
Locality-Conscious Workload Assignment for Array-Based
Computations in MPSOC Architectures∗

Feihui Li and Mahmut Kandemir
Computer Science and Engineering Department

The Pennsylvania State University
University Park, PA 16802, USA

{feli, kandemir}@cse.psu.edu

ABSTRACT
While the past research discussed several advantages of multipro-
cessor-system-on-a-chip (MPSOC) architectures from both area uti-
lization and design verification perspectives over complex single
core based systems, compilation issues for these architectures have
relatively received less attention. Programming MPSOCs can be
challenging as several potentially conflicting issues such as data
locality, parallelism and load balance across processors should be
considered simultaneously. Most of the compilation techniques
discussed in the literature for parallel architectures (not necessar-
ily for MPSOCs) are loop based, i.e., they consider each loop nest
in isolation. However, one key problem associated with such loop
based techniques is that they fail to capture the interactions be-
tween the different loop nests in the application. This paper takes
a more global approach to the problem and proposes a compiler-
driven data locality optimization strategy in the context of embed-
ded MPSOCs. An important characteristic of the proposed ap-
proach is that, in deciding the workloads of the processors (i.e.,
in parallelizing the application) it considers all the loop nests in the
application simultaneously. Our experimental evaluation with eight
embedded applications shows that the global scheme brings signif-
icant power/performance benefits over the conventional loop based
scheme.

Categories and Subject Descriptors
D.3.m [Software]: Programming Languages—Miscellaneous

General Terms
Performance

Keywords
Data Locality, MPSoC

1. INTRODUCTION
MPSOC (multiprocessor-system-on-a-chip) architectures have sev-

eral key advantages over single core based complex systems as

∗This work is supported in part by NSF Career Award #0093082
and by GSRC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

noted by prior studies such as [14, 9, 13] from both area utiliza-
tion and design verification perspectives. However, MPSOC based
systems are also attractive from a programming perspective since
processor workload assignment in these architectures can be car-
ried out at a source code level, which is very different from the ILP
(instruction level parallelism) style of code parallelization that re-
quires complex dependence check at runtime and costly instruction
issue logic. An important problem though is to come up with a
suitable workload assignment to each core. This is because there
are several issues that need to be accounted for, if one is to find an
acceptable workload assignment for a given application:

• Locality: Each core should access the same set of data most
of the time; this helps to minimize the frequency and volume of
interprocessor data communication, and reduce the number of off-
chip memory accesses.

• Parallelism: The amount of work done between successive
synchronization points should be as large as possible; this helps to
amortize the cost of interprocessor synchronization, an important
concern for embedded MPSOCs.

• Load Balance: The amount of work assigned to different cores
should be more or less the same; this helps to increase the utiliza-
tion of cores and reduce overall idle time as well as execution time.

One approach that could be used for addressing these issues is
loop-based code parallelization. The idea behind this approach is
to consider loop nests of the application one by one and parallelize
each loop nest at the coarsest granularity possible (i.e., parallelize
the outermost parallelizable loop in each nest). In fact, several
proposals (e.g., [1]) originally developed in the context of high-
performance code parallelization can be used for this purpose in
the MPSOC context. However, one key problem associated with
loop based techniques is that they fail to capture the interactions
between the different loop nests in the application. Since the par-
allelization decisions are taken for each loop nest independently
of the others, resulting data locality may not be optimal when the
entire application is considered. For example, a given processor
core can access different data elements in consecutive loop nests
(as a result of loop-based parallelization), even though these nests
share the same set of arrays. The next section gives an example
that illustrates this problem. It needs to be emphasized that fail-
ing to ensure the best data locality is of a more serious concern in
MPSOCs as compared to high-performance parallel architectures.
This is because poor data locality can lead to frequent off-chip ref-
erences, which may not be tolerable from performance and power
perspectives (as an off-chip access is much costlier than an on-chip
memory access or interprocessor communication, which is also on-
chip). Therefore, every possible effort should be made to minimize
the number of off-chip references, by maximizing data reuse.

This paper takes a global approach to the problem and proposes
a compiler-driven data locality optimization strategy in the con-
text of embedded MPSOCs. An important characteristic of the
proposed approach is that, in deciding the workloads of the pro-
cessors, it considers all the loop nests in the application simulta-
neously. It achieves this by starting the optimization process with
a data mapping (i.e., logically partitioning data across processors)

8.1

95

Figure 1: An example data access pattern scenario that involves
four processors. In this scenario, three different loop nests ac-
cess the same array. The arrows show which portion of the
array is accessed by each processor core.

and by deriving iteration mapping (workloads) from this data map-
ping. Our results indicate that this global approach brings signifi-
cant improvements (in both execution cycles and power consump-
tion) over a conventional loop based code parallelization strategy.

The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 summarizes loop based code par-
allelization and points out its problems. Section 4 presents our
global approach to code parallelization in embedded MPSOCs. Sec-
tion 5 presents an experimental evaluation of the global strategy and
compares it to the loop based strategy. Section 6 gives our conclud-
ing remarks.

2. RELATED WORK
We discuss the related work in two categories: single processor

based data locality optimizations and MPSOC related efforts. In the
single processor domain, several strategies were proposed to im-
prove cache performance, including prefetching [12], data copying
between different portions of the address space [18], and locality
optimizations for array-based codes [19, 5]. Dynamic techniques
such as access re-ordering on-the-fly between the processor and
memory (using a specialized hardware unit) have also been used
[11]. The IMEC group [4] investigated the problem of construct-
ing customized memory hierarchies for low power, and pioneered
the work on applying loop transformations to minimize power dis-
sipation in data dominated embedded applications. Memory opti-
mizations for embedded systems were addressed, among others, by
Shiue and Chakrabarti [17]. Kodukula [8] proposed a data space
oriented code restructuring scheme for cache based single proces-
sor systems. The work described in this paper is different from
these prior efforts as we target an MPSOC architecture.

In the MPSOC domain, most of the efforts focused on architec-
ture design and circuit related issues [14, 9]. [6] focused on the
problem of determining the optimal number of processors for each
loop nest in a given application. and [10] argued that a processor
can be put into sleep mode when it reaches the barrier early. An-
other study [16] pointed out that a chip multiprocessor can be an
energy-efficient alternative for exploiting future billion transistor
designs, and also mentioned that voltage scaling can further com-
plement this architecture. They showed around 9% to 15% power
savings in multimedia applications that use independent threads.
Our work is different from these studies as well in that we achieve
energy savings via data space oriented application parallelization.

3. LOOP BASED CODE PARALLELIZATION
The loop based code parallelization focuses on a single loop nest

at a time, and parallelizes it using the data dependence informa-
tion extracted by the compiler. While several proposals exist in the
literature, the main goal behind all these techniques is to rewrite
a given loop nest in a form that allows parallel execution of inde-
pendent loop iterations. To minimize synchronization costs, it is
also important that we obtain coarse grain parallelism, as opposed

to fine grain parallelism. In terms of parallel execution, this means
parallelizing the outermost (parallelizable) loop as much as possi-
ble.

Each execution of a nest body can be represented by an iteration
vector, each entry of which corresponds to a loop, starting from the
top. When there is no confusion, we use the terms “loop iteration”
and “iteration vector” interchangeably. Note that, an iteration vec-
tor represents the executions of all the statements in the loop body
(under the specified values of the iterators in the vector).

If a loop iteration �q2 depends on an iteration �q1 (where �q2 > �q1,
the difference between them, �q2 − �q1 is called the data dependence
vector [3].1 We are mostly interested in cases where all the entries
of a dependence vector are constants, in which case it is also re-
ferred to as the distance vector [3]. The distance vectors extracted
from a loop nest collectively define a distance matrix, whose rows
are made of distance vectors. Let us focus on an arbitrary distance
vector �d extracted from a nest with n loops:

�d = (d1 d2 d3 · · · dn−1 dn)T .

Considering (only) this distance vector, the kth loop can be paral-
lelized if at least one of the two conditions below are satisfied [3]:

• dk = 0, or

• (d1 d2 · · · dk−1)
T is lexicographically positive.2

In obtaining the coarsest grain parallelism, we parallelize only the
kth loop such that this loop parallelizable and none of the loops
from top down to the (k − 1)th loop is parallelizable. If there are
multiple distance vectors in the nest, a loop is parallelizable if and
only if it is parallelizable according to all these distance vectors.
The different approaches to coarse grain loop based parallelization
differ mostly in their capability of extracting the highest level of
parallelism in a given loop nest.

One of the serious drawbacks of loop based parallelization is that
it does not capture the data sharings between the different nests,
as far as data locality is concerned. This is illustrated in Figure 1,
which depicts how an example application with three separate nests
accesses a two-dimensional array. The left part of the figure shows
the iteration spaces of the nests. Each iteration space is assumed to
be divided into 4 parts as a result of parallelization over 4 processor
cores. That is, each core is set to execute one fourth of the original
iteration space of each nest. The array (data space) manipulated by
these nests (note that all three cores manipulate the same array) is
also shown as divided into four regions (on the right of the figure).
The arrows from the iteration spaces to the array space indicate
which array region each part of the iteration space accesses. Since
the loop based parallelization does not capture the data sharings
between the different loop nests, it can assign to a core from each
nest the (iteration space) part in the same position. As a result, a
given core can have the access pattern shown in Figure 2(a). Let us
focus on the portions of the iteration spaces marked “*”, which are
assigned to the same processor core under the loop based scheme.
The problem with this access pattern is that, at each nest, the core
in question accesses a different data region of the array. Therefore,
one would not expect a good data reuse (data cache performance)
from this access pattern. The objective of the global parallelization
scheme discussed in the next section is to address this problem. No-
tice that, improving data cache performance normally brings both
energy reduction and performance benefits.

1We are mainly interested in data dependences here. This is be-
cause the application codes we focus on are loop nest intensive and
they do not contain conditional flow of executions.
2We say that vector �d = (d1d2 · · · dn) is lexicographically less than
(shown as <) vector �d′ = (d′

1d
′
2 · · · d′

n) if there is a c such that
1 ≤ c ≤ n and di = d′

i for all i < c and dc < d′
c. A vector is said

to be lexicographically positive (negative) if it is greater than (less
than) the zero vector.

96

Figure 2: Loop based parallelization (a) and global paralleliza-
tion (b) from the perspective of a given processor core. The
iteration space portion marked using “*” indicate the part as-
signed to a particular processor core.

4. GLOBAL PARALLELIZATION

4.1 MPSOC Architecture
Our focus is on a shared memory based MPSOC architecture. In

this architecture, we have multiple cores on the same die (typically
between 4 and 16). Each core has private L1 instruction and data
caches, and thus ensuring data locality is very important. While we
do not evaluate in this paper, this architecture can also accommo-
date a shared on-chip L2 cache. We assume a bus based on-chip
interconnect and cache coherence is maintained using a MESI-like
consistency mechanism, the choice of which is orthogonal to our
approach. We also assume the existence of a shared off-chip mem-
ory. Our objective is to minimize the number of off-chip memory
references.

4.2 Overview
Figure 2(b) illustrates, through an example, our global approach

to code parallelization. The figure shows the assigned parts from
each loop nest to a particular processor core. The portions marked
“*” indicate the iterations assigned to the same core. Note that this
assignment differs from the one shown in Figure 2(a) in two ways.
First, the same core is assigned to different parts in the different it-
eration spaces (i.e., not the corresponding parts). Second, and more
importantly, the core accesses the same array region in each nest,
which means that one can expect a very good data locality (L1 per-
formance). The main goal of the global strategy is to achieve the
highest data reuse possible. Clearly, this ideal scenario (as depicted
in Figure 2(b)) may not be achieved in all cases, due to data de-
pendences between the different loop iterations. However, our ap-
proach tries to exploit the maximum possible data reuse allowed by
data dependences. The next subsection explains the mathematical
engine behind this global code parallelization scheme.

4.3 Mathematical Details
Our approach to the workload determination problem is data

space oriented, meaning that it decides the set of iterations to be
assigned to each processor core considering the arrays accessed by
the application. We use Qk (where 1 ≤ k ≤ n) to denote the
set of iterations that will be executed by loop nest k. Let us focus
on an array Zj (where 1 ≤ j ≤ m) manipulated by the applica-
tion. We use Zj to represent the set of data items in Zj . Note that
Zj defines a rectilinear polyhedron. We assume that there are p
processor cores in the MPSOC over which the application is to be
parallelized.

In the first step of our approach, we logically divide the array
into p regions and each region is assigned to a processor core. We
now focus on processor s (where 1 ≤ s ≤ p) and loop nest k
(where 1 ≤ k ≤ n). Let Zs,j be the data elements from array
Zj that are assigned to core s (we will discuss shortly how this
data assignment is actually made). We use Qs,j,k to represent the

Figure 3: The process of determining the set of iterations (from
all the nests) that will be executed by processor s.

set of loop iterations from loop nest k that touch the elements in
Zs,j . The global parallelization strategy assigns the iterations in
Qs,j,k to core s. In other words, each core executes the iterations
that access the array region it is assigned to. Note that this iteration
assignment can be repeated for each loop nest. In other words, core
s is assigned iterations Qs,j,1, Qs,j,2, ..., Qs,j,n. The common
characteristic of these sets is that all the iterations in them access
Zs,j . Consequently, when all the iteration assignments (for all loop
nests) are complete, we have the situation shown in Figure 2(b) for
the example in Figure 1.

At this point, there are three important issues that need to be ad-
dressed. The first issue is the problem of (logically) dividing the
array elements across the processors. The second one is regard-
ing the fact that not all the loop nests access all the elements of
a given array. Consequently, we need a strategy to handle the case
when one or more loop nests access only a portion of the array. The
third issue is that normally an application processes multiple arrays
and our iteration mapping (workload assignment) must be carried
out considering all the arrays. Otherwise (i.e., if the workload as-
signment considers only one array), the resulting parallelized code
may not be able to exploit data reuse for the arrays not considered
during the workload assignment. In the following paragraphs, we
elaborate on these three issues.

Dividing array elements across processors is very important as it
determines the data access pattern and thus influences parallelism
and cache locality. Our approach to this problem can be explained
as follows. For each nest, we extract the maximum parallelism
using a previously published approach in the literature [1]. This ap-
proach implements a method for deriving an optimal hyper-parallele-
piped tiling of iteration space for minimal communication in multi-
processors with caches. It uses the notion of uniformly intersecting
references to capture locality in array references and estimates in-
terprocessor data communication traffic based on a data footprint
concept. After parallelizing the code using the approach in [1], for
each nest, our approach determines the set of data items (array ele-
ments) accessed by each core s. In determining this set of elements,
we build the following set, assuming that Is is the set of iterations
assigned to processor core s (by the loop parallelization used) and
Ds is the set of array elements we want to determine:

Ds = {�d | ∃�I ∈ Is, ∃R ∈ Rs such that R(�I) = �d}.
In this formulation, Rs is the set of references to the array and R
represents a reference in the loop nest (i.e., a mapping from the it-
eration space to the data space). Since the access pattern imposed
by each nest (on the array) can be different from the other nests,
we next employ a unification step that comes up with a globally
acceptable array partitioning (data mapping). This data mapping is
then used for distributing the iterations across the processor cores.
While it is possible to implement different unification schemes, the
scheme used in this study is a simple one that selects the most fre-
quently requested data mapping (when all the loop nests in the
application are considered). It is to be mentioned that since this
strategy is oriented toward enhancing data reuse, it may not nec-
essarily be optimal from parallelism perspective (when each nest

97

is considered in isolation). This is because we try to determine a
globally acceptable data mapping, which may not be the best one
for each and every loop nests. However, as will be demonstrated
by our experiments, the gains coming from enhanced data locality
are usually far more than the losses in loop level parallelism. As
an example of our array partitioning approach, let us assume that
an array is accessed by three different nests. The first and the third
nests require the array elements to be assigned to the processors in
a row-block fashion (i.e., each processor is given a consecutive set
of rows), whereas the second nest demand a column-block distribu-
tion across the processors. Let us use Ds1 , Ds2 and Ds3 denote the
distributions demanded by the nests, i.e., row-block, column-block,
and row-block in that order, from the perspective of processor s.
Considering these, our approach selects the row-block distribution
(Ds1), as it is requested by a larger number of processors; i.e., we
set Zs,j to Ds1 .

Figure 3 summarizes the process of determining the loop iter-
ations that will be executed by processor s. Basically, using the
approach in [1], we first determine the sets Ds1 , Ds2 , ..., Dsn .
We next obtain Zs,j using the strategy explained in the previous
paragraph, and then determine Qs,j,1, Qs,j,2, ..., Qs,j,n, i.e., the
iterations from the different nests that are assigned to processor s.

For the second issue, let us consider two loop nests, k and l, that
access the same array (Zj). We use Mj,k and Mj,l to denote the
set of elements (of Zj) accessed by nests k and l, respectively (note
that Mj,k ⊆ Zj and Mj,l ⊆ Zj). We can express the problem
as follows: Divide (logically) the iterations in Qk and Ql across
the p processor cores such that the parts assigned to core s from
these two nests, namely Qs,j,k and Qs,j,l, access the same set of
elements as much as possible. To illustrate this pictorially, con-
sider the sample scenario shown in Figure 4(a). This figure shows
an array (say Zj) accessed by two different nests (say k and l).
The set of array elements accessed by each nest are also shown (as
dark rectangular regions) within the array space. Note that neither
loop accesses the entire array, and there is only a partial overlap
between the sets of data elements accessed by nests k and l. Our
approach in this case divides the array as shown in Figure 4(b), as-
suming that p = 4. Note that, as indicated by the two arcs shown
in the figure, the two of the processors reuse their data (i.e., each of
them accesses the same set of elements in both the nests), whereas
the other two access different elements in different nests. Our ap-
proach determines Qs,j,k and Qs,j,l such that the access pattern
shown in Figure 4(b) is obtained. While our approach does not
achieve data reuse for all four processors in this particular case, it
is still much better than randomly assigning iterations to processors
(which would most probably exploit much less data reuse across the
nests).

In mathematical terms, our approach proceeds as follows. We
first determine the set of common elements between Mj,k and
Mj,l, i.e., M j,common = Mj,k ∩ Mj,l. Then, we assign the first
|Mj,k|/p of these (|M j,common|) elements to the first processor,
the next |Mj,k|/p to the second processor, and so on. At the point
where we have assigned all (|M j,common|) elements, the remaining
elements (i.e., |Mj,k| − |M j,common|) are assigned to the remain-
ing processors. A similar process is repeated for the second nest (l)
as well. However, in processing this nest, we are careful in assign-
ing the same set of (common) elements to the same processor core
as in the previous nest. Then, based on these data assignments, we
perform the iteration assignment as explained earlier in this section.

Our approach to the third issue – multiple arrays accessed by
the nests – can be explained as follows. We first identify affinity
among the elements of the different arrays. Two data items are said
to have affinity if they are accessed by the same loop iteration. As
an example, consider the following loop nest and the three array
references that appear in it:

do t1 = 1, M − 2
do t2 = 4, N

...Z1[t1][t2]...Z2[t2][t1]...Z3[t1 + 2][t2 − 3]...

We note that, for a given loop iteration (a, b) in this nest, i.e.,
when t1 = a and t2 = b, the loop accesses array elements Z1[a][b],

Figure 4: An example data access pattern and partitioning
scenario. (a) The parts of the array accessed by two different
nests. (b) The array partitioning across four processor cores.

Figure 5: An example access pattern scenario on three ar-
rays. The three array regions accessed collectively define
an affinity class (i.e., the set of elements assigned to a sin-
gle core). The top-left and bottom-right points of the data
region accessed from each array are marked.

Figure 6: The process of determining the set of iterations (from
all the nests) that will be executed by processor s (assuming that
we have n nests).

Z2[b][a], and Z3[a + 2][b − 3], and thus, these three array ele-
ments have affinity. Then, instead of dividing an array into regions
(as in the single array case), we divide data elements into affin-
ity classes. Each affinity class contains data elements that exhibit
affinity among them. Then, the iteration mapping (assignment) is
carried out based on these affinity classes. As an example, Figure 5
depicts an example set of elements that belong to the same affin-
ity class for the example loop nest shown above. Note that, in this
figure, the regions of the different arrays marked as dark rectangles
constitute the affinity class that will be assigned to a single core.
Other processor cores are assigned their affinity classes in a similar
fashion.

In mathematical terms, let As,1,k, As,2,k ,As,3,k , ..., As,m,k be
the array regions accessed by processor s from arrays Z1, Z2, Z3,
..., Zm, respectively, in loop nest k (i.e., they form an affinity class
for processor s). In computing Zs,j , our approach uses these re-
gions. After computing Zs,j , the sets Qs,j,1, Qs,j,2, ..., Qs,j,n,
i.e., the iterations from the different nests that are assigned to pro-

98

Benchmark Number of Number of Data Cache Memory
Name C Lines Arrays Size Misses Energy

Compress 127 6 705.3KB 72758 183.18mj
Conv-Spa 231 8 542.2KB 59018 109.66mj

Filter 270 11 496.6KB 51254 115.71mj
Laplace 438 10 882.5KB 95332 301.09mj

LU-Decomp 86 2 707.7KB 70663 280.34mj
Minkowski 455 8 904.3KB 88496 602.20mj

Seg-02 622 10 830.0KB 50762 584.78mj
Text 1018 14 912.0KB 98198 813.91mj

Figure 7: Benchmarks used in this study. The values in the last
two columns are for the loop based scheme.

cessor s, can be computed as has been discussed earlier. Figure 6
gives an illustration of this process. Note that, this calculation is
just for processor s and needs to be carried out for each processor
separately.

It must be noted that the global scheme, as it is explained so far,
is data oriented; i.e., its main goal is to optimize cache behavior.
However, optimizing cache behavior alone may not guarantee load
balance across the processor cores. To illustrate this potential prob-
lem, let us consider a simplistic scenario where two processors ac-
cess an array in different nests. Our approach guarantees that each
core accesses the same array region in different nests; however, this
does not mean that the cores execute the same number of loop itera-
tions. In fact, it is possible that the number of iterations executed by
one of the cores can be many more than the other (simply because,
for example, there are more references to one part of the array). In
such cases, load imbalance can dominate the locality behavior and
the overall performance can suffer. To remedy this situation when
it happens, we augment the global code parallelization scheme with
a load balancing step. The objective of this step is to transfer some
iterations from one (or more) core(s) to others in an attempt to bal-
ance the workload across the cores. To do this, it first identifies the
loop nests with load imbalance and then measures the severity of
the imbalance. If the load imbalance is severe, it determines the set
of processors with large load than the others and redistributes some
of their iterations. The concept of “severity” is measured using a
parameter, which captures the largest load imbalance. Specifically,
in our current implementation, if the load of any core is more than
twice of that of any other core, we assume that the load imbalance
is severe.

Before giving an example, we also want to emphasize that the
proposed approach is different from loop fusion and similar tech-
niques that operate neighboring loop nests in the code. In contrast
to these techniques, the approach proposed in this paper considers
all the nests at the same time, and in general, the output (trans-
formed) code generated by our approach cannot be obtained by
simple loop fusioning.

4.4 Example
Consider the example code fragment shown below, assuming

that the data dependence analysis reveals that all the loops of both
the nests can be executed in parallel, i.e., there is no cross-loop data
dependences, except for t2 in the first nest:

arrays Z1[N][N], Z2[N][N], Z3[N][N];

do t1 = 1, N
do t2 = 1, N

... = Z1[t1][t2] + Z2[t2][t1] + ...
do t1 = 1, N
do t2 = 1, N

... = Z1[t2][t1] + Z3[t2][t1] + ...

Since we try to achieve coarse-grain parallelism, we parallelize
only a single loop from each nest. Let us also assume that the
data dependences prevent any loop transformation on the first nest,
whereas the second loop can be restructured. Considering the first
loop nest, one can see that if we parallelize t1, this means each
processor accesses a block of consecutive rows from array Z1, a
block of consecutive columns from array Z2. Focusing on the sec-

ond nest however indicates that, we can have different array parti-
tionings depending on whether t1 or t2 is parallelized. Since the
first loop nest is more restricted, our approach divides the arrays in
such a way that a processor takes a consecutive set of rows from
arrays Z1 and Z3, and a consecutive set of columns from array Z2.
Consequently, the iteration assignment for the first processor is de-
termined as follows. In the first loop nest, it executes iterations
(t1, t2) such that 1 ≤ t1 ≤ N/4 and 1 ≤ t2 ≤ N . On the other
hand, from the second loop nest, it executes iterations (t1, t2) such
that 1 ≤ t1 ≤ N and 1 ≤ t2 ≤ N/4. Note that, with this assign-
ment, this processor uses the same set of elements from array Z1

in both the nests. The iteration assignments for the other three pro-
cessor cores can be derived similarly. Notice that, if we have just
used a loop based parallelization, we could have assigned a differ-
ent set of iterations to the first processor from the second nest, e.g.,
(t1, t2) where 1 ≤ t1 ≤ N/4 and 1 ≤ t2 ≤ N . But, as can be
seen, this assignment does not exploit inter-nest data reuse from a
processor’s perspective.

5. EXPERIMENTAL EVALUATION

5.1 Setup and Implementation
We implemented the global code optimization approach discussed

in this paper within SUIF, an experimental compiler from Stanford
University [2]. SUIF is structured as a series of passes, each of
which operates on the same intermediate format (IR). We imple-
mented our approach as a separate pass within SUIF. Our imple-
mentation takes as input an application code written in C and the
number of processors (p) over which the code is to be parallelized,
and generates as output a parallelized code based on data reuse as
explained in the text. However, to generate the code that executes
only the iterations assigned to a core, we also employ a polyhedral
tool [15]. The increase in compilation times (over the loop based
approach) due to the global parallelization strategy was about 60%
when averaged over all the benchmarks we tested (the bulk of this
time was spent within the polyhedral tool in generating codes for
individual cores).

We obtain our results through simulation. Unless otherwise stated,
we simulate an MPSOC architecture where each processor core has
an 8KB L1 with an access latency of 2 cycles. We also assume a
main memory access latency of 80 cycles.

Figure 7 gives the eight benchmark codes used in this study. We
collected this particular set of benchmarks since we believe that
they represent a good mix of array intensive embedded applica-
tions that could be run on MPSOCs. The third column of this ta-
ble gives the number of C lines for each benchmark and the next
column shows the number of arrays accessed by each benchmark.
The fifth column gives the amount of total data accessed and the
sixth column shows the number of data cache (L1) misses accu-
mulated across all processors when the loop based parallelization
is used with 8 processors. Finally, the last column gives the mem-
ory energy consumption due to data accesses (obtained using the
CACTI tool under the 70nm process technology). What we mean
by “memory energy” here is sum of the energies consumed in the
data cache and the off-chip memory. While we observed that our
global approach reduces both memory energy consumption and ex-
ecution cycles, in this paper we present mostly energy numbers as
performance improvements are similar (we present only a single set
of performance numbers). The values given in the last two columns
of this table are for the loop based scheme.

5.2 Results
Figure 8 gives the memory energy consumption of the global

scheme, as a fraction of the memory energy consumption of the
loop based scheme (see the last column of Figure 7). Each point on
the x-axis corresponds to a particular number of processors used in
parallel execution (from 2 to 12). An important observation from
these curves is that the effectiveness of the global scheme generally
(but not always) increases with increasing number of processors.
This is due to the fact that, when the number of cores is increased

99

Figure 8: Memory energy consumption. Figure 9: Impact of workload balancing. Figure 10: Impact of data size.

(under the same data size), the data accessed by each processor is
usually fragmented more in the memory space and this reduces the
chances for data sharing across the different nests when the loop
based strategy is employed.

We next quantify the benefits of workload balancing (following
the application of the global scheme) as explained in Section 4.3.
We focus on two of our benchmarks, namely, Filter and Laplace, as
these are the two codes with the largest workload imbalance across
processors. The graph in Figure 9 gives the curves for these two
codes when load balancing is used. The curves without load bal-
ancing are also reproduced here for ease of comparison. One can
see from these curves that the impact of load balancing is more pro-
nounced with the small number of cores. This is because when the
number of cores is small, the load imbalance across them is more
significant. In contrast, with a larger number of cores, trying to
balance the workloads may not be as effective.

The next set of results is on the impact of dataset size on the
behavior of the global approach. We present in Figure 10 the re-
sults for only Conv-Spa with three different data sizes (one of them
being the original one used in the experiments so far); the rest of
the benchmarks showed similar trends, and we do not present them
here in detail. An important observation from Figure 10 is that
the global scheme brings more savings over the loop based scheme
when the data size is increased. This is due to the fact that increas-
ing data sizes makes optimizing for data locality more important
(as cache behavior becomes more critical).

Our final set of results concentrate on performance improve-
ments. The normalized execution cycles of the benchmarks under
our global approach are given in Figure 11 for processor counts 2,
6, and 12. Each bar is normalized with respect to the loop based
scheme that uses the same number of processors. We see from these
results that our approach brings performance benefits as well (es-
pecially with increasing number of processors). The reason that the
performance savings are not as high as energy savings is that some
of the performance penalty incurred by the loop based scheme can
be hidden in parallel execution. However, the energy overheads it
incurs cannot be hidden. Since our (performance and energy) sav-
ings are given with respect to the loop based scheme, we witness
higher energy savings than performance savings.

6. CONCLUSIONS
Memory behavior of embedded MPSOC applications is the main

factor that determines their behavior from both performance and
power perspectives. Memory behavior in turn is largely shaped
by how the application code is parallelized over multiple proces-
sor cores and by how the processors access data and communi-
cate/synchronize with each other. While conventional loop based
code parallelization can be successful in several applications, since
such techniques do not capture the interactions (e.g., data shar-
ings) across the different nests of a given application, they perform
poorly for other applications. The work presented in this paper pro-
poses, fully implements, and experimentally evaluates a global (ap-
plication wide) parallelization strategy based on reusing data across
different loop nests. The idea is to capture the data reuse across the
loop nests and assign iterations to processor cores in such a way
that a given processor accesses the same set of data elements in dif-
ferent loop nests as much as possible. We implemented this global

Figure 11: Execution cycles.

parallelization strategy within an optimizing compiler and tested
its effectiveness using a set of eight embedded benchmark codes.
Our experiments indicate that this global strategy brings significant
improvements – in terms of both energy consumption and execu-
tion cycles perspectives – over the conventional loop based code
parallelization strategy.

7. REFERENCES
[1] A. Agarwal, D. Kranz, and V. Natarajan. Automatic partitioning of parallel

loops and data arrays for distributed shared memory multiprocessors. In Proc.
International Conference on Parallel Processing, 1993.

[2] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. Tseng. The SUIF
compiler for scalable parallel machines. In Proc. SIAM Conference on Parallel
Processing for Scientific Computing, February, 1995.

[3] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic
Publishers, 1988.

[4] F. Catthoor et al. Custom memory management methodology – exploration of
memory organization for embedded multimedia system design. Kluwer
Academic Publishers, 1998.

[5] M. Cierniak and W. Li. Unifying data and control transformations for
distributed shared memory machines. In Proc. Conference on Programming
Language Design and Impl., 1995.

[6] I. Kadayif, M. Kandemir, and M. Karakoy. An energy saving strategy based on
adaptive loop parallelization. In Proc. DAC, 2002.

[7] I. Kadayif, I. Kolcu, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin.
Exploiting processor workload heterogeneity for reducing energy consumption
in chip multiprocessor. In Proc. DATE, 2004.

[8] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multilevel blocking. In
Proc. ACM Conf. on Programming Language Design and Impl., 1997.

[9] V. Krishnan and J. Torrellas. A chip multiprocessor architecture with speculative
multi-threading. IEEE Transactions on Computers, Special Issue on
Multi-threaded Architecture, 1999.

[10] J. Li, J. Martinez, and M. Huang. The thrifty barrier: Energy-efficient
synchronization in shared-memory multiprocessors. In Proc. High Performance
Computer Arch.,, 2004.

[11] S. A. McKee and W. A. Wulf. Access ordering and memory-conscious cache
utilization. In Proc. Symposium on High-Performance Computer Arch., 1995.

[12] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of compiler
algorithm for prefetching. In Proc. International Conference on Architectural
Support for Programming Languages and Operating Systems, 1992.

[13] MP98: a mobile processor. http://www.labs.nec.co.jp/MP98/top-e.htm.
[14] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case

for a single chip multiprocessor. In Proc. Conference on Architectural Support
for Programming Languages and Operating Systems, 1996.

[15] The Omega Project. http://www.cs.umd.edu/projects/omega/
[16] R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The energy efficiency of

CMP vs. SMT for multimedia workloads. In Proc. the 18th Annual
International Conference on Supercomputing, 2004.

[17] W.-T. Shiue and C. Chakrabarti. Memory exploration for low-power embedded
systems. In Proc. Design Automation Conference, 1999.

[18] O. Temam, E. D. Granston, and W. Jalby. To copy or not copy: A
compile-technique for assessing when data copying should be used to eliminate
cache conflicts. In Proc. Supercomputing’93, 1993.

[19] M. Wolf and M. Lam. A data locality optimizing algorithm. In Proc.
Conference on Programming Language Design and Impl., 1991.

100

