
FlexPath NP – A Network Processor Concept
with Application-Driven Flexible Processing Paths

Rainer Ohlendorf, Andreas Herkersdorf, Thomas Wild
Munich University of Technology

Arcisstrasse 21
D-80290 Munich, Germany

+49 89 289-23872
Rainer.Ohlendorf@tum.de

ABSTRACT
In this paper, we present a new architectural concept for network
processors called FlexPath NP. The central idea behind FlexPath
NP is to systematically map network processor (NP) application
sub-functions onto both SW programmable processor (CPU)
resources and (re-)configurable HW building blocks, such that
different packet flows are forwarded via different, optimized
processing paths through the NP. Packets with well understood,
relatively simple processing requirements may even bypass the
central CPU complex (AutoRoute). In consequence, CPU
processing resources are more effectively used and the overall NP
performance and throughput are improved compared to
conventional NP architectures. We present analytical performance
estimations to quantify the performance advantage of FlexPath
(expressed as available CPU instructions for each packet
traversing the CPUs) and introduce a platform-based System on
Programmable Chip (SoPC) based architecture which implements
the FlexPath NP concept.

Categories and Subject Descriptors
C.0 [GENERAL]: System architectures

C.1.3 [Other Architecture Styles]: Adaptable architectures,
Data-flow architectures, Pipeline processors

C.2.6 [Internetworking]: Routers

General Terms
Performance, Design

Keywords
Network processors, application-specific architectures, hardware
accelerators, dynamically reconfigurable processors, IP
networking

1. INTRODUCTION
Network processors (NPs) are programmable VLSI (Very Large
Scale Integration) components with instruction set extensions,
dedicated co-processors and network interfaces to support packet
forwarding and processing. NPs attempt to merge the flexibility
characteristics of general purpose CPUs with the performance of
networking ASICs (Application Specific Integrated Circuit) in
terms of packet throughput (Gbit/s) and latency (< few ms). The
requirements for high flexibility and performance result from a
rapid growth in new networking applications on the one hand, and
the fact that these new protocols and services are deployed and
tested in the market before being finally standardized. Example
application areas for NPs include QoS (Quality of Service)-based
IP routers [1, 2], secure VPN (Virtual Private Network) gateways
[3], multimedia IP service integration in wireless (GSM / UMTS)
base station controllers [4], alternative VoIP telephony networks
[5] and broadband IP service provisioning to the home via DSL
(Digital Subscriber Line) or Cable Modem technologies. NPs in
various performance classes will evolve as a key technology
component for future generations of packet switching systems
deployed in both private and public communication networks. A
detailed overview and comparison among various NP
architectures is found in [6].

Programmable components – such as NPs – have the inherent
advantage over ASICs that they can be easily adapted in the field
to specification changes or functional enhancements by means of
software upgrades. The main challenge for these programmable
solutions is to keep up with the performance of ASICs. In this
paper we introduce a system architecture level contribution to NPs
with the objective to mitigate the flexibility/performance dilemma.
Configurable, application-driven processing paths enable a
flexible, packet flow-specific traversal of NP (hardware and
software) building blocks. Packets which predominantly can be
handled by NP hardware units consume only minimal (or no)
CPU processing resources, packets for which the provisioned NP
hardware is insufficient are dominantly processed by the CPUs.

The paper is structured as follows: section 2 provides a brief
conceptual overview on state-of-the-art NP architectures. Section
3 presents the fundamental concepts of the FlexPath NP and its
AutoRoute operation mode. The performance estimation to
quantify the expected benefits of FlexPath versus a conventional
NP architecture is subject of section 4. As the FlexPath project is
“work-in-progress”, we describe in section 5 the SoPC (System
on Programmable Chip) architecture of a demonstrator to proof
the validity of the FlexPath concept in a real network. We
conclude with an outlook to future work in section 6.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS'05, Sept. 19-21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009…$5.00.

279

2. BACKGROUND AND RELATED WORK
Today’s relevant network processor architectures [7] are based on
a “processor-centric” approach as depicted in figure 1. Processor-
centric means that after packet reception and storage in the packet
data memory sub-system, the (multi-processor) CPU cluster takes
control over the packet handling. This includes determining the
sequence in which dedicated co-processors and hardware
accelerators for networking related functions (e.g. address lookup,
cryptography, traffic management, etc.) are traversed. Thus, the
control over the packet can change multiple times between CPU
cluster and co-processors before the packet is retransmitted over
standard network interfaces (e.g. 10/100 or Gbit Ethernet,
SONET/SDH Utopia, etc.).

Rx

I/F

Tx

I/F

Memory Sub-System

Packet Data Control Information / Context

CPU
cluster

Lookup
Engine

Co-
Processors

Traffic
M

anager

Rx

I/F

Tx

I/F

Memory Sub-System

Packet Data Control Information / Context

CPU
cluster

Lookup
Engine

Co-
Processors

Traffic
M

anager

Figure 1: Classical processor-centric NP concept

Although the NP implementations of various vendors differ
greatly with respect to the realization of the processor complex
(SMP (Symmetric Multi-Processing) RISC cores, pipelined
micro-engines, proprietary ASIPs), memory hierarchy and the
amount of co-processor support; each and every packet,
irrespective of its application-specific processing demands, starts
its processing path at the CPU and typically traverses the CPU
cluster multiple times [8, 9].
Assuming an aggregate ingress link capacity of 1.244 Gbit/s (2×
OC-12) and a worst-case scenario of consecutive shortest packets
of 64 Bytes (referring to the minimum frame size in Ethernet) this

results in a packet rate of Mpps
packetbit

sGbit 4.2
/864

/244.1 =
×

 (million

packets per second) or a new packet arrival every 417 ns. The
packet rate is the event rate each processor in a pipeline structure,
or the SMP cluster as a whole, has to cope with. If packet control
switches several times between CPUs and co-processors, the event
rate (or thread context changes) multiplies accordingly. While
dedicated co-processors significantly offload the CPU cluster
from processing intensive tasks, they cannot reduce the packet
(event) rate in the above described processor-centric NP
architecture concept, but will even increase it instead.

3. THE FlexPath NP CONCEPT
Under the assumptions that
• high bit rate network connections (such as Gbit Ethernet or OC-

12 and higher SONET/SDH links) consist of a mixture of many
(thousands of) individual packet flows with very diverse
processing requirements and

• packet flows with relatively low processing complexities can
even be completely processed and forwarded by application-
specific hardware units

we devised a new NP concept called FlexPath NP (see figure 2).
In a FlexPath NP, a variety of alternative processing paths (i.e. NP
building block traverse sequences) are conceivable. For example:
• Packets or packet contexts may be sent to a number of co-

processors (e.g. next hop address lookup, authentication or
decryption) before being handed over to the CPU along with the
obtained results. The computing amount for the CPU is reduced,
while the packet event rate is not increased as in the processor-
centric reference scenarios.

• Packets with relatively simple processing requirements can
directly be sent to the Traffic Manager unit on the egress side of
the NP. As packets bypass the CPU cluster in this operation
mode, we call this processing path AutoRoute. The “saved”
CPU computing capacity will instead be preserved for packets
remaining on the CPU path. We refer to section 4.2 for a
discussion of viable AutoRoute scenarios.

• Packets or packet contexts may directly be sent to the CPU
cluster as in the “processor-centric” case. Actually, the case
where all packet flows use the CPU path will serve later as a
reference for evaluating the benefits of the other FlexPath
alternatives.

Rx

I/F

Tx

I/F

Memory Sub-System

CPU
cluster

Co-
Processors

Pre-Processor

Path
D

ispatcher

Post-Processor

Traffic
M

anager

"AutoRoute"

Lookup
Engine

Rx

I/F

Tx

I/F

Memory Sub-System

CPU
cluster

Co-
Processors

Pre-Processor

Path
D

ispatcher

Post-Processor

Traffic
M

anager

"AutoRoute"

Lookup
Engine

Figure 2: FlexPath NP concept with dynamically

reconfigurable packet paths
The decisions about the most suitable processing path have to be
made on a per-packet basis (remember the inter-arrival time of
417 ns in case of 1.244 Gbit/s link rate). In the FlexPath NP, this
decision function has been eliminated from the software process
running on the CPU cluster. It is now performed by a hardware
assist called Path Dispatcher that contains reconfigurable rule-
tables. Based on these rules and the incoming packet context the
processing path selection is made. If no matching rule can be
found, the default processing path, which traverses the CPU
cluster, is chosen. Taking an alternative processing path requires
explicit permission in form of a matching rule entry.
Configuration and updating of the rule-tables is the task of a
software process (called Path Manager) running on the NP control
point CPU. Updating the rule-tables is not timing critical as it
only requires intervention when a packet flow class terminates,
newly initiates or changes its processing path during its lifetime
(Note, that we currently anticipate several hundred to a few
thousand rule-table updates per second [10,11]).
Besides the Path Dispatcher, a packet Pre-Processor and a packet
Post-Processor unit are necessary prerequisites for alternative
processing paths in FlexPath.
The Pre-Processor unit is running in parallel to the packet data
storage functionality in the ingress path of the NP. It performs
basic functions like packet header parsing, extraction of pertinent

280

header information (destination/source addresses, L4 port
numbers, priority bits, protocol IDs), alignment of extracted
header fields to CPU word length (32 bit), packet prioritization
and classification and calls the address lookup or other co-
processor(s). Thus, the Pre-Processor retrieves sufficient
information about the incoming packet (and builds the so-called
packet context) which enables the Path Dispatcher to make
decisions about the further handling of the packet.
Packets still traversing the CPU cluster nevertheless benefit from
the pre-processing. CPUs do not have to build the packet contexts
themselves and save thread switches or stall periods due to co-
processor invocation.
The Post-Processor performs at minimum basic egress packet
modification operations like MAC address insertion, TTL
decrement, and IP checksum calculation. These functions are
mandatory for finishing packet processing on simple AutoRoute
cases. The Post-Processor performs these operations by extracting
corresponding commands out of the packet context. Post-
Processor commands are added to the packet context either by the
Pre-Processor or CPU software which has to be aware of the Post-
Processor capabilities.
Thus, packets traversing the CPU cluster benefit again from the
FlexPath Pre-/Post-Processor units. The CPUs can take advantage
of the offered features and are not obliged to perform the
necessary bit-level modifications by themselves.
The FlexPath NP concept allows for a maximum of flexibility in
NP packet processing as packet flow classes can individually and
dynamically change their processing paths anywhere between the
classical “processor-centric” and the aggressive AutoRoute
modes. Of particular interest are packet flows where the
processing path dynamically changes with different phases of the
packet flow’s lifetime. For example, during connection setup the
packets traverse the CPU cluster. If the CPU identifies that there
is sufficient functionality in the ingress and egress processing
units for this flow (Pre-/Post-Processors), the Path Dispatcher
rule-tables are updated to either invoke co-processors before
passing control to the CPU or AutoRoute subsequent packets of
this flow. If in a later stage the Pre-Processor identifies unknown
options or error conditions in packets of the particular flow, it is
necessary to change the forwarding path back towards the CPU
cluster. When performing these dynamic transitions, it must be
insured that no packets get lost and that the sequence of packets
belonging to the same flow is preserved.

4. PERFORMANCE ESTIMATION
By means of analytical performance estimations, we now quantify
the gain in CPU processing performance (expressed as available
CPU instructions per packet (IPP)) depending on the fraction of
traffic (b) taking the AutoRoute path. An aggregate NP link rate
(R) of 1.244 Gbit/s and a packet size (s) of 64 Bytes is assumed
(2.4 Mpps). Network processing data plane applications vary in
terms of processing requirements between a few hundred to
several thousand IPP [12, 13]. Simple packet forwarding (ATM /
Ethernet switching, IPv4 trie forwarding) requires a minimum of
200 – 500 IPP, MPLS or QoS-enabled packet forwarding between
500 – 700 IPP, VPN and traffic load balancing applications in the
order of 1500 – 2000 instructions and 3000 and more instructions
(per 64 byte packet segment) are required for intrusion detection
and virus scanning. Note that the latter examples are payload
processing applications where the IPP is correlated to the packet

length and can, for large packets with hundreds of bytes, amount
to several ten thousand IPP. Regarding the case of very simple
forwarding applications, the minimum processing requirement

already amounts to .720.3004.2 MIPS
packet
InstrMpps =×

Three different system alternatives with variable processor
resources are compared. Table 1 summarizes the key system and
CPU performance parameters. The three system alternatives are:
1. Processor-Centric (as the reference scenario): We choose an

architecture with 6 ASIP cores, each running at 232 MHz [14].
As the ASIP cores support simultaneous multithreading, an
(optimistic) CPI (clocks per instruction) of 1 was considered
yielding a nominal processing performance of 1392 MIPS for
the ASIP cluster. The average available IPP(0) in case of b=0%
is 573 instructions.

2. FlexPath_1: The FlexPath_1 configuration consists of a CPU
cluster with one standard, single-threaded embedded RISC core
(e.g. PowerPC 440 or MIPS). Such RISC cores are available as
hard macros in ASIC libraries and typically run at up to 667
MHz in 130nm CMOS technologies [15]. Since single-threaded
CPUs stall during memory and coprocessor accesses, we
considered a CPI of 1.4 for this system alternative. The nominal
processor performance now amounts to 476 MIPS and the
average IPP(0) is 196 instructions.

3. FlexPath_2: FlexPath_2 has twice the processing power as
FlexPath_1. Two embedded RISC cores with a total
performance of 953 MIPS are employed yielding an average
IPP(0) of 392 instructions.

Table 1: System Parameters Processor-Centric vs. FlexPath
 Centric FlexPath_1 FlexPath_2
CPU clock [f] 232 MHz 667 MHz 667 MHz
Packet size [s] 64 Byte 64 Byte 64 Byte
NP bit rate [R] 1.24 Gbit/s 1.24 Gbit/s 1.24 Gbit/s
CPU count [N] 6 1 2
CPI [CPI] 1.0 1.4 1.4
Nom. MIPS [M] 1392 476 953
Avg. IPP (b=0%) 573 196 392

In the following IPP estimations, we will, for the sake of a
conservative analysis, exclude the Pre-/Post-Processor MIPS but
keep in mind that the FlexPath ingress and egress hardware
functionality, together with a MAC/IP address lookup engine
shall be adequate to perform simple packet switching and
forwarding.

4.1 Potential AutoRoute Gain
The first question to investigate is: “How large is the available
CPU processing budget (expressed as instructions per packet) for
packets traversing the CPU cluster if a variable percentage (b) of
packets take the AutoRoute path?”
Given the system parameters from Table 1, one can compute the
available CPU IPP1(b) for all three system alternatives with the

following formula: 







−×
××=

bRCPI
sfNbIPP

1
1)(1 .

Figure 3 illustrates the resulting instruction budgets with IPP1
drawn on the Y-axis in logarithmic scale.

281

100

1000

10000

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

AutoRoute Traffic Share (b)

IP
P1

 (b
) Centric

FlexPath_1
FlexPath_2
IPP=300

Figure 3: IPP1(b): Processor-Centric vs. FlexPath_1 and

FlexPath_2
IPP1 for the processor-centric alternative is – by definition –
independent of b (processor-centric means 0% bypass) and has a
constant value of 573 instructions per packet, which is sufficient
for QoS or DiffServ forwarding on the entire link capacity.
With respect to the two FlexPath alternatives, the following
observations can be made:
y For b=0% (i.e. all packets traverse the CPU cluster) the

respective IPP1(0) starts off in case of FlexPath_1 at 196, and
in case of FlexPath_2 at 392. Thus, for b=0%, FlexPath_1 is
not a viable alternative for any networking application under
the link rate assumptions made. FlexPath_2 at b=0% fulfills the
required CPU performance for simple packet switching and
forwarding.
y However, both curves show a more than exponential increase of

IPP1(b) over b. The break even points with the processor-
centric alternative are at bBE=65.8% for FlexPath_1 and
bBE=31.5% for FlexPath_2. The break even points indicate that
if bBE percent of the traffic can be forwarded by the FlexPath
hardware assists, the remaining (100–bBE) percent of the traffic
receive the same service in the RISC CPU(s) as packets in the
processor-centric alternative. Expressed differently, the CPU
IPPs saved on the AutoRoute packets are now available to
provide higher CPU processing capacities for those packets still
traversing through the CPU cluster.

For even higher values of b in the range of 80% to 90%, IPP1
values between 2000 and 3000 can be achieved with FlexPath_2,
allowing the execution of complex tasks for the remaining packet
share.

4.2 Viability of AutoRoute Scenarios
The critical question to be answered for the viability of the
FlexPath concept is: “How realistic is it to assume that 40% or
more of the traffic volume on high-speed links can take the
AutoRoute path?”
Consider a typical traffic profile as it is found in the internet today
[16]. The measured results on Sprint’s OC-48 (2.5 Gbit/s) internet
backbone links show that 90% of the traffic uses the TCP/IP
stack. Another 6.2% of the traffic is UDP/IP traffic belonging to
streaming applications (video, audio or VoIP). A well-known
property of the TCP protocol is that every packet needs to be
acknowledged. This is achieved by sending another TCP packet
from the receiver to the sender of the original message with the
ACK bit set in the TCP header. Although “piggybacking” of these

acknowledgements into packets carrying other payload
information is possible, in most cases there is no data in the
acknowledgement packets. TCP ACKs need no sophisticated
processing but just simple forwarding to reach their destination.
Roughly 45% of all packets in the network are such simple,
minimum sized acknowledgement packets that can be handled by
the FlexPath AutoRoute concept and we have identified one
common example where shortest length packets in the internet can
be processed without CPU intervention.
Let’s look at another application example from the wireless access
network. 3G base stations or UMTS radio access network
gateways is network equipment sitting between wireless end users
and the wire-line telephony and data networks. Base stations and
access gateways typically support a wide range of networking
interfaces: OC-3/OC-12 SONET/SDH Utopia and T1/E1 (1.5
Mbit/s, 2Mbit/s) TDM (time division multiplex) channels. The
ratio between “forwarding traffic” among daisy-chained base
stations via the OC-3/OC-12 links, and traffic to/from mobile
terminals via the T1/E1 channels, can get as high as 10:1. Here,
only 10% mobile user traffic needs high flexibility and processing
complexity (for functions like header compression, protocol
conversion etc), while 90% of the traffic can be forwarded based
on the L2/L3 information (thus, being a candidate for the
AutoRoute path). In such an application, an IPP1 of 2000 – 3000
creates valuable headroom for the computationally intensive
functions on up to approximately 120 Mbps capacity, which is
equivalent to roughly 60 E1 channels.
The above list of AutoRoute-“friendly” applications is not
exhaustive. Streaming media and real-time applications, such as
VoIP or UDP/RTP, could also benefit from the low latency, low
jitter variation AutoRoute forwarding path that is fully
implemented in hardware. Summing up the above mentioned
cases, we see a significant share of the traffic as premier
candidates for the AutoRoute forwarding path. The remaining
packet processing functions may then be realized on a reasonably
smaller and less stressed CPU cluster.

4.3 NPs under Variable Load Conditions
An interesting perspective on processor-centric NP architectures
is gained with the following investigation: “What is the remaining
CPU processing budget IPP2 in a processor-centric NP
architecture if d% of the packets have a processing demand of Z
CPU instructions per packet?“. The corresponding formula is:









−







 −
×
××=

d
Zxd

RCPI
sfNdIPP

1
1)(2

Figure 4 shows the corresponding set of curves for selected Z
values of 200, 300, 600, 1000, 1500 and 2000 instructions per
packet in dependency of d varying between 0 and 95% of the
aggregate NP bit rate R. We see that for Z<IPP1(0)=573, the
IPP2(d) processing budget increases with a rising fraction of d.
Here, like in the AutoRoute case, spare CPU cycles saved on low
complexity packet flows free up higher processing budgets for
more demanding packet processing. For packet workloads
Z>IPP1(0), we observe a rapid decline of the available processing
budget for the remaining traffic already with moderate values for
d. For example, with Z=1500 IPP and d=20%, the remaining 80%
of the NP traffic has a processing budget of about 300 IPP, which
is barely enough to cope with simple packet forwarding. Hence,
the conclusion is that when a processor-centric NP architecture is

282

exposed to heavy processing demands for a moderate fraction of
its capacity, the lion share of the traffic can not receive a service
level which exceeds basic forwarding functionality.

100

1000

10000
0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

Complexity Z Packet Share (d)

IP
P2

(d
)

Z=200
Z=300
Z=600
Z=1000
Z=1500
Z=2000
IPP=300

Figure 4: Processor-centric NP under variable workloads

A comparison to the FlexPath_2 case in figure 3 reveals that with
80% AutoRoute – i.e. 80% of traffic delegated to HW-assisted
simple forwarding capabilities – the processing budget for the
remaining 20% of traffic is also in the range of 1500 IPP. Both
NPs deliver about the same processing budget to the heavy
workload traffic: The processor-centric case with a specialized
six-fold processing engine, the FlexPath NP with two general
purpose RISC cores with nominally 40% less processing capacity
but Pre-/Post-Processing and Path Dispatcher assists.
The question we declared to be critical for the viability of the
FlexPath AutoRoute concept – “Is there a sufficient fraction of
traffic on the high-speed link that can take the AutoRoute path?”
– is equally critical for the processor-centric NP architecture.
Without sufficient low processing complexity packet flows, the
processor-centric NP runs “out of steam” to cope with a moderate
fraction of processing intensive packet flows.
The above analysis is also applicable to FlexPath when
considering the percentage of AutoRoute traffic b in the formula:









−−







−








×
××

=
db

Zxd
RCPI
sfNbdIPP

1
1),(2

100

1000

10000

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

Complexity Z Packet Share (d)

IP
P2

(d
, b

)

Z=200, b=0%
Z=300, b=0%
Z=600, b=0%
Z=1000, b=0%
Z=1500, b=0%
Z=2000, b=0%
Z=200, b=50%
Z=300, b=50%
Z=600, b=50%
Z=1000, b=50%
Z=1500, b=50%
Z=2000, b=50%
IPP=300

Figure 5: IPP2(d, b) for two FlexPath_2 scenarios

d now refers to a fraction of the total traffic that traverses the CPU
cluster, i.e. d≤(1-b). Figure 5 shows two scenarios: FlexPath_2
with b1=0% (lower curve set) and b2=50% AutoRoute (upper
curve set).

5. FlexPath ARCHITECTURE
We currently develop a demonstrator of the FlexPath_1 NP on an
off the shelf, commercially available FPGA development board
[17]. The board hosts a Xilinx Virtex-II Pro 30 component

featuring two embedded 405 PowerPC hard macros running at up
to 300 MHz, has 256 MB SDRAM for packet and context
memory and a 10/100 Ethernet PHY. G-bit Ethernet PHYs can be
connected to the FPGA via a small daughter board.

10/100/1000
Ethernet MAC

Buffer
Manager

Path Dispatcher

CoreConnect PLB-Bus

Traffic Manager

405 PowerPC
Data Plane CPU

405 PowerPC
Ctrl Plane CPU

DDR-SDRAM
(256 MB)

Pre-Processor

Lo
ok

-u
p

En
gi

ne
I/F

Post-Processor

10/100/1000
Ethernet MAC

Buffer
Manager

Path Dispatcher

CoreConnect PLB-Bus

Traffic Manager

405 PowerPC
Data Plane CPU

405 PowerPC
Ctrl Plane CPU

DDR-SDRAM
(256 MB)

Pre-Processor

Lo
ok

-u
p

En
gi

ne
I/F

Post-Processor

Figure 6: Architecture of the FlexPath Reference Design

Figure 6 shows the architecture block diagram of our FlexPath_1
demonstrator. It follows a standard, platform-based System on
Chip (SoC) architecture with two PowerPC cores (one for data
plane processing and one for control plane processing) and one
SDRAM memory controller attached to the on-chip 64 bit wide
CoreConnect PLB (processor local bus) running at 100 MHz
clock rate. All of the above mentioned building blocks, plus the
10/100 Ethernet MAC unit, are either provided with the
development environment or through the Xilinx Core Alliance IP
libraries. Apart from system integration, they do not require any
development effort. The Buffer Manager, which performs packet
segmentation/reassembly and storing/retrieving of packet
segments to/from SDRAM memory, and the Traffic Manager,
which schedules dual priority queues per physical NP port, are
designs reused from other projects pursued in our group. The Pre-
Processor accesses an external Lookup Engine for next-hop
destination port determination.
The development effort for the FlexPath_1 demonstrator is limited
to the light gray blocks: Pre-Processor, Path Dispatcher and Post-
Processor, which were introduced in section 3. Objectives of the
FlexPath_1 demonstrator are:
1. Prove that AutoRoute packet forwarding can be

accomplished for conventional packet forwarding with the
described Pre-/Post-Processor and Path Dispatcher functions
in an otherwise standard RISC-based SoC environment.

2. Validate that a FlexPath-based NP architecture exhibits an
IPP1(b) behavior comparable to the analytically derived
curve as depicted in figure 3.

3. Prove that the FlexPath-specific building blocks can be
implemented for high data rates (up to 2 Gbit/s throughput in
FPGA technology).

Although our FlexPath_1 NP demonstrator will not achieve a
system-level packet throughput corresponding to 2 Gbit/s (a
single 405 PowerPC core and the 64-bit / 100 MHz PLB bus
capacity in the FPGA are not adequate for such a performance),
we want to demonstrate that the Pre-/Post-Processor and Path
Dispatcher units can be designed and developed for high speed
rates in FPGA and standard cell CMOS technologies and thus will

283

not become a potential NP throughput bottleneck. With a 32 bit
data path, 2 Gbit/s translates into a system clock rate of 62.5 MHz
for the FlexPath units.
The Pre-Processor has been designed and implemented in VHDL
and covers the following functions: packet header validity
checking, source, destination address extraction, protocol stack
determination, ARP, ICMP and TCP/ACK packet flagging. The
Pre-Processor aligns all pertinent header fields onto CPU word
boundaries and builds the packet context. The outcome of logic
synthesis is that the Pre-Processor consumes a total of 588 (of
13,696 available) slices using 715 flip-flops and 993 4-input
LUTs, which is roughly 4.3% of the FPGA’s logic resources. The
Post-Processor and Path dispatcher have not been designed yet. If
we assume in a first order estimation that the Post-Processor is
twice as complex as the Pre-Processor (due to obligation to not
only create but also interpret packet contexts) and the Path
Dispatcher dominantly consists of rule tables mapped on FPGA
internal block RAMs (each block RAM is 18 kbit in size and there
are a total of 136 such block RAMs in the Virtex-II Pro 30), the
overall complexity introduced with the FlexPath concept will be
bounded by around 15% of the FPGA’s capacity.

6. CONCLUSIONS AND OUTLOOK
A new network processor concept and corresponding RISC-based
platform SoC architecture have been introduced. Analytical
performance estimations show that substantial gains in NP
performance can be achieved by a flexible NP function traversal
on an appropriately balanced hardware and software architecture.
The obtained results for performance analysis and prototype
implementation of a FlexPath architecture support our hypothesis
that conventional embedded RISC processor cores are eligible for
network processing applications when supported by Pre-/Post-
Processor hardware assists which adopt functions, e.g. bit-level
manipulations, that general purpose CPUs are not optimized for.
Following a standard platform-based SoC design approach for NP
development has the inherent advantage of accessibility to a huge
portfolio of existing IP core libraries and a corresponding
software development and debugging tools suite. Nevertheless,
the presented concept may also be considered in conjunction with
optimized NP ASIP cores, which would as well benefit from the
flexible paths, possibly increasing the overall NP throughput.
Future work comprises: Completing the Post-Processor and Path
Dispatcher designs and implementations, full system integration
and testing in a real network environment and investigating
additional scenarios and applications that will benefit from the
AutoRoute concept. Of particular interest are applications which
require dynamic function path reconfiguration during run-time.
For example, packets flow through the CPU during a connection
setup phase, the packet flow is then redirected to an optimized
function path involving one or several co-processors and has to be
switched back to the CPU in case of exception identification or
proper packet flow termination. All path modifications are
initiated and supervised by a central control processor, while the
time critical packet-by-packet forwarding happens under Path
Dispatcher control without packet loss or sequence corruption.

7. ACKNOWLEDGEMENTS
We would like to thank the German Research Foundation (DFG)
for supporting the FlexPath project and the Xilinx University

Partnership (XUP) program for donating the FPGA development
board, ISE/EDK tools license and access to Core Alliance macros.

8. REFERENCES
[1] Kumar, V. P., Lakshman, T.V., Stiliadis, D.: “Beyond best

effort: Router architectures for the differentiated services of
tomorrow’s internet”, IEEE Communications Magazine, vol.
36, no. 5, pp. 152-164, May 1998

[2] Blake, Black, Carlson, Davies, Wang, Weiss: “An
Architecture for Differentiated Service”, RFC 2475,
December 1998

[3] Ying, Q., Zhigang, Z., Biswas, J.: “Programmable Security
Devices for the Network Edge – IP Security on a Network
Processor”, ICACT2002, International Conference on
Advanced Communications Technologies, pp. 873-880,
2002

[4] Subbiah, B., Raivio, Y.: “Transport architecture evolution in
UMTS/IMT-2000 cellular networks”, International Journal
of Communication Systems, Vol. 13, issue 5, pp. 371-385,
August 2000

[5] Zeadally, S., Siddiqui, F., Kubher, P.: “Voice over IP in
intranet and Internet environments”, IEE Proceedings
Communications, vol. 151, issue 3, pp. 263-269, June 25th,
2004

[6] Shah, N.: “Understanding Network Processors” – In:
Berkeley Technical Report, September 2001

[7] Lawton, G.: “Will Network Processor Units Live up to their
Promise?”, IEEE Comp. Magazine, pp. 13-15, April 2004

[8] Kulkarni, C., Gries, M., Sauer, C., Keutzer, K.:
“Programming Challenges in Network Processor
Deployment“, Int. Conference on Compilers, Architecture
and Synthesis for Embedded Systems (CASES), October
2003

[9] Allen Jr., J. R., et al: “IBM PowerNP network processor:
Hardware, software and applications”, IBM Journal of R&D,
vol. 47, no. 2/3, March/May 2003

[10] Spirent PPPoE AX/4000 Broadband (DSLAM) Test System,
Press Release, http://www.spirentcom.com/news/
press.cfm?id=965, Feb 18, 2003

[11] DSL Forum Technical Report TR-092, "Broadband Remote
Access Server Requirements Document", August 2004

[12] Ramaswamy, R., Wolf, T.: “PacketBench: A Tool for
Workload Characterization of Network Processing”, IEEE 6th
Annual Workshop on Workload Characterization (WWC-6),
pp. 42-50, Austin, TX, October 2003

[13] Jenkins, C.: “NPU Co-Processors”, Presentation at Network
Processor Conference, San Jose, CA, August 2000

[14] Intel IXP1200 Network Processor Family,
http://www.intel.com/design/network/prodbrf/27904001.pdf

[15] IBM PowerPC 440 Product Brief, March 24, 2004,
http://www-306.ibm.com/chips/techlib

[16] IP Monitoring Project, http://ipmon.sprint.com, Traffic
Profile gathered on February 6th, 2004 at the San Jose (sj-25)
OC-48 (2.5 Gbit/s) link

[17] ML310 Embedded Development Platform, Xilinx
development boards, http://www.xilinx.com/ml310/

284

	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index

