the requirement buffer size is equal to that in
modulo buffering. For the example of Figure 2(a), Figure 4 shows
a shift buffering in which some samples are shifted to keep an
index from exceeding the buffer size. For instance, one sample is
shifted after B is executed at the first invocation. Otherwise the
write index would reach the buffer boundary during the next
invocation of node A.

Note that the generated code of Figure 4(b) is similar to the linear
buffering in Figure 2(d) except that the shift buffering copies data
samples between block invocations. The performance overhead of

shift buffering is the memory copy overhead of three samples for
an iteration of the schedule, which takes 0.02 us on Pentium 4
3GHz that is much shorter than 0.27 us in the modulo buffering
case.

main()
{
int a[7],r=0,w=0,i,j;
for(;;) {

for(i=0;i<2;i++) {
for(j=0;j<2;j++) {

// A’s invocation.
// access of a[w],a[w+1],a[w+2];
w += 3;

}
// B’ invocation
// access of a[r],…,a[r+4];
r += 5;
// shift.
if(i=0) { a[0]=a[r]; r=0; w=1; }
else { a[0]=a[r]; a[1]=a[r+1]; r=0; w=2; }

}
// A’s invocation.
// access of a[w],a[w+1],a[w+2];
w = 0;
// B’ invocation
// access of a[r],…,a[r+4];
r=0;

}
(b)(a)

2A

r

w

w

r

r

w

r

w

w

r

2A

B

A

B

B

r

w

r

wshift

w

r

r

wshift

Figure 4. Shift buffering for Figure 2(a) and (b): (a) index
movements and (b) the generated code with shift buffering.

#include “library.h”
main()
{

int a[7],r=0,w=0,i,j;
for(;;) {

for(i=0;i<2;i++) {
for(j=0;j<2;j++) {

// A’s invocation.
library_code_call(&a[w]);

…
}

void library_code_call(int[3]);

(a)

(b)

library.h

Figure 5. Importing a library: (a) a library header file and (b)
node A calls a function in the library in Figure 4(b).

Since all buffer accesses inside the block use linear buffering, we
can import a library code written with linear buffering assumption.
For instance, assume that a library block is provided with
functions declaration as header file as shown in Figure 5(a). Then
the function arguments or input buffers should be contiguously
accessible with linear buffering.

When a graph has multiple nodes associated with the same
function block, function style shared code can be generated as
shown in Figure 6. In the shared code generation, a single block
definition should be provided as a function. Therefore the modulo
buffering is not applicable for the block definition.

Thus the shift buffering is a novel buffer management technique
to minimize the buffer size while preserving the linear buffering
inside the block definition. It has benefits over modulo buffering
when the memory copy overhead is less than the modulo
operation overhead and the memory size is more critical than the
performance overhead especially in multirate systems.

53

void A(int x[3]) { … }

main()
{
int a[7],b[3],wa=0,wb=0,i,j;
for(;;) {

…
// A1’s invocation
A(&a[wa])
wa += 3;

…
// A2’s invocation
A(&b[wb])
wb +=3;

…
}

A1 B
3 5

(a)

A2
3 3

C

a

b

(b)

Figure 6. Code sharing example: (a) a graph in which node A1
and A2 have common codes and (b) shared code.

The key question in shift buffering is when we have to shift the
samples. Since it requires memory copy overhead to shift each
sample, the optimal shift buffering problem is to minimize the
number of shifted samples for an iteration of the schedule. It is a
rather obvious observation on the shift position that we should
shift samples after a sink node is fired and before a source node is
executed. Let A=src(a) and B=sink(a) on arc a. Moreover ka and

kb denotes the repetition counter (or looping number) of A and B

respectively. Since we are interested in the buffer on arc a, we
reduce the overall schedule to the schedule of block A and B
omitting other blocks in the schedule. For example, if the
schedule is 2ABCDAB, where C and D are other blocks, then we
reduce it to 2ABAB. Then the shift position should lie between B
and A, not between A and B. We summarize it as the following
theorem.

Theorem 1. An optimal shift should be occurred before
executions of src(a) and after sink(a) of an arc a.

By theorem 1, the optimum shift buffering problem is to
determine the shift position between B and A in the schedule to
minimize the number of shifted sample on the condition that
indices accessing the buffer should not exceed the buffer size.

We can formalize the problem as follows: Let is be a binary

variable in 111 BsAba 222 BsAba kkk BsAba nnn BsAba where

is =0 indicates that we do not shift samples and is =1 does we

shift them. And let)(awk be a write index accessed by the kth

lexical appearance of src(a) and)(ark a read index accessed by

the kth of sink(a) in the schedule. Then the optimal shift buffering

problem is to minimize ∑
=

n

i
ii se

1
* where ie is the number of

remained samples at shift position of is while)()(absawi ≤ for

all i. Note that ∑
=

−=
k

i
iik acbapae

1
)(*)(* and)()(awar ii ≤ since

the read index may not be ahead of the write index.

5. Algorithm for Optimal Shift Buffering
In this section we present the algorithms for optimal shift
buffering. First, we introduce an algorithm for an arc with no
initial delay sample, of which the time complexity is O(n2). And
we extend it for an arc with initial delay samples, of which the
time complexity is O(n3).

5.1 Algorithm for an arc with no initial delay
sample
Let i

n

ki
ik seekf ∑

+=
+=

1
*)(to indicate the minimum number of

shifted samples from sk to sn assuming that we shift samples at sk,
that is sk=1 in f(k). Then the f(0) represents the total number of
shifted samples where e0 is defined as 0.

In order to compute f(k), we examine the write index w(a) that
should not exceed the buffer size. When samples are shifted at sk

and are not from sk+1 to sk+m-1, w(a) becomes ∑
+

+=
+

mk

ki
ik apae

1
)(* .

Suppose that ∑+<≤∑+
++

+=

+

+=

1

11
)(*)()(*

mk

ki
ik

mk

ki
ik apaeabsapae . Then

we should shift samples at least once between sk+1 and sk+m. Since
f(k+h) represents optimal shift result from sk+h to sn, f(k) chooses
the minimum value among f(k+1), f(k+2) ,…, f(k+m).

Algorithm 1.
0)(== nenf .

))(),...,2(),1(min()(mkfkfkfekf k ++++= where m is

maximum while)()(*)(
1

absapaeaw
mk

ki
ik ≤+= ∑

+

+=
.

Since f(0) represents the minimum number of shifted samples, we
can find the optimal shift occurrences by retracing f(0). Since
O(n) time is required to compute f(k), the time complexity of the
given algorithm is O(n2).

Consider Figure 7 and assume that schedule is 2AB 6(AB) and
buffer size of bs(a) is 25. The required buffer size for the linear
buffering is 56. The optimal shift buffering problem is to
determine s1 ,…,s7 in 2ABs1ABs2ABs3ABs4ABs5ABs6ABs7.
Compute the number of remained samples at each shift position :
(e1, e2, e3, e4, e5, e6, e7)=(6,5,4,3,2,1,0).

Now let us compute f(k).

.0)7(7 == ef .1)7()6(6 =+= fef

2))7(),6(min()5(5 =+= ffef , 2516)(*25 ≤=+ ape .

3))7(),6(),5(min()4(4 =+= fffef , 4e =+)(*3 ap 2524 ≤ .

5))6(),5(),4(min()3(3 =+= fffef , 3e 2525)(*3 ≤=+ ap .

8))4(),3(min()2(2 =+= ffef , 2e 2519)(*2 ≤=+ ap .

11))3(),2(min()1(1 =+= ffef , 1e 2520)(*2 ≤=+ ap .

80))2(),1(min()0(0 +=+= ffef , 2521)(*30 ≤=+ ape .

The minimum number of shifted samples is 8 and 2s = 4s = 7s =1

since f(2), f(4) and f(7) are used for computing f(0). Therefore we
make a schedule of 2AB AB (shift) 2(AB) (shift) 3(AB) (shift).

A B
7 8 2AB 6(AB)

Buffer size = 25

a

Figure 7. An SDF graph without initial delay samples.

Note that we flatten the looped schedule when computing the
optimal shift position and re-loop the modified schedule after
inserting the shift operation. Thus the proposed technique
restructures a given looped schedule with the reduced buffer size.

54

5.2 Algorithm for an arc with delay samples
When an arc has initial delay samples, we are not sure whether the
optimal shift buffering result shifts samples at sn. Therefore we
assume that we shift samples at sq. By combining f(k) with this sq,
we introduce a new function f(k,q) that indicates the minimum
number of shifted samples when we shift samples at sk and sq but
do not shift samples after sq. Or let f(k,q) denote the minimum
number of shifted samples where sk =1, sq =1, and sq+1 = sq+2

=…=sn =0. We know simply that i

q

ki
iqk seeeqkf ∑++=

−

+=

1

1
*),(

since i

q

ki
i se∑

−

+=

1

1
* represents the minimum number of shifted

samples from sk+1 to sq-1. f(k,q) is defined when k ≤ q and f(k,k) =
ek.

Similarly to algorithm 1, we compute f(k,q) by choosing the
minimum value among f(k+1,q), …, f(k+m,q) where

∑+<≤∑+
++

+=

+

+=

1

11
)(*)()(*

mk

ki
ik

mk

ki
ik apaeabsapae .

The initial value of w(a) is dependent on q that is last shift
position. If samples are shifted at sq and are not shifted at sq+1,...,sn

then the initial value of w(a) is ∑
+=

+
n

qi
iq apae

1
)(* .

Since f(0,q) is defined as min(f(1,q),f(2,q),…,f(m,q)) where

)()(*)(*)(
11

absapaapaeaw
m

i
i

n

qi
iq ≤++= ∑∑

=+=
 we can find the

optimal shift buffering positions by choosing the minimum f(0,q)
among 0 ≤ q ≤ n.

Algorithm 2.

f(k,k) = ek.

f(k,q) = ek + min(f(k+1,q),f(k+2,q),…,f(k+m,q)) where m is the

maximum value satisfying)()(*)(
1

absapaeaw
mk

ki
ik ≤+= ∑

+

+=
 and

qmk ≤+ .

f(0,q) = min(f(1,q),f(2,q),…,f(m,q)) where m is the maximum value

satisfying)()(*)(*)(
11

absapaapaeaw
m

i
i

n

qi
iq ≤++= ∑∑

=+=
.

),0(min)0(
,...,1

qff
nq=

=

Since this algorithm requires n times more than the previous

algorithm for q, the time complexity is)(3nO .

Consider Figure 8 in which arc a has 4 initial delay samples.
Assume that the schedule is 4(AB) 2AB 2(AB) and the buffer size
is 25. Then the number of shifted samples vector (e1, …, e7) is
(3,2,1,0,6,5,4) and repetition vector for node A (a1,…, a7) =
(1,1,1,1,2,1,1). Now we compute f(7,7), f(6,7), … , f(0,7).

4)7,7(7 == ef 9)7,7()7,6(6 =+= fef

10)7,7(6))7,7(),7,6(min()7,5(5 =+=+= fffef

25207*26)(*)(765 ≤=+=++ apaae

9)7,6(0))7,6(),7,5(min()7,4(4 =+=+= fffef

25217*30)(*)(654 ≤=+=++ apaae

10)7,4(1))7,5(),7,4(min()7,3(3 =+=+= fffef

25227*31)(*)(543 ≤=+=++ apaae

11)7,4(2))7,4(),7,3(min()7,2(2 =+=+= fffef

25167*22)(*)(432 ≤=+=++ apaae

12)7,4(3))7,4(),7,3(),7,2(min()7,1(1 =+=+= ffffef

25247*33)(*)(4321 ≤=+=+++ apaaae

10))7,3(),7,2(),7,1(min()7,0(== ffff

25257*34)(*)(3217 ≤=+=+++ apaaae

Similarly we can compute f(k,6) values shown as the third column
in Table 1. After computing all f(0,q) values like the last row in
Table 1, we choose the minimum value among f(0,q), which is
f(0,6) (= 8). Hence the total number of shifted samples is 8.
Moreover shift positions are s1, s4 and s6 since f(0,6) is computed
by f(1,6), f(4,6) and f(6,6).

A B
7 8 4(AB) 2AB 2(AB)

Buffer size = 25

4

a

Figure 8. An SDF graph with initial delay samples.

Table 1. f(k,q) computation of Figure 8.

q 7 6 5 4 3 2 1

7 4
6 9 5
5 10 11 6
4 9 5 6 0
3 10 6 7 1 1
2 11 7 8 3 3 2
1 12 8 9 4 4 5 3
0 10 8 N/A N/A N/A N/A N/A

Although we can prove the algorithm is optimal, we skip the proof
due to the space limitation.

Theorem 2. If d(a) is no larger than p(a)+c(a)-g(a) on arc a,
then the lower bound of buffer size is p(a)+c(a)-g(a)+md(a).
Then the minimum number of shifted samples is

)(*)(
2

)1)((*)(
*)(amdam

amam
ag +−

 where

g(a)=g.c.d.(p(a),c(a)), m(a)=min(p(a), c(a))/ g(a) and md(a) =
d(a) mod g(a).

For the example of Figure 8, the optimal buffer size is 14(=7+8-
1+(4 mod 1)) and the minimum number of shifted samples is
21(=1*7*6/2+7*(4 mod 1)).

Unfortunately, if the number of delay samples is larger than
p(a)+c(a)-gcd(p(a),c(a)) then it is hard to make a formulation
since it does not guarantee that at every shift position samples are
shifted.

6. Experiments
In this section, we show the tradeoff between performance
overhead and buffer size in our shift buffering and compare the
shift buffering algorithm with modulo buffering in terms of
performance overhead. Comparison with linear buffering in terms
of buffer size is too obvious to be repeated in the experiments.

First we examined the tradeoff between the number of instruction
and the buffer size in the example of Figure 8. Figure 9 represents
the tradeoff where x axis indicates the buffer size and y axis does
the number of shifted samples. The number of shifted samples is

k

55

inversely proportional to some power of buffer size when the
graph is curve-fitted.

21

9

5
3

2 1
00

5

10

15

20

25

14 21 28 35 42 49 56

buffer size

nu
m

be
r

of
 s

hi
fte

d
sa

m
pl

es

Figure 9. Tradeoff between buffer size and the number of
shifted samples in Figure 8

When we compare shift buffering with modulo buffering we use a
simple conditional execution “(x<M?x:x-M)” replacing a modulo
operation “(x%M)” since the conditional execution is about three
times as fast as the modulo operation.

Figure 10 illustrates a CD2DAT application that converts CD
format (44.1 KHz sampling data) to DAT format (48 KHz). Each
arc requires 4, 10, and 11 size buffers at least to hold the live
samples while each functional node has additional buffers since it
need to store the previous samples. The repetitions counts for
FIR1, FIR2, FIR3 and FIR4 are respectively 147, 98, 56 and 40
invocations per period.

FIR1 FIR2 FIR3 FIR4
2 3 4 7 5 71 4

a b c

Figure 10. A CD2DAT algorithm

In this application, the total number of shifted samples is 213. On
arc a, 49 samples are shifted since g(a)*m(a)*(m(a)-
1)/2=1*2*1/2=1 and (2FIR1)(FIR2)(FIR1)(FIR2) are called 49
times. On arc b, 84 samples since 1*4*3/2=6 and
(3((2FIR2)(FIR3)))(FIR2)(FIR3) are called 14 times. On arc c, 80
samples since 1*5*4/2=10 and
(2((2FIR3)(FIR4)(FIR3)(FIR4)))(FIR3)(FIR4) are called 8 times.

On the other hand, 1638 modulo operations are required for
modulo buffering. The read index of FIR2 needs 294 mod
operations and the write index requires 392 mod operations since
the number of invocations of FIR2 is 98 times and at each time it
reads 3 samples and writes 4 samples. The read index and the
write index of FIR3 need 392 and 280 mod operations
respectively due to 56 invocations of FIR3. The read index of
FIR4 requires 280 mod operations due to 40 invocations of FIR4.

Another example is a non-uniform filter bank in which the low
pass filters retain 2/3 of the spectrum while the high pass filters
retain 1/3 [7].

Table 2. Performance overhead improvements of shift
buffering over modulo buffering

 ARM720T ARM920T XScale P4

CD2DAT 42.4% 59.08% 66.62% 61.11%

Filter bank 78.78% 79.17% 81.32% 90.45%

Table 2 summarizes the performance overhead improvement of
shift buffering over modulo buffering, which is computed by

(modulo buffering time-shift buffering time)/(modulo buffering
time). We have measured buffering execution time on ARM720T,
ARM920T, XScale and Pentium4 3GHz. We reduce the
performance overhead of buffer management up to 90% by using
shift buffering.

7. Conclusions
In this paper, we propose a new buffer management algorithm
called shift buffering. The shift buffering is motivated to
overcome the performance overhead of the modulo buffering. In
order to minimize the number of shifted samples, we propose
optimal algorithms to find the optimal shift positions for an arc

without and with initial delay samples in)(2nO and)(3nO time
complexities respectively. The proposed shift buffering provides a
unique implementation possibility where the library block is
written in linear buffering and there is an initial delay samples on
the arc.

The experimental result shows that the proposed shift buffering
algorithm reduces up to 90% of the buffer access overhead
compared with modulo buffering algorithm. In the future, we will
extend it to hardware synthesis in which shift buffering is more
beneficial in terms of hardware area and power consumption as
well as cycle overhead.

Acknowledgement
This work was partially supported by NSF grants CCR-0203813,
ACI-0204028, National Research Laboratory Program (Grant No.
M1-0104-00-0015), and IT leading R&D Support Project funded
by Korean MIC.

References
[1] Synopsys Inc., 700 E. Middlefield Rd., Mountain View,

CA94043, USA, COSSAP User’s Manual.

[2] R. Lauwereins, M. Engels, J. A. Peperstraete, E. Steegmans,
and J. Van Ginderdeuren, “GRAPE: A CASE Tool for
Digital Signal Parallel Processing”, IEEE ASSP Magazine,
vol. 7, (no.2):32-43, April, 1990

[3] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschimitt,
“Ptolemy: A Framework for Simulating and Prototyping
Heterogeneous Systems”, Int. Journal of Computer
Simulation, special issue on “Simulation Software
Development”, vol. 4, pp. 155-182, April, 1994.

[4] E. A. Lee and D. G. Messerschmitt, “Static scheduling of
synchronous dataflow programs for digital signal
processing,” IEEE Trans. Comput., vol. C-36, no. 1, pp. 24-
35, Jan 1987.

[5] S. S. Bhattacharyya and E. A. Lee, “Memory management
for dataflow programming of multirate signal processing
algorithms,” IEEE Trans. Signal Processing, vol. 42, No. 5,
May, 1994.

[6] S. S. Bhattacharyya, P.K. Murthy and E. A. Lee, Software
Synthesis from Dataflow Graphs, Kluwer Academic
Publishers, Norwell Ma, 1996.

[7] P. K. Murthy, S. S. Bhattacharyya and E. A. Lee, “Joint
Minimization of Code and Data for Synchronous Dataflow
Programs,” In the Journal of Formal Methods in System
Design, vol. 11, no. 1, July, 1997.

56

	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index

