
23.1

 353

Design Methodology for IC Manufacturability Based
on Regular Logic-Bricks

V. Kheterpal, V. Rovner, T.G. Hersan, D. Motiani, Y. Takegawa, A.J. Strojwas, L. Pileggi
{vkheterp, vrovner, tgh, dmotiani, yoichi, ajs, pileggi}@ece.cmu.edu

Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15232

ABSTRACT
Implementing logic blocks in an integrated circuit in terms of
repeating or regular geometry patterns [6,7] can provide
significant advantages in terms of manufacturability and design
cost [2]. Various forms of gate and logic arrays have been recently
proposed that can offer such pattern regularity to reduce design
risk and costs [2,4,9,11,12]. In this paper, we propose a full-mask-
set design methodology which provides the same physical design
coherence as a configurable array, but with area and other design
benefits comparable to standard cell ASICs. This methodology is
based on a set of simple logic primitives that are mapped to a set
of logic bricks that are defined by a restrictive set of
RET(Resolution Enhancement Technique)-friendly geometry
patterns. We propose a design methodology to explore trade-offs
between the number of bricks and associated level of
configurability versus the required silicon area. Results are shown
to compare a design implemented with a small number of regular
bricks to an implementation based on a full standard cell library in
a 90nm CMOS technology.

Categories and Subject Descriptors
B.7.1 Types and Design Styles

General Terms
Algorithms, Performance, Design, Reliability, Experimentation.

Keywords
Integrated Circuits, Regularity, Manufacturability, RET

1. INTRODUCTION
As CMOS technology continues to scale, systematic variations
begin to dictate integrated circuit (IC) yield and performance. In
order to achieve acceptable design quality, these variations must
be reduced, or at least taken into account during the circuit and
layout design flow [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.

Currently, existing lithography tools are being forced to operate at
their resolution limit. As a result, printability becomes greatly
hampered and neighborhood-pattern dependent. To ensure an
accurate transfer of sub-wavelength design features, and thus
reduce the variability, a number of Resolution Enhancement
Techniques (RETs) are currently being utilized. These consist of
Optical Proximity Corrections (OPC), including Sub-Resolution
Assist Features (SRAFs), Phase Shift Mask (PSM) techniques,
and Off-Axis Illumination (OAI) schemes. Most importantly,
however, existing design rules cannot guarantee a design
adherence to RETs, such as PSM, and thus the post-layout
processing steps cannot fully exploit the benefits offered by these
techniques. In addition, as the lithography interaction distance
continues to increase with each process generation, rule-based
OPC has been replaced with a computationally intensive model-
based OPC.
By introducing a regular fabric that is designed based on the
restrictions placed by RETs and the lithography system, a RET-
correct by construction design can be achieved. With this micro-
regularity, we should note that the number of unique geometry
patterns in a neighborhood is also decreased. These two benefits,
offered by the fabric, ultimately reduce the systematic variations.
Field Programmable Gate Array (FPGA) and memory designs
have relied on their micro- and macro-regularity (e.g. bit-cell
repeatability) to address the manufacturability challenges posed
by new technology nodes. Due to the limited number of unique
shapes present, one can afford to perform RETs, simulation-based
modeling and silicon verification for the small structures as they
will ultimately appear, surrounded by the regular geometry
neighborhood of other cells. It is for this reason that memories
and FPGAs are often the first products to utilize a new
manufacturing process.
Recently, new methodologies have been proposed for design of
regular logic structures that can bridge the performance-cost gap
between programmable devices and full-custom designs
[11,12,13]. These designs provide an underlying regular fabric for
the logic, which is generally constructed from homogeneous
configurable logic blocks, and, like FPGAs and memories, allow
them to be fine-tuned for manufacturability and performance
based on the shared layers which are used for multiple designs
and applications. Recent work on via-configurable regular fabrics
[1,9] in particular has shown that fabrics built from a fully
programmable universal block, capable of being configured to
implement many different functions, can simplify the synthesis
process while providing performance comparable to that of ASIC
implementations. The simplified synthesis process, however, can
result in poor silicon utilization, which quickly translates to larger
designs and possibly increased yield loss due to random defects.
Furthermore, these arrays of logic with fixed sets of building

 354

blocks are unable to exploit the macro-regularity which might be
inherent to a particular design.
In this paper, we propose a methodology for regular logic design
that addresses design cost, printability, and manufacturability by
constructing logic bricks from logic primitives in a manner by
which they are regular by construction. We demonstrate that this
methodology can offer efficient area utilization while providing
the regularity comparable to fixed arrays.

2. GEOMETRIC REGULARITY
Requiring circuit fabrics to be constructed from a regular set of
physical geometries is intended to provide more robustness with
respect to process variations, and, therefore, offer a RET friendly
layout. Of particular concern are those layers of the manufacturing
process that are most susceptible to systematic variations, such as
the front end of line (FEOL) transistors; particularly the
predictability of the active and polysilicon layers. A number of
micro-regularity constraints can be imposed for RET
compatibility, such as: single orientation of Critical Dimension
(CD) lines, constant poly pitch, and disallowing minimum width
devices.
It is often claimed that the macro-regularity found in SRAM cores
makes it is easier to ensure correctness over the range of process
variations. To illustrate this regularity, consider the 2D Fast
Fourier Transform (FFT) for the polysilicon layer of a commercial
90nm memory layout shown in Figure 1 (left). Note the single
sharp peak at a spatial frequency of 2.5 (shapes per micron). The
second peak represents a harmonic due to the 0-1 nature of the
mask layout, but there is clearly a single fundamental frequency
present. A similar experiment was conducted using the polysilicon
layer for a standard cell layout portion of a chip in the same
technology. As shown in Figure 1 (right), there is not a single
spatial frequency component that can be attributed to the ASIC
layout. Furthermore, it is interesting to note that the general shape
of the FFT remained the same no matter what section of the ASIC
was examined. The multitude of spatial frequencies suggests a
lack of geometric regularity, which corresponds to difficulties
with RETs, and significant systematic variations of CD
parameters, such as effective gate length.

The polysilicon gate forming the channel of the transistor is the
smallest feature, CD, which needs to be printed on the wafer. In
addition, the channel length of the transistor is directly related to
the performance of the device, and exponentially related to the
leakage of the device. Thus any variations of the CD lines need to
be minimized. By requiring a single orientation for all of the
devices, variations due to lens aberrations can be eliminated, and
alternating PSM can be applied. Such orientation restrictions are
becoming more prominent at the 65nm node, and we apply this

constraint for our regular brick designs that are described in this
paper.
We further constraint the polysilicon gates of our regular bricks to
be placed onto a grid with a fixed pitch, or its multiple. By
utilizing this constraint, the lithography process can be optimized
to minimize the CD variation for a particular pitch. Moreover, a
single pitch simplifies the application of SRAFs by eliminating
forbidden pitches. The pitch selection is a crucial step in
designing the fabric. The device pitch utilized in our regular fabric
is based on the minimum metal-1 pitch available by the process.
The rationale behind picking a polysilicon pitch based on the
metal-1 pitch is that the source, drain, and gate region of the
device will have to be inter-connected using metal layers..
The previous restrictions have been applied to enable the
printability of the polysilicon layer. However, to reduce transistor
performance variations, active layers would also have to be
addressed. Our regular fabrics will not allow the use of minimum
width devices, so as to reduce the number of corners present in
the active layer. Specifically, this is done to reduce STI stress
effects acting in the channel, and thus reduces the mobility
variations.

We define a ‘brick’ to comprise a logic function created from a
small set of logic primitives that are mapped onto a micro-regular
fabric, as shown in Fig. 2. While the set of logic primitives has to
be flexible to provide efficient implementation for the logic
required, it should be small enough to significantly restrict the
number of geometric shapes allowed within a brick. Constraining
the number of geometric-shape primitives within a well-defined
footprint provides more regular FEOL circuits and, ultimately,
back end of line (BEOL) metal patterns [10]. Although the fabric
is built from heterogeneous elements, as long as they share
regularity by construction and offer well defined boundaries, as
shown in Fig. 2, accurate models for the behavior of the bricks
can be obtained before synthesis and placement.

3. BRICK LIBRARY
3.1 Logic Primitives
The selection of logic primitives for the bricks is crucial to the
overall area and performance. In [1] it was shown that NAND and
2:1 MUXs can be used in different configurations to efficiently
implement all of the three-input functions. For this reason, the
logic primitive set that we have chosen for the experiments

 On-grid
geometries On-grid

geometries

 On-grid
geometries

 On-grid
geometries

r

r

Figure 1: 2D FFT of the layouts for the polysilicon layers of
SRAM core (left) and Standard cell ASIC (right).

Figure 2: Regular Bricks. Micro-regularity constraints within
bricks and compatible borders (shown in grey) provide macro-

regularity compatible over radius of influence r.

 355

described herein consists of a NAND, a 2:1 MUX, inverters and
buffers. To improve performance and power efficiency, the MUX
is implemented using pass transistor logic (PTL) where the input
and output buffers can be omitted for signals that are local to the
brick. The NAND is implemented using CMOS logic which
provides high noise immunity and level restoring capabilities.
Therefore, the combination of CMOS NAND and PTL MUX
forms an efficient set of primitives [8].

3.2 Deriving a Set of Bricks
In general, the set of bricks required to efficiently implement a
design is dependent on the inherent nature and structure of the
design. We propose a technique for deriving the brick library that
is optimized for a particular design, or application domain, as
follows. Our brick derivation algorithm involves reducing the
number of logic groups required to implement a design into a
smaller set of via-configurable logic bricks. For example, the
brick in Figure (3d) implements the logic groups in Figures (3a)
and (3b) with only slight changes due to via-configurability. In
general we would like to obtain a small set of bricks such that the

reduced heterogeneity of shapes produces a RET friendly physical
layout. However, a very small set of bricks would imply more
configurability per brick, and therefore, a larger footprint (more
area). We explore this tradeoff as our algorithm produces a library
with any desired number of bricks by:

• Identifying structural similarity between logic groups.

• Using this similarity metric to derive a set of bricks that
cover the given logic groupings.

In order to identify similarity between two logic functions, we
first merge them into a brick using weighted maximum matching
in a bipartite graph. The similarity metric is then the average area
efficiency of implementing the logic groups using the merged
brick. The nodes in each partition of the bipartite graph
correspond to the gates in each logic group, as shown in Figure
(3c). Edges are inserted between nodes that perform the same
function (e.g. in Figure (3c), nodes 1, 4 and 5 are NAND gates
and nodes 3 and 7 are MUXs).
The weight assigned to each edge is computed using the similarity
between the neighborhoods of the nodes adjacent to this edge.
Once the graph is constructed, weighted maximum matching is
applied to the graph. The mapping of gates obtained from this
provides us with a brick that optimally implements both of the

logic groups. For example, the maximum matching solution for
the graphs of logic groups in Figs. 3a and 3b is shown in 3c,
which corresponds to the brick in Fig. 3d. Brick 3d can be
configured using via V1 to implement logic grouping 3a, and via
V2 can be utilized to achieve the functionality of 3b.
To derive a set of bricks covering all of the given logic groups, we
first construct a complete graph for which each node corresponds
to a logic group. The cost on an edge is the similarity of the nodes
adjacent to the edge, derived using the algorithm described above.
The most dissimilar node in this graph is defined to be the node
for which the sum of incident edge weights is the maximum. The
following steps are applied to merge nodes in the graph until the
number of nodes in the graph is equal to the required number of
bricks:

• The most dissimilar node is removed from the graph.
This process is repeated until there are only two nodes
left in the graph.

• A brick covering these two nodes is derived using the
algorithm described above.

• The logic blocks corresponding to these two nodes are
removed from the initial set of logic blocks and the
merged brick is inserted into the set.

• The complete graph is reconstructed.
We applied this brick derivation algorithm to study various
tradeoffs when designs are implemented using varying number of
bricks. Each design was first synthesized to a set of logic blocks,
where a logic block performs up to a 3-input function. These logic
blocks were reduced into a library of 3, 4, and N bricks. The

bricks were physically constructed to follow the micro-regularity
fabric constraints. Figure 4 shows the die-area and average
number of potential vias per brick in a small block design
(Firewire controller) as the number of unique bricks is varied.
Since the number of logic primitives is limited and each logic
block performs up to a 3-input function, the number of unique
logic blocks produced after synthesis is small. Hence, the
algorithm scales well even for large designs.
We observed a similar trend to the one in Figure 4 for a number of
other benchmarks. In general, we observed that there is little
benefit in terms of area for using more than 10 unique bricks.

1

NAND

MX

4

NAND

MX

(a) Logic Block 1 (b) Logic Block 2

3
6

72 5

1

2

3

4

5

6

7

2
2

23

3
(c)

1/4

NAND

(d) Via-Configurable Brick

6

3/
7

MX

Potential Vias

2/5
V1V2

Figure 3 : Constructing via-configurable logic bricks

12
13
14
15
16
17
18
19
20
21
22

1 3 5 7 9 11 13 15 17
Number of Bricks

A
re

a
(1

e+
3

sq
. m

ic
ro

ns
)

-1

1

3

5

7

9

11

A
vg

. n
o.

 o
f p

ot
en

tia
l v

ia
sArea Avg. no. of Potential Vias

Figure 4: Area tradeoffs for a Firewire Controller

 356

4. GENERIC BRICK LIBRARY EXAMPLE
While efficient design-specific bricks can be built to explore
inherent regularity in designs, complete flows do not yet exist to
accurately quantify the full benefit of such a design methodology.
For this reason, we will first attempt to partially quantify the
benefit of a regular brick methodology using a fixed generic brick
library. For this experiment we have chosen to design the physical
footprint of the bricks to be the same as a D flip-flop with scan.
Given this constraint, we then determined the small set of bricks
which could be used to implement a variety of block designs
effectively, while still offering sufficient regularity.
Although the building block presented in [1] to implement all 3-
input functions is too generic for our purposes here, we used a
similar set of primitives to build more specific, efficient
implementations for each of the 80 unique 3-input functions that
are invariant under input permutations (these sets of functions are
called p-equivalent by Harrison in [5]). This set of logic
primitives consists of 2:1 MUXs, 2-input NAND gates, as well as
buffers and inverters.

These 80 implementations are reduced to a set of 5 unique via-
configurable bricks using the algorithm described in Section 2.
Figure 5 shows the schematic for one of the derived bricks. MUX
M1 is via-configurably connected to MUX M2 while the NAND
gate drives the other input of M2. MUX M2 drives the primary
output of the brick through inverter I3. Extra inverters (I4 & I5) are
added to each brick to make the footprint of each brick identical
to that of a D flip-flop with scan. These inverters are used for
local and global signal buffering. Transistor sizing is performed in
order to improve the performance of each individual brick for the
given footprint. For example, in Figure 5, gate N1 (NAND) is
sized to optimally drive M2 (MUX). Similarly, gate M1 (MUX) is
sized to drive either I2 or M2. This load predictability enables
efficient sizing of components within the brick.
The other 4 bricks are similar to this brick in terms of components
used, but differ in the subset of 3-input functions they can
implement. Sizing on each brick can be performed manually since
the number of bricks is small and the number of unique transistor
sizes should be small to maintain micro-regularity between bricks.
The set of five bricks along with the D flip-flop forms a generic
brick library that is comprised of only six bricks. In addition to
the 80 single output functions, we can also use these primitives to
efficiently build a full-adder with the same footprint as the other
bricks. The footprint of each brick is the same, and their height is
comparable to a standard cell row. Furthermore, the physical
design for each brick is dictated by the fabric micro-regularity.
Figure 6 (left) shows the layout for the brick in Figure 5, and the

corresponding 2D FFT of the overall regularity for a design based
on the 6 generic bricks (right).

5. EXPERIMENTAL REGULAR BRICK FLOW
In order to characterize the area and performance of the designs
utilizing the brick library derived in section 4, we employed the
flow shown in Figure 7, which maps an RTL description of a
design to a DRC clean implementation using an array of bricks.
We start with a restricted library composed of the primitive cells
described in the previous section (NAND, 2:1 MUX, buffers and
inverters). Essentially, these are primitive cells which ultimately
implement the logic functions within the bricks. The library is
further restricted such that each cell has a fixed drive strength,
which is representative of its behavior within a brick. We use
Design Compiler from Synopsys to perform logic optimization
and technology-mapping to this restricted library in order to
obtain a gate level description of the design.

Figure 6: Layout for the brick in Figure 5 (left) and
 2D FFT of polysilicon layout constructed from bricks (right).

Given the gate-level netlist, we obtain an ASIC-style global
placement of the design using a physical synthesis tool [3],
including in-place resynthesis, buffer insertion and wirelength
optimization. The library for physical synthesis includes six
buffers of different drive strengths in addition to the fixed drive
strength primitive cells. The result of this stage is an ASIC-style
global placement that has been optimized for performance, area,
and routability based on physical information.
Next, we pack the primitive cells into the predefined set of bricks
using the information from the global placement. The objective of
this step is to cluster the primitive cells into legal bricks such that
a global placement of bricks can be derived by minimally
perturbing the placement of primitives. We begin by generating an
illegal packing solution where each primitive might get duplicated
into multiple bricks. We define a duplication cost for each
primitive cell to be the cost involved in duplicating it into
multiple bricks. The cost of each brick is the sum of the
duplication costs of the primitives that it packs together. The cost
function also takes into consideration the timing criticality of the
primitive cells and tries to minimize perturbation of the ASIC-
style global placement.

N1

M2

M1

b

a

c
d e

o1

o2 o3

I1
I2

I3

I4 I5

Figure 5: Example brick

 357

We resolve this illegal packing into a legal one in an iterative
fashion, where all of the iterations involve the following steps:

1. Computation of new duplication costs for each primitive
cell. This duplication cost is the weighted sum of N
(number of times this primitive cell was duplicated in
the previous iteration) and the iteration number I.

2. Generation of a new packing solution based on the
computed duplication costs. This is done by greedily
creating lowest cost bricks by packing timing critical
cells first and then proceeding to the non-critical cells.

As iterations proceed (I increases), the average duplication cost of
each primitive cell increases and thereby guarantees convergence
to a final solution with very little duplication and minimal
perturbation to the global placement. To further minimize the loss
in performance due to the motion of cells, we perform packing in
an iterative loop with physical synthesis. For each iteration, the
packing restricts the locations of a few bricks to specific chip
regions. Physical synthesis is repeated with these restrictions to
provide new locations for the remaining cells, and to rebuffer and
restructure logic to meet the performance and area constraints.
This iteration loop is repeated until all the cells have been packed
into bricks and each brick has a legal placement. ASIC-style
global and detailed routing is then performed on the regular array
of bricks. It should be noted that this partially modified ASIC-
standard-cell flow is clearly suboptimal for implementation based
on regular bricks, but is the best physical design option available
to us at this time. Physical synthesis flows for regular logic fabrics
are part of our on-going and future work.

6. RESULTS
Following the flow described in section 5, we benchmarked a set
of circuits implemented using our regular bricks from section 4.
Figure 8 shows the area comparison for the benchmarks
implemented using our six regular bricks vs. a commercial 90nm

standard-cell library implementation. In contrast to our brick cells,
the standard cells in the library used for the ASIC flow do not
restrict the polysilicon, metal-1 and contacts on a strict grid. It
should be noted that such restrictions on standard cells would
incur a 15-25% area penalty. For example, the D flip flop with
scan used for our regular brick flow is 20% larger than the
identical flip flop in the standard cell library due to our micro-
regularity constraints. While such constraints are not required at
90nm, they will be necessary for standard cells at 65nm and
below, which are the target technologies for our regular bricks.
For this reason, we compare our gridded brick results with both a
non-gridded ASIC implementation, and with the ASIC area
results scaled by 15%.

There is an average of 26% increase in the die-area of designs
implemented using the brick methodology as compared to the
standard cell design without grid constraints. This is primarily due
to the 15-25% area penalty incurred by utilizing fixed polysilicon
and metal-1 pitches. In addition, since the bricks are comprised of
a very limited set of primitives, there can be some area
inefficiencies when a design requires a high amount of specificity
and simplicity in terms of cell functionality. An example of such a
design is a Kogge-Stone adder, where the area penalty is as high
as 35%. For such cases, our brick derivation algorithm (Section
3.2) can be applied for a specific design to generate a set of
specific bricks which would provide a more efficient
implementation. This is part of our future work, and some early
results are shown in Fig. 10. It should also be noted, however,
that the bricks are more area efficient than standard cells in terms
of performing complex three-input functions. This provides a
significant advantage in the network switch (Nswitch) benchmark,
where the area is the same as the ASIC (on-grid) implementation.
Figure 9 shows the performance comparison for the block designs
in Figure 8. The Y-axis is the average delay of the 10 most critical
paths in nanoseconds. The delay is measured after parasitic
extraction of detailed routed GDS clean implementation of each
block. Despite the fact that the bricks use a very limited subset of
cells from a typical standard cell library, both in terms of sizing as
well as functionality, the performance of the brick-based designs
is competitive to that of the ASIC implementations, and even
slightly better in some cases. The average delay increase over all
the benchmarks is about 7%. The maximum increase in delay is

Performance driven
placement (Dolphin)

Negotiation
driven Packing

Synthesis, Mapping
(Design Compiler)

Packing using
ASIC Placment

Brick Placement

RTL Restricted Cell
Library

ASIC Style
Routing

Figure 7 : Brick based RTL to GDS-II synthesis flow 0

0.5

1

1.5

2

2.5

D
ie

 a
re

a
(1

e+
5

sq
. m

ic
ro

ns
) ASIC

ASIC on-grid
BRICKS

ASIC 0.13 0.12 0.93 1.38 1.67

ASIC on-grid 0.15 0.14 1.07 1.59 1.92

BRICKS 0.175 0.148 1.16 1.72 1.92

Kog.Stone Firewire FPU Dspcore Nswitch

Figure 8 : Generic Bricks - Block area. The ASIC on-grid
results are approximates based on a 15% scaling factor.

 358

about 26% for the Kogge-Stone adder. As with the area
comparison, this is primarily due to the datapath design
requirements for a very specific set of cells to provide the
necessary functionality. The larger die-area of the Kogge-Stone
also contributes to increase in parasitics which further cause a loss
in performance. In contrast to this, the brick cells perform better
(5%) at designs like Dspcore where complex three or more input
functions dominate. The primary reason for this improvement is
because the brick cells perform complex 3-input functions using
un-buffered pass-transistor logic, having to buffer the signals only
while routing them to other bricks.

7. CONCLUSIONS & FUTURE WORK
We proposed a new regular logic brick design methodology which
attempts to relieve the increasing stress on resolution
enhancement techniques for sub-wavelength lithography. We have
shown that a small set of distinct configurable logic blocks
(bricks) is sufficient for an efficient implementation of a design.
This set of bricks is optimized for manufacturability through a set
of RET-friendly design rules that we propose. We have
characterized the area and performance of designs implemented
using the brick library and compared them with ASIC
implementations in 90nm technology. Even with our simple
prototype design flow, results indicate that our method is efficient
in terms of both, die-area and performance. Our future work
explores the application of the brick derivation flow (Section 3.2)
to derive optimal bricks for particular designs. Figure 10 shows an
example of the Kogge-Stone adder implemented with design-
specific bricks. The x-axis corresponds to the number of bricks
used in each implementation, and the y-axes show die-area as well
as the average delay of the 10 most critical paths. We also show
the area and delay of the ASIC and generic brick library (Section
4) implementations. We see that an implementation with more
than just 8 unique “design specific” bricks is extremely
competitive with the ASIC flow. Furthermore, we produce
designs with extreme physical regularity (far fewer distinct
geometry shapes in the physical layout) compared to an ASIC,
thereby improving printability and manufacturing yield.

10

11

12

13

14

15

16

17

18

0 3 4 5 6 8 10 12
Number of Bricks

Ar
ea

 (1
e+

3
sq

. m
ic

ro
ns

)

0.86
0.88
0.9
0.92
0.94
0.96
0.98
1
1.02
1.04
1.06

D
el

ay
 (n

s)

Area - Design Specific Bricks Delay - Design Specific Bricks

Area- ASIC

Area- Generic Bricks Delay- Generic Bricks

Delay- ASIC

Figure 10: Kogge-Stone example area and performance with

design-specific bricks.

8. REFERENCES
[1] A. Koorapaty et al. “Exploring Logic Block Granularity for

Regular Fabrics”, Proceedings of the Design, Automation
and Test in Europe Conference (DATE), Feb. 2004.

[2] L. Pileggi, H. Schmit, A. J. Strojwas et al., “Exploring
regular fabrics to optimize the performance-cost trade-off”.
Proceedings of the ACM/IEEE DAC, June 2003.

[3] http://www.monterey.com/products/dolphin.html.
[4] Fan Mo, Robert K. Brayton, ”Whirlpool PLAs: a regular

logic structure and their synthesis”, Proceedings of the 2002
IEEE/ACM ICCAD

[5] M. A. Harrison, Introduction to Switching and Automata
Theory, McGraw-Hill, 1965.

[6] M. Palusinski, A. J. Strojwas and W. Maly, “Regularity in
Physical Design”, GSRC Workshop, Las Vegas, NV, June
17-18, 2001

[7] A. J. Strojwas, "Process-Design Interaction Modeling Based
Design for Manufacturability", Tutorial, Design Automation
Conference, June 2003.

[8] Yamashita, S. et al., “Pass-transistor/CMOS Collaborated
Logic: The Best of Both Worlds”, VLSI Circuits, 1997.
Digest of Technical Papers.

[9] Yajun Ran and Malgorzata Marek-Sadowska, "On Designing
Via-Configurable Cell Blocks for Regular Fabrics", Design
Automation Conference (DAC) 2004.

[10] V. Kheterpal, A. J. Strojwas, L. Pileggi, “Routing
Architecture Exploration for Regular Fabrics”, Proceedings
of the ACM/IEEE DAC, June 2004.

[11] T. Okamoto, T.Kimoto, N. Maeda, “Design Methodology
and Tools for NEC Electronics' Structured ASIC ISSP”,
Proceedings of the ISPD, April 2004.

[12] D. Sherlekar, ”Design Considerations for Regular Fabrics”,
Proceedings of the International Symposium on Physical
Design (ISPD), April 2004.

[13] K.-C. Wu, Y.-W. Tsai, “Structured ASIC, Evolution or
Revolution?”, Proceedings of the International Symposium
on Physical Design (ISPD), April 2004.

0.0

1.0

2.0

3.0

4.0

5.0

D
el

ay
 (n

s)

ASIC
ASIC on-grid
BRICKS

ASIC 0.830 0.820 3.830 4.350 1.270

ASIC on-grid 0.89 0.88 3.96 4.50 1.37

BRICKS 1.040 0.890 4.081 4.144 1.249

Kog.Stone Firewire FPU Dspcore Nswitch

Figure 9 : Generic Bricks - Performance

