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ABSTRACT 
In this paper, we present a new architectural concept for network 
processors called FlexPath NP. The central idea behind FlexPath 
NP is to systematically map network processor (NP) application 
sub-functions onto both SW programmable processor (CPU) 
resources and (re-)configurable HW building blocks, such that 
different packet flows are forwarded via different, optimized 
processing paths through the NP. Packets with well understood, 
relatively simple processing requirements may even bypass the 
central CPU complex (AutoRoute). In consequence, CPU 
processing resources are more effectively used and the overall NP 
performance and throughput are improved compared to 
conventional NP architectures. We present analytical performance 
estimations to quantify the performance advantage of FlexPath 
(expressed as available CPU instructions for each packet 
traversing the CPUs) and introduce a platform-based System on 
Programmable Chip (SoPC) based architecture which implements 
the FlexPath NP concept. 

Categories and Subject Descriptors 
C.0 [GENERAL]: System architectures 

C.1.3 [Other Architecture Styles]: Adaptable architectures, 
Data-flow architectures, Pipeline processors 

C.2.6 [Internetworking]: Routers 

General Terms 
Performance, Design 

Keywords 
Network processors, application-specific architectures, hardware 
accelerators, dynamically reconfigurable processors, IP 
networking 

1. INTRODUCTION 
Network processors (NPs) are programmable VLSI (Very Large 
Scale Integration) components with instruction set extensions, 
dedicated co-processors and network interfaces to support packet 
forwarding and processing. NPs attempt to merge the flexibility 
characteristics of general purpose CPUs with the performance of 
networking ASICs (Application Specific Integrated Circuit) in 
terms of packet throughput (Gbit/s) and latency (< few ms). The 
requirements for high flexibility and performance result from a 
rapid growth in new networking applications on the one hand, and 
the fact that these new protocols and services are deployed and 
tested in the market before being finally standardized. Example 
application areas for NPs include QoS (Quality of Service)-based 
IP routers [1, 2], secure VPN (Virtual Private Network) gateways 
[3], multimedia IP service integration in wireless (GSM / UMTS) 
base station controllers [4], alternative VoIP telephony networks 
[5] and broadband IP service provisioning to the home via DSL 
(Digital Subscriber Line) or Cable Modem technologies. NPs in 
various performance classes will evolve as a key technology 
component for future generations of packet switching systems 
deployed in both private and public communication networks. A 
detailed overview and comparison among various NP 
architectures is found in [6].  

Programmable components – such as NPs – have the inherent 
advantage over ASICs that they can be easily adapted in the field 
to specification changes or functional enhancements by means of 
software upgrades. The main challenge for these programmable 
solutions is to keep up with the performance of ASICs. In this 
paper we introduce a system architecture level contribution to NPs 
with the objective to mitigate the flexibility/performance dilemma. 
Configurable, application-driven processing paths enable a 
flexible, packet flow-specific traversal of NP (hardware and 
software) building blocks. Packets which predominantly can be 
handled by NP hardware units consume only minimal (or no) 
CPU processing resources, packets for which the provisioned NP 
hardware is insufficient are dominantly processed by the CPUs. 

The paper is structured as follows: section 2 provides a brief 
conceptual overview on state-of-the-art NP architectures. Section 
3 presents the fundamental concepts of the FlexPath NP and its 
AutoRoute operation mode. The performance estimation to 
quantify the expected benefits of FlexPath versus a conventional 
NP architecture is subject of section 4. As the FlexPath project is 
“work-in-progress”, we describe in section 5 the SoPC (System 
on Programmable Chip) architecture of a demonstrator to proof 
the validity of the FlexPath concept in a real network. We 
conclude with an outlook to future work in section 6. 
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2. BACKGROUND AND RELATED WORK 
Today’s relevant network processor architectures [7] are based on 
a “processor-centric” approach as depicted in figure 1. Processor-
centric means that after packet reception and storage in the packet 
data memory sub-system, the (multi-processor) CPU cluster takes 
control over the packet handling. This includes determining the 
sequence in which dedicated co-processors and hardware 
accelerators for networking related functions (e.g. address lookup, 
cryptography, traffic management, etc.) are traversed. Thus, the 
control over the packet can change multiple times between CPU 
cluster and co-processors before the packet is retransmitted over 
standard network interfaces (e.g. 10/100 or Gbit Ethernet, 
SONET/SDH Utopia, etc.). 
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Figure 1: Classical processor-centric NP concept 

Although the NP implementations of various vendors differ 
greatly with respect to the realization of the processor complex 
(SMP (Symmetric Multi-Processing) RISC cores, pipelined 
micro-engines, proprietary ASIPs), memory hierarchy and the 
amount of co-processor support; each and every packet, 
irrespective of its application-specific processing demands, starts 
its processing path at the CPU and typically traverses the CPU 
cluster multiple times [8, 9]. 
Assuming an aggregate ingress link capacity of 1.244 Gbit/s (2× 
OC-12) and a worst-case scenario of consecutive shortest packets 
of 64 Bytes (referring to the minimum frame size in Ethernet) this 

results in a packet rate of Mpps
packetbit

sGbit 4.2
/864

/244.1 =
×

 (million 

packets per second) or a new packet arrival every 417 ns. The 
packet rate is the event rate each processor in a pipeline structure, 
or the SMP cluster as a whole, has to cope with. If packet control 
switches several times between CPUs and co-processors, the event 
rate (or thread context changes) multiplies accordingly. While 
dedicated co-processors significantly offload the CPU cluster 
from processing intensive tasks, they cannot reduce the packet 
(event) rate in the above described processor-centric NP 
architecture concept, but will even increase it instead. 

3. THE FlexPath NP CONCEPT 
Under the assumptions that 
• high bit rate network connections (such as Gbit Ethernet or OC-

12 and higher SONET/SDH links) consist of a mixture of many 
(thousands of) individual packet flows with very diverse 
processing requirements and 

• packet flows with relatively low processing complexities can 
even be completely processed and forwarded by application-
specific hardware units 

we devised a new NP concept called FlexPath NP (see figure 2). 
In a FlexPath NP, a variety of alternative processing paths (i.e. NP 
building block traverse sequences) are conceivable. For example:  
• Packets or packet contexts may be sent to a number of co-

processors (e.g. next hop address lookup, authentication or 
decryption) before being handed over to the CPU along with the 
obtained results. The computing amount for the CPU is reduced, 
while the packet event rate is not increased as in the processor-
centric reference scenarios. 

• Packets with relatively simple processing requirements can 
directly be sent to the Traffic Manager unit on the egress side of 
the NP. As packets bypass the CPU cluster in this operation 
mode, we call this processing path AutoRoute. The “saved” 
CPU computing capacity will instead be preserved for packets 
remaining on the CPU path. We refer to section 4.2 for a 
discussion of viable AutoRoute scenarios. 

• Packets or packet contexts may directly be sent to the CPU 
cluster as in the “processor-centric” case. Actually, the case 
where all packet flows use the CPU path will serve later as a 
reference for evaluating the benefits of the other FlexPath 
alternatives. 
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Figure 2: FlexPath NP concept with dynamically 

reconfigurable packet paths 
The decisions about the most suitable processing path have to be 
made on a per-packet basis (remember the inter-arrival time of 
417 ns in case of 1.244 Gbit/s link rate). In the FlexPath NP, this 
decision function has been eliminated from the software process 
running on the CPU cluster. It is now performed by a hardware 
assist called Path Dispatcher that contains reconfigurable rule-
tables. Based on these rules and the incoming packet context the 
processing path selection is made. If no matching rule can be 
found, the default processing path, which traverses the CPU 
cluster, is chosen. Taking an alternative processing path requires 
explicit permission in form of a matching rule entry. 
Configuration and updating of the rule-tables is the task of a 
software process (called Path Manager) running on the NP control 
point CPU. Updating the rule-tables is not timing critical as it 
only requires intervention when a packet flow class terminates, 
newly initiates or changes its processing path during its lifetime 
(Note, that we currently anticipate several hundred to a few 
thousand rule-table updates per second [10,11]).  
Besides the Path Dispatcher, a packet Pre-Processor and a packet 
Post-Processor unit are necessary prerequisites for alternative 
processing paths in FlexPath. 
The Pre-Processor unit is running in parallel to the packet data 
storage functionality in the ingress path of the NP. It performs 
basic functions like packet header parsing, extraction of pertinent 
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header information (destination/source addresses, L4 port 
numbers, priority bits, protocol IDs), alignment of extracted 
header fields to CPU word length (32 bit), packet prioritization 
and classification and calls the address lookup or other co-
processor(s). Thus, the Pre-Processor retrieves sufficient 
information about the incoming packet (and builds the so-called 
packet context) which enables the Path Dispatcher to make 
decisions about the further handling of the packet.  
Packets still traversing the CPU cluster nevertheless benefit from 
the pre-processing. CPUs do not have to build the packet contexts 
themselves and save thread switches or stall periods due to co-
processor invocation.  
The Post-Processor performs at minimum basic egress packet 
modification operations like MAC address insertion, TTL 
decrement, and IP checksum calculation. These functions are 
mandatory for finishing packet processing on simple AutoRoute 
cases. The Post-Processor performs these operations by extracting 
corresponding commands out of the packet context. Post-
Processor commands are added to the packet context either by the 
Pre-Processor or CPU software which has to be aware of the Post-
Processor capabilities.  
Thus, packets traversing the CPU cluster benefit again from the 
FlexPath Pre-/Post-Processor units. The CPUs can take advantage 
of the offered features and are not obliged to perform the 
necessary bit-level modifications by themselves. 
The FlexPath NP concept allows for a maximum of flexibility in 
NP packet processing as packet flow classes can individually and 
dynamically change their processing paths anywhere between the 
classical “processor-centric” and the aggressive AutoRoute 
modes. Of particular interest are packet flows where the 
processing path dynamically changes with different phases of the 
packet flow’s lifetime. For example, during connection setup the 
packets traverse the CPU cluster. If the CPU identifies that there 
is sufficient functionality in the ingress and egress processing 
units for this flow (Pre-/Post-Processors), the Path Dispatcher 
rule-tables are updated to either invoke co-processors before 
passing control to the CPU or AutoRoute subsequent packets of 
this flow. If in a later stage the Pre-Processor identifies unknown 
options or error conditions in packets of the particular flow, it is 
necessary to change the forwarding path back towards the CPU 
cluster. When performing these dynamic transitions, it must be 
insured that no packets get lost and that the sequence of packets 
belonging to the same flow is preserved. 

4. PERFORMANCE ESTIMATION 
By means of analytical performance estimations, we now quantify 
the gain in CPU processing performance (expressed as available 
CPU instructions per packet (IPP)) depending on the fraction of 
traffic (b) taking the AutoRoute path. An aggregate NP link rate 
(R) of 1.244 Gbit/s and a packet size (s) of 64 Bytes is assumed 
(2.4 Mpps). Network processing data plane applications vary in 
terms of processing requirements between a few hundred to 
several thousand IPP [12, 13]. Simple packet forwarding (ATM / 
Ethernet switching, IPv4 trie forwarding) requires a minimum of 
200 – 500 IPP, MPLS or QoS-enabled packet forwarding between 
500 – 700 IPP, VPN and traffic load balancing applications in the 
order of 1500 – 2000 instructions and 3000 and more instructions 
(per 64 byte packet segment) are required for intrusion detection 
and virus scanning. Note that the latter examples are payload 
processing applications where the IPP is correlated to the packet 

length and can, for large packets with hundreds of bytes, amount 
to several ten thousand IPP. Regarding the case of very simple 
forwarding applications, the minimum processing requirement 

already amounts to .720.3004.2 MIPS
packet
InstrMpps =×   

Three different system alternatives with variable processor 
resources are compared. Table 1 summarizes the key system and 
CPU performance parameters. The three system alternatives are: 
1. Processor-Centric (as the reference scenario): We choose an 

architecture with 6 ASIP cores, each running at 232 MHz [14]. 
As the ASIP cores support simultaneous multithreading, an 
(optimistic) CPI (clocks per instruction) of 1 was considered 
yielding a nominal processing performance of 1392 MIPS for 
the ASIP cluster. The average available IPP(0) in case of b=0% 
is 573 instructions. 

2. FlexPath_1: The FlexPath_1 configuration consists of a CPU 
cluster with one standard, single-threaded embedded RISC core 
(e.g. PowerPC 440 or MIPS). Such RISC cores are available as 
hard macros in ASIC libraries and typically run at up to 667 
MHz in 130nm CMOS technologies [15]. Since single-threaded 
CPUs stall during memory and coprocessor accesses, we 
considered a CPI of 1.4 for this system alternative. The nominal 
processor performance now amounts to 476 MIPS and the 
average IPP(0) is 196 instructions. 

3. FlexPath_2: FlexPath_2 has twice the processing power as 
FlexPath_1. Two embedded RISC cores with a total 
performance of 953 MIPS are employed yielding an average 
IPP(0) of 392 instructions. 

Table 1: System Parameters Processor-Centric vs. FlexPath 
 Centric FlexPath_1 FlexPath_2 
CPU clock [f] 232 MHz 667 MHz 667 MHz 
Packet size [s] 64 Byte 64 Byte 64 Byte 
NP bit rate [R] 1.24 Gbit/s 1.24 Gbit/s 1.24 Gbit/s 
CPU count [N] 6 1 2 
CPI [CPI] 1.0 1.4 1.4 
Nom. MIPS  [M] 1392 476 953 
Avg. IPP (b=0%) 573 196 392 

In the following IPP estimations, we will, for the sake of a 
conservative analysis, exclude the Pre-/Post-Processor MIPS but 
keep in mind that the FlexPath ingress and egress hardware 
functionality, together with a MAC/IP address lookup engine 
shall be adequate to perform simple packet switching and 
forwarding. 

4.1 Potential AutoRoute Gain 
The first question to investigate is: “How large is the available 
CPU processing budget (expressed as instructions per packet) for 
packets traversing the CPU cluster if a variable percentage (b) of 
packets take the AutoRoute path?” 
Given the system parameters from Table 1, one can compute the 
available CPU IPP1(b) for all three system alternatives with the 

following formula: 







−×
××=

bRCPI
sfNbIPP

1
1)(1 . 

Figure 3 illustrates the resulting instruction budgets with IPP1 
drawn on the Y-axis in logarithmic scale. 
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Figure 3: IPP1(b): Processor-Centric vs. FlexPath_1 and 

FlexPath_2 
IPP1 for the processor-centric alternative is – by definition – 
independent of b (processor-centric means 0% bypass) and has a 
constant value of 573 instructions per packet, which is sufficient 
for QoS or DiffServ forwarding on the entire link capacity. 
With respect to the two FlexPath alternatives, the following 
observations can be made: 
y For b=0% (i.e. all packets traverse the CPU cluster) the 

respective IPP1(0) starts off in case of FlexPath_1 at 196, and 
in case of FlexPath_2 at 392. Thus, for b=0%, FlexPath_1 is 
not a viable alternative for any networking application under 
the link rate assumptions made. FlexPath_2 at b=0% fulfills the 
required CPU performance for simple packet switching and 
forwarding. 
y However, both curves show a more than exponential increase of 

IPP1(b) over b. The break even points with the processor-
centric alternative are at bBE=65.8% for FlexPath_1 and 
bBE=31.5% for FlexPath_2. The break even points indicate that 
if bBE percent of the traffic can be forwarded by the FlexPath 
hardware assists, the remaining (100–bBE) percent of the traffic 
receive the same service in the RISC CPU(s) as packets in the 
processor-centric alternative. Expressed differently, the CPU 
IPPs saved on the AutoRoute packets are now available to 
provide higher CPU processing capacities for those packets still 
traversing through the CPU cluster. 

For even higher values of b in the range of 80% to 90%, IPP1 
values between 2000 and 3000 can be achieved with FlexPath_2, 
allowing the execution of complex tasks for the remaining packet 
share.  

4.2 Viability of AutoRoute Scenarios 
The critical question to be answered for the viability of the 
FlexPath concept is: “How realistic is it to assume that 40% or 
more of the traffic volume on high-speed links can take the 
AutoRoute path?”  
Consider a typical traffic profile as it is found in the internet today 
[16]. The measured results on Sprint’s OC-48 (2.5 Gbit/s) internet 
backbone links show that 90% of the traffic uses the TCP/IP 
stack. Another 6.2% of the traffic is UDP/IP traffic belonging to 
streaming applications (video, audio or VoIP). A well-known 
property of the TCP protocol is that every packet needs to be 
acknowledged. This is achieved by sending another TCP packet 
from the receiver to the sender of the original message with the 
ACK bit set in the TCP header. Although “piggybacking” of these 

acknowledgements into packets carrying other payload 
information is possible, in most cases there is no data in the 
acknowledgement packets. TCP ACKs need no sophisticated 
processing but just simple forwarding to reach their destination. 
Roughly 45% of all packets in the network are such simple, 
minimum sized acknowledgement packets that can be handled by 
the FlexPath AutoRoute concept and we have identified one 
common example where shortest length packets in the internet can 
be processed without CPU intervention. 
Let’s look at another application example from the wireless access 
network. 3G base stations or UMTS radio access network 
gateways is network equipment sitting between wireless end users 
and the wire-line telephony and data networks. Base stations and 
access gateways typically support a wide range of networking 
interfaces: OC-3/OC-12 SONET/SDH Utopia and T1/E1 (1.5 
Mbit/s, 2Mbit/s) TDM (time division multiplex) channels. The 
ratio between “forwarding traffic” among daisy-chained base 
stations via the OC-3/OC-12 links, and traffic to/from mobile 
terminals via the T1/E1 channels, can get as high as 10:1. Here, 
only 10% mobile user traffic needs high flexibility and processing 
complexity (for functions like header compression, protocol 
conversion etc), while 90% of the traffic can be forwarded based 
on the L2/L3 information (thus, being a candidate for the 
AutoRoute path). In such an application, an IPP1 of 2000 – 3000 
creates valuable headroom for the computationally intensive 
functions on up to approximately 120 Mbps capacity, which is 
equivalent to roughly 60 E1 channels. 
The above list of AutoRoute-“friendly” applications is not 
exhaustive. Streaming media and real-time applications, such as 
VoIP or UDP/RTP, could also benefit from the low latency, low 
jitter variation AutoRoute forwarding path that is fully 
implemented in hardware. Summing up the above mentioned 
cases, we see a significant share of the traffic as premier 
candidates for the AutoRoute forwarding path. The remaining 
packet processing functions may then be realized on a reasonably 
smaller and less stressed CPU cluster. 

4.3 NPs under Variable Load Conditions 
An interesting perspective on processor-centric NP architectures 
is gained with the following investigation: “What is the remaining 
CPU processing budget IPP2 in a processor-centric NP 
architecture if d% of the packets have a processing demand of Z 
CPU instructions per packet?“. The corresponding formula is: 









−







 −
×
××=

d
Zxd

RCPI
sfNdIPP

1
1)(2  

Figure 4 shows the corresponding set of curves for selected Z 
values of 200, 300, 600, 1000, 1500 and 2000 instructions per 
packet in dependency of d varying between 0 and 95% of the 
aggregate NP bit rate R. We see that for Z<IPP1(0)=573, the 
IPP2(d) processing budget increases with a rising fraction of d. 
Here, like in the AutoRoute case, spare CPU cycles saved on low 
complexity packet flows free up higher processing budgets for 
more demanding packet processing. For packet workloads 
Z>IPP1(0), we observe a rapid decline of the available processing 
budget for the remaining traffic already with moderate values for 
d. For example, with Z=1500 IPP and d=20%, the remaining 80% 
of the NP traffic has a processing budget of about 300 IPP, which 
is barely enough to cope with simple packet forwarding. Hence, 
the conclusion is that when a processor-centric NP architecture is 
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exposed to heavy processing demands for a moderate fraction of 
its capacity, the lion share of the traffic can not receive a service 
level which exceeds basic forwarding functionality. 
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Figure 4: Processor-centric NP under variable workloads 

A comparison to the FlexPath_2 case in figure 3 reveals that with 
80% AutoRoute – i.e. 80% of traffic delegated to HW-assisted 
simple forwarding capabilities – the processing budget for the 
remaining 20% of traffic is also in the range of 1500 IPP. Both 
NPs deliver about the same processing budget to the heavy 
workload traffic: The processor-centric case with a specialized 
six-fold processing engine, the FlexPath NP with two general 
purpose RISC cores with nominally 40% less processing capacity 
but Pre-/Post-Processing and Path Dispatcher assists. 
The question we declared to be critical for the viability of the 
FlexPath AutoRoute concept – “Is there a sufficient fraction of 
traffic on the high-speed link that can take the AutoRoute path?” 
– is equally critical for the processor-centric NP architecture. 
Without sufficient low processing complexity packet flows, the 
processor-centric NP runs “out of steam” to cope with a moderate 
fraction of processing intensive packet flows. 
The above analysis is also applicable to FlexPath when 
considering the percentage of AutoRoute traffic b in the formula: 









−−



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
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Figure 5: IPP2(d, b) for two FlexPath_2 scenarios 

d now refers to a fraction of the total traffic that traverses the CPU 
cluster, i.e. d≤(1-b). Figure 5 shows two scenarios: FlexPath_2 
with b1=0% (lower curve set) and b2=50% AutoRoute (upper 
curve set). 

5. FlexPath ARCHITECTURE 
We currently develop a demonstrator of the FlexPath_1 NP on an 
off the shelf, commercially available FPGA development board 
[17]. The board hosts a Xilinx Virtex-II Pro 30 component 

featuring two embedded 405 PowerPC hard macros running at up 
to 300 MHz, has 256 MB SDRAM for packet and context 
memory and a 10/100 Ethernet PHY. G-bit Ethernet PHYs can be 
connected to the FPGA via a small daughter board. 
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Figure 6: Architecture of the FlexPath Reference Design 

Figure 6 shows the architecture block diagram of our FlexPath_1 
demonstrator. It follows a standard, platform-based System on 
Chip (SoC) architecture with two PowerPC cores (one for data 
plane processing and one for control plane processing) and one 
SDRAM memory controller attached to the on-chip 64 bit wide 
CoreConnect PLB (processor local bus) running at 100 MHz 
clock rate. All of the above mentioned building blocks, plus the 
10/100 Ethernet MAC unit, are either provided with the 
development environment or through the Xilinx Core Alliance IP 
libraries. Apart from system integration, they do not require any 
development effort. The Buffer Manager, which performs packet 
segmentation/reassembly and storing/retrieving of packet 
segments to/from SDRAM memory, and the Traffic Manager, 
which schedules dual priority queues per physical NP port, are 
designs reused from other projects pursued in our group. The Pre-
Processor accesses an external Lookup Engine for next-hop 
destination port determination. 
The development effort for the FlexPath_1 demonstrator is limited 
to the light gray blocks: Pre-Processor, Path Dispatcher and Post-
Processor, which were introduced in section 3. Objectives of the 
FlexPath_1 demonstrator are: 
1. Prove that AutoRoute packet forwarding can be 

accomplished for conventional packet forwarding with the 
described Pre-/Post-Processor and Path Dispatcher functions 
in an otherwise standard RISC-based SoC environment. 

2. Validate that a FlexPath-based NP architecture exhibits an 
IPP1(b) behavior comparable to the analytically derived 
curve as depicted in figure 3. 

3. Prove that the FlexPath-specific building blocks can be 
implemented for high data rates (up to 2 Gbit/s throughput in 
FPGA technology).  

Although our FlexPath_1 NP demonstrator will not achieve a 
system-level packet throughput corresponding to 2 Gbit/s (a 
single 405 PowerPC core and the 64-bit / 100 MHz PLB bus 
capacity in the FPGA are not adequate for such a performance), 
we want to demonstrate that the Pre-/Post-Processor and Path 
Dispatcher units can be designed and developed for high speed 
rates in FPGA and standard cell CMOS technologies and thus will 
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not become a potential NP throughput bottleneck. With a 32 bit 
data path, 2 Gbit/s translates into a system clock rate of 62.5 MHz 
for the FlexPath units. 
The Pre-Processor has been designed and implemented in VHDL 
and covers the following functions: packet header validity 
checking, source, destination address extraction, protocol stack 
determination, ARP, ICMP and TCP/ACK packet flagging. The 
Pre-Processor aligns all pertinent header fields onto CPU word 
boundaries and builds the packet context. The outcome of logic 
synthesis is that the Pre-Processor consumes a total of 588 (of 
13,696 available) slices using 715 flip-flops and 993 4-input 
LUTs, which is roughly 4.3% of the FPGA’s logic resources. The 
Post-Processor and Path dispatcher have not been designed yet. If 
we assume in a first order estimation that the Post-Processor is 
twice as complex as the Pre-Processor (due to obligation to not 
only create but also interpret packet contexts) and the Path 
Dispatcher dominantly consists of rule tables mapped on FPGA 
internal block RAMs (each block RAM is 18 kbit in size and there 
are a total of 136 such block RAMs in the Virtex-II Pro 30), the 
overall complexity introduced with the FlexPath concept will be 
bounded by around 15% of the FPGA’s capacity. 

6. CONCLUSIONS AND OUTLOOK 
A new network processor concept and corresponding RISC-based 
platform SoC architecture have been introduced. Analytical 
performance estimations show that substantial gains in NP 
performance can be achieved by a flexible NP function traversal 
on an appropriately balanced hardware and software architecture.  
The obtained results for performance analysis and prototype 
implementation of a FlexPath architecture support our hypothesis 
that conventional embedded RISC processor cores are eligible for 
network processing applications when supported by Pre-/Post-
Processor hardware assists which adopt functions, e.g. bit-level 
manipulations, that general purpose CPUs are not optimized for. 
Following a standard platform-based SoC design approach for NP 
development has the inherent advantage of accessibility to a huge 
portfolio of existing IP core libraries and a corresponding 
software development and debugging tools suite. Nevertheless, 
the presented concept may also be considered in conjunction with 
optimized NP ASIP cores, which would as well benefit from the 
flexible paths, possibly increasing the overall NP throughput. 
Future work comprises: Completing the Post-Processor and Path 
Dispatcher designs and implementations, full system integration 
and testing in a real network environment and investigating 
additional scenarios and applications that will benefit from the 
AutoRoute concept. Of particular interest are applications which 
require dynamic function path reconfiguration during run-time. 
For example, packets flow through the CPU during a connection 
setup phase, the packet flow is then redirected to an optimized 
function path involving one or several co-processors and has to be 
switched back to the CPU in case of exception identification or 
proper packet flow termination. All path modifications are 
initiated and supervised by a central control processor, while the 
time critical packet-by-packet forwarding happens under Path 
Dispatcher control without packet loss or sequence corruption. 
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