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ABSTRACT 
Implementing logic blocks in an integrated circuit in terms of 
repeating or regular geometry patterns [6,7] can provide 
significant advantages in terms of manufacturability and design 
cost [2]. Various forms of gate and logic arrays have been recently 
proposed that can offer such pattern regularity to reduce design 
risk and costs [2,4,9,11,12]. In this paper, we propose a full-mask-
set design methodology which provides the same physical design 
coherence as a configurable array, but with area and other design 
benefits comparable to standard cell ASICs. This methodology is 
based on a set of simple logic primitives that are mapped to a set 
of logic bricks that are defined by a restrictive set of 
RET(Resolution Enhancement Technique)-friendly geometry 
patterns. We propose a design methodology to explore trade-offs 
between the number of bricks and associated level of 
configurability versus the required silicon area. Results are shown 
to compare a design implemented with a small number of regular 
bricks to an implementation based on a full standard cell library in 
a 90nm CMOS technology. 
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General Terms 
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1. INTRODUCTION 
As CMOS technology continues to scale, systematic variations 
begin to dictate integrated circuit (IC) yield and performance. In 
order to achieve acceptable design quality, these variations must 
be reduced, or at least taken into account during the circuit and 
layout design flow [2].  
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Currently, existing lithography tools are being forced to operate at 
their resolution limit. As a result, printability becomes greatly 
hampered and neighborhood-pattern dependent. To ensure an 
accurate transfer of sub-wavelength design features, and thus 
reduce the variability, a number of Resolution Enhancement 
Techniques (RETs) are currently being utilized. These consist of 
Optical Proximity Corrections (OPC), including Sub-Resolution 
Assist Features (SRAFs), Phase Shift Mask (PSM) techniques, 
and Off-Axis Illumination (OAI) schemes. Most importantly, 
however, existing design rules cannot guarantee a design 
adherence to RETs, such as PSM, and thus the post-layout 
processing steps cannot fully exploit the benefits offered by these 
techniques. In addition, as the lithography interaction distance 
continues to increase with each process generation, rule-based 
OPC has been replaced with a computationally intensive model-
based OPC.  
By introducing a regular fabric that is designed based on the 
restrictions placed by RETs and the lithography system, a RET- 
correct by construction design can be achieved. With this micro-
regularity, we should note that the number of unique geometry 
patterns in a neighborhood is also decreased. These two benefits, 
offered by the fabric, ultimately reduce the systematic variations.  
Field Programmable Gate Array (FPGA) and memory designs 
have relied on their micro- and macro-regularity (e.g. bit-cell 
repeatability) to address the manufacturability challenges posed 
by new technology nodes. Due to the limited number of unique 
shapes present, one can afford to perform RETs, simulation-based 
modeling and silicon verification for the small structures as they 
will ultimately appear, surrounded by the regular geometry 
neighborhood of other cells. It is for this reason that memories 
and FPGAs are often the first products to utilize a new 
manufacturing process. 
Recently, new methodologies have been proposed for design of 
regular logic structures that can bridge the performance-cost gap 
between programmable devices and full-custom designs 
[11,12,13]. These designs provide an underlying regular fabric for 
the logic, which is generally constructed from homogeneous 
configurable logic blocks, and, like FPGAs and memories, allow 
them to be fine-tuned for manufacturability and performance 
based on the shared layers which are used for multiple designs 
and applications. Recent work on via-configurable regular fabrics 
[1,9] in particular has shown that fabrics built from a fully 
programmable universal block, capable of being configured to 
implement many different functions, can simplify the synthesis 
process while providing performance comparable to that of ASIC 
implementations. The simplified synthesis process, however, can 
result in poor silicon utilization, which quickly translates to larger 
designs and possibly increased yield loss due to random defects. 
Furthermore, these arrays of logic with fixed sets of building 
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blocks are unable to exploit the macro-regularity which might be 
inherent to a particular design. 
In this paper, we propose a methodology for regular logic design 
that addresses design cost, printability, and manufacturability by 
constructing logic bricks from logic primitives in a manner by 
which they are regular by construction. We demonstrate that this 
methodology can offer efficient area utilization while providing 
the regularity comparable to fixed arrays.  

2. GEOMETRIC REGULARITY 
Requiring circuit fabrics to be constructed from a regular set of 
physical geometries is intended to provide more robustness with 
respect to process variations, and, therefore, offer a RET friendly 
layout. Of particular concern are those layers of the manufacturing 
process that are most susceptible to systematic variations, such as 
the front end of line (FEOL) transistors; particularly the 
predictability of the active and polysilicon layers. A number of 
micro-regularity constraints can be imposed for RET 
compatibility, such as: single orientation of Critical Dimension 
(CD) lines, constant poly pitch, and disallowing minimum width 
devices. 
It is often claimed that the macro-regularity found in SRAM cores 
makes it is easier to ensure correctness over the range of process 
variations. To illustrate this regularity, consider the 2D Fast 
Fourier Transform (FFT) for the polysilicon layer of a commercial 
90nm memory layout shown in Figure 1 (left). Note the single 
sharp peak at a spatial frequency of 2.5 (shapes per micron). The 
second peak represents a harmonic due to the 0-1 nature of the 
mask layout, but there is clearly a single fundamental frequency 
present. A similar experiment was conducted using the polysilicon 
layer for a standard cell layout portion of a chip in the same 
technology. As shown in Figure 1 (right), there is not a single 
spatial frequency component that can be attributed to the ASIC 
layout. Furthermore, it is interesting to note that the general shape 
of the FFT remained the same no matter what section of the ASIC 
was examined. The multitude of spatial frequencies suggests a 
lack of geometric regularity, which corresponds to difficulties 
with RETs, and significant systematic variations of CD 
parameters, such as effective gate length.  

 

 
The polysilicon gate forming the channel of the transistor is the 
smallest feature, CD, which needs to be printed on the wafer. In 
addition, the channel length of the transistor is directly related to 
the performance of the device, and exponentially related to the 
leakage of the device. Thus any variations of the CD lines need to 
be minimized. By requiring a single orientation for all of the 
devices, variations due to lens aberrations can be eliminated, and 
alternating PSM can be applied. Such orientation restrictions are 
becoming more prominent at the 65nm node, and we apply this 

constraint for our regular brick designs that are described in this 
paper. 
We further constraint the polysilicon gates of our regular bricks to 
be placed onto a grid with a fixed pitch, or its multiple. By 
utilizing this constraint, the lithography process can be optimized 
to minimize the CD variation for a particular pitch. Moreover, a 
single pitch simplifies the application of SRAFs by eliminating 
forbidden pitches. The pitch selection is a crucial step in 
designing the fabric. The device pitch utilized in our regular fabric 
is based on the minimum metal-1 pitch available by the process. 
The rationale behind picking a polysilicon pitch based on the 
metal-1 pitch is that the source, drain, and gate region of the 
device will have to be inter-connected using metal layers.. 
The previous restrictions have been applied to enable the 
printability of the polysilicon layer. However, to reduce transistor 
performance variations, active layers would also have to be 
addressed. Our regular fabrics will not allow the use of minimum 
width devices, so as to reduce the number of corners present in 
the active layer. Specifically, this is done to reduce STI stress 
effects acting in the channel, and thus reduces the mobility 
variations.  

 
 
 
We define a ‘brick’ to comprise a logic function created from a 
small set of logic primitives that are mapped onto a micro-regular 
fabric, as shown in Fig. 2. While the set of logic primitives has to 
be flexible to provide efficient implementation for the logic 
required, it should be small enough to significantly restrict the 
number of geometric shapes allowed within a brick. Constraining 
the number of geometric-shape primitives within a well-defined 
footprint provides more regular FEOL circuits and, ultimately, 
back end of line (BEOL) metal patterns [10]. Although the fabric 
is built from heterogeneous elements, as long as they share 
regularity by construction and offer well defined boundaries, as 
shown in Fig. 2, accurate models for the behavior of the bricks 
can be obtained before synthesis and placement. 

3. BRICK LIBRARY  
3.1 Logic Primitives 
The selection of logic primitives for the bricks is crucial to the 
overall area and performance. In [1] it was shown that NAND and 
2:1 MUXs can be used in different configurations to efficiently 
implement all of the three-input functions. For this reason, the 
logic primitive set that we have chosen for the experiments 
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Figure 1: 2D FFT of the layouts for the polysilicon layers of 
SRAM core (left) and Standard cell ASIC (right). 

Figure 2: Regular Bricks. Micro-regularity constraints within 
bricks and compatible borders (shown in grey) provide macro-

regularity compatible over radius of influence r. 
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described herein consists of a NAND, a 2:1 MUX, inverters and 
buffers. To improve performance and power efficiency, the MUX 
is implemented using pass transistor logic (PTL) where the input 
and output buffers can be omitted for signals that are local to the 
brick. The NAND is implemented using CMOS logic which 
provides high noise immunity and level restoring capabilities. 
Therefore, the combination of CMOS NAND and PTL MUX 
forms an efficient set of primitives [8].  

3.2 Deriving a Set of Bricks 
In general, the set of bricks required to efficiently implement a 
design is dependent on the inherent nature and structure of the 
design. We propose a technique for deriving the brick library that 
is optimized for a particular design, or application domain, as 
follows. Our brick derivation algorithm involves reducing the 
number of logic groups required to implement a design into a 
smaller set of via-configurable logic bricks. For example, the 
brick in Figure (3d) implements the logic groups in Figures (3a) 
and (3b) with only slight changes due to via-configurability. In 
general we would like to obtain a small set of bricks such that the 

reduced heterogeneity of shapes produces a RET friendly physical 
layout. However, a very small set of bricks would imply more 
configurability per brick, and therefore, a larger footprint (more 
area). We explore this tradeoff as our algorithm produces a library 
with any desired number of bricks by: 

• Identifying structural similarity between logic groups. 

• Using this similarity metric to derive a set of bricks that 
cover the given logic groupings. 

In order to identify similarity between two logic functions, we 
first merge them into a brick using weighted maximum matching 
in a bipartite graph. The similarity metric is then the average area 
efficiency of implementing the logic groups using the merged 
brick. The nodes in each partition of the bipartite graph 
correspond to the gates in each logic group, as shown in Figure 
(3c). Edges are inserted between nodes that perform the same 
function (e.g. in Figure (3c), nodes 1, 4 and 5 are NAND gates 
and nodes 3 and 7 are MUXs). 
The weight assigned to each edge is computed using the similarity 
between the neighborhoods of the nodes adjacent to this edge. 
Once the graph is constructed, weighted maximum matching is 
applied to the graph. The mapping of gates obtained from this 
provides us with a brick that optimally implements both of the 

logic groups. For example, the maximum matching solution for 
the graphs of logic groups in Figs. 3a and 3b is shown in 3c, 
which corresponds to the brick in Fig. 3d. Brick 3d can be 
configured using via V1 to implement logic grouping 3a, and via 
V2 can be utilized to achieve the functionality of 3b.  
To derive a set of bricks covering all of the given logic groups, we 
first construct a complete graph for which each node corresponds 
to a logic group. The cost on an edge is the similarity of the nodes 
adjacent to the edge, derived using the algorithm described above. 
The most dissimilar node in this graph is defined to be the node 
for which the sum of incident edge weights is the maximum. The 
following steps are applied to merge nodes in the graph until the 
number of nodes in the graph is equal to the required number of 
bricks: 

• The most dissimilar node is removed from the graph. 
This process is repeated until there are only two nodes 
left in the graph.  

• A brick covering these two nodes is derived using the 
algorithm described above.  

• The logic blocks corresponding to these two nodes are 
removed from the initial set of logic blocks and the 
merged brick is inserted into the set. 

• The complete graph is reconstructed.  
We applied this brick derivation algorithm to study various 
tradeoffs when designs are implemented using varying number of 
bricks. Each design was first synthesized to a set of logic blocks, 
where a logic block performs up to a 3-input function. These logic 
blocks were reduced into a library of 3, 4, and N bricks. The 

bricks were physically constructed to follow the micro-regularity 
fabric constraints. Figure 4 shows the die-area and average 
number of potential vias per brick in a small block design 
(Firewire controller) as the number of unique bricks is varied.  
Since the number of logic primitives is limited and each logic 
block performs up to a 3-input function, the number of unique 
logic blocks produced after synthesis is small.  Hence, the 
algorithm scales well even for large designs. 
We observed a similar trend to the one in Figure 4 for a number of 
other benchmarks. In general, we observed that there is little 
benefit in terms of area for using more than 10 unique bricks.  
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Figure 3 : Constructing via-configurable logic bricks 
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Figure 4: Area tradeoffs for a Firewire Controller 
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4. GENERIC BRICK LIBRARY EXAMPLE 
While efficient design-specific bricks can be built to explore 
inherent regularity in designs, complete flows do not yet exist to 
accurately quantify the full benefit of such a design methodology. 
For this reason, we will first attempt to partially quantify the 
benefit of a regular brick methodology using a fixed generic brick 
library. For this experiment we have chosen to design the physical 
footprint of the bricks to be the same as a D flip-flop with scan. 
Given this constraint, we then determined the small set of bricks 
which could be used to implement a variety of block designs 
effectively, while still offering sufficient regularity. 
Although the building block presented in [1] to implement all 3-
input functions is too generic for our purposes here, we used a 
similar set of primitives to build more specific, efficient 
implementations for each of the 80 unique 3-input functions that 
are invariant under input permutations (these sets of functions are 
called p-equivalent by Harrison in [5]). This set of logic 
primitives consists of 2:1 MUXs, 2-input NAND gates, as well as 
buffers and inverters. 

These 80 implementations are reduced to a set of 5 unique via-
configurable bricks using the algorithm described in Section 2. 
Figure 5 shows the schematic for one of the derived bricks. MUX 
M1 is via-configurably connected to MUX M2 while the NAND 
gate drives the other input of M2.  MUX M2 drives the primary 
output of the brick through inverter I3. Extra inverters (I4 & I5) are 
added to each brick to make the footprint of each brick identical 
to that of a D flip-flop with scan. These inverters are used for 
local and global signal buffering. Transistor sizing is performed in 
order to improve the performance of each individual brick for the 
given footprint. For example, in Figure 5, gate N1 (NAND) is 
sized to optimally drive M2 (MUX). Similarly, gate M1 (MUX) is 
sized to drive either I2 or M2. This load predictability enables 
efficient sizing of components within the brick.  
The other 4 bricks are similar to this brick in terms of components 
used, but differ in the subset of 3-input functions they can 
implement. Sizing on each brick can be performed manually since 
the number of bricks is small and the number of unique transistor 
sizes should be small to maintain micro-regularity between bricks.  
The set of five bricks along with the D flip-flop forms a generic 
brick library that is comprised of only six bricks. In addition to 
the 80 single output functions, we can also use these primitives to 
efficiently build a full-adder with the same footprint as the other 
bricks. The footprint of each brick is the same, and their height is 
comparable to a standard cell row. Furthermore, the physical 
design for each brick is dictated by the fabric micro-regularity. 
Figure 6 (left) shows the layout for the brick in Figure 5, and the 

corresponding 2D FFT of the overall regularity for a design based 
on the 6 generic bricks (right). 

5. EXPERIMENTAL REGULAR BRICK FLOW 
In order to characterize the area and performance of the designs 
utilizing the brick library derived in section 4, we employed the 
flow shown in Figure 7, which maps an RTL description of a 
design to a DRC clean implementation using an array of bricks. 
We start with a restricted library composed of the primitive cells 
described in the previous section (NAND, 2:1 MUX, buffers and 
inverters). Essentially, these are primitive cells which ultimately 
implement the logic functions within the bricks. The library is 
further restricted such that each cell has a fixed drive strength, 
which is representative of its behavior within a brick. We use 
Design Compiler from Synopsys to perform logic optimization 
and technology-mapping to this restricted library in order to 
obtain a gate level description of the design. 
 

 

 
 

Figure 6: Layout for the brick in Figure 5 (left) and 
 2D FFT of polysilicon layout constructed from bricks (right). 

 
Given the gate-level netlist, we obtain an ASIC-style global 
placement of the design using a physical synthesis tool [3], 
including in-place resynthesis, buffer insertion and wirelength 
optimization. The library for physical synthesis includes six 
buffers of different drive strengths in addition to the fixed drive 
strength primitive cells. The result of this stage is an ASIC-style 
global placement that has been optimized for performance, area, 
and routability based on physical information.  
Next, we pack the primitive cells into the predefined set of bricks 
using the information from the global placement. The objective of 
this step is to cluster the primitive cells into legal bricks such that 
a global placement of bricks can be derived by minimally 
perturbing the placement of primitives. We begin by generating an 
illegal packing solution where each primitive might get duplicated 
into multiple bricks. We define a duplication cost for each 
primitive cell to be the cost involved in duplicating it into 
multiple bricks. The cost of each brick is the sum of the 
duplication costs of the primitives that it packs together. The cost 
function also takes into consideration the timing criticality of the 
primitive cells and tries to minimize perturbation of the ASIC-
style global placement. 
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Figure 5: Example brick 
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We resolve this illegal packing into a legal one in an iterative 
fashion, where all of the iterations involve the following steps: 

1. Computation of new duplication costs for each primitive 
cell. This duplication cost is the weighted sum of N 
(number of times this primitive cell was duplicated in 
the previous iteration) and the iteration number I.  

2. Generation of a new packing solution based on the 
computed duplication costs. This is done by greedily 
creating lowest cost bricks by packing timing critical 
cells first and then proceeding to the non-critical cells.   

As iterations proceed (I increases), the average duplication cost of 
each primitive cell increases and thereby guarantees convergence 
to a final solution with very little duplication and minimal 
perturbation to the global placement. To further minimize the loss 
in performance due to the motion of cells, we perform packing in 
an iterative loop with physical synthesis. For each iteration, the 
packing restricts the locations of a few bricks to specific chip 
regions. Physical synthesis is repeated with these restrictions to 
provide new locations for the remaining cells, and to rebuffer and 
restructure logic to meet the performance and area constraints. 
This iteration loop is repeated until all the cells have been packed 
into bricks and each brick has a legal placement. ASIC-style 
global and detailed routing is then performed on the regular array 
of bricks. It should be noted that this partially modified ASIC-
standard-cell flow is clearly suboptimal for implementation based 
on regular bricks, but is the best physical design option available 
to us at this time. Physical synthesis flows for regular logic fabrics 
are part of our on-going and future work. 

6. RESULTS 
Following the flow described in section 5, we benchmarked a set 
of circuits implemented using our regular bricks from section 4. 
Figure 8 shows the area comparison for the benchmarks 
implemented using our six regular bricks vs. a commercial 90nm 

standard-cell library implementation. In contrast to our brick cells, 
the standard cells in the library used for the ASIC flow do not 
restrict the polysilicon, metal-1 and contacts on a strict grid. It 
should be noted that such restrictions on standard cells would 
incur a 15-25% area penalty. For example, the D flip flop with 
scan used for our regular brick flow is 20% larger than the 
identical flip flop in the standard cell library due to our micro-
regularity constraints. While such constraints are not required at 
90nm, they will be necessary for standard cells at 65nm and 
below, which are the target technologies for our regular bricks. 
For this reason, we compare our gridded brick results with both a 
non-gridded ASIC implementation, and with the ASIC area 
results scaled by 15%. 
 

There is an average of 26% increase in the die-area of designs 
implemented using the brick methodology as compared to the 
standard cell design without grid constraints. This is primarily due 
to the 15-25% area penalty incurred by utilizing fixed polysilicon 
and metal-1 pitches. In addition, since the bricks are comprised of 
a very limited set of primitives, there can be some area 
inefficiencies when a design requires a high amount of specificity 
and simplicity in terms of cell functionality. An example of such a 
design is a Kogge-Stone adder, where the area penalty is as high 
as 35%. For such cases, our brick derivation algorithm (Section 
3.2) can be applied for a specific design to generate a set of 
specific bricks which would provide a more efficient 
implementation. This is part of our future work, and some early 
results are shown in Fig. 10.  It should also be noted, however, 
that the bricks are more area efficient than standard cells in terms 
of performing complex three-input functions. This provides a 
significant advantage in the network switch (Nswitch) benchmark, 
where the area is the same as the ASIC (on-grid) implementation.  
Figure 9 shows the performance comparison for the block designs 
in Figure 8. The Y-axis is the average delay of the 10 most critical 
paths in nanoseconds. The delay is measured after parasitic 
extraction of detailed routed GDS clean implementation of each 
block. Despite the fact that the bricks use a very limited subset of 
cells from a typical standard cell library, both in terms of sizing as 
well as functionality, the performance of the brick-based designs 
is competitive to that of the ASIC implementations, and even 
slightly better in some cases. The average delay increase over all 
the benchmarks is about 7%. The maximum increase in delay is 
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Figure  7 : Brick based RTL to GDS-II synthesis flow 0
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about 26% for the Kogge-Stone adder. As with the area 
comparison, this is primarily due to the datapath design 
requirements for a very specific set of cells to provide the 
necessary functionality. The larger die-area of the Kogge-Stone 
also contributes to increase in parasitics which further cause a loss 
in performance. In contrast to this, the brick cells perform better 
(5%) at designs like Dspcore where complex three or more input 
functions dominate. The primary reason for this improvement is 
because the brick cells perform complex 3-input functions using 
un-buffered pass-transistor logic, having to buffer the signals only 
while routing them to other bricks. 
 

7. CONCLUSIONS & FUTURE WORK 
We proposed a new regular logic brick design methodology which 
attempts to relieve the increasing stress on resolution 
enhancement techniques for sub-wavelength lithography. We have 
shown that a small set of distinct configurable logic blocks 
(bricks) is sufficient for an efficient implementation of a design. 
This set of bricks is optimized for manufacturability through a set 
of RET-friendly design rules that we propose. We have 
characterized the area and performance of designs implemented 
using the brick library and compared them with ASIC 
implementations in 90nm technology. Even with our simple 
prototype design flow, results indicate that our method is efficient 
in terms of both, die-area and performance. Our future work 
explores the application of the brick derivation flow (Section 3.2) 
to derive optimal bricks for particular designs. Figure 10 shows an 
example of the Kogge-Stone adder implemented with design-
specific bricks. The x-axis corresponds to the number of bricks 
used in each implementation, and the y-axes show die-area as well 
as the average delay of the 10 most critical paths. We also show 
the area and delay of the ASIC and generic brick library (Section 
4) implementations. We see that an implementation with more 
than just 8 unique “design specific” bricks is extremely 
competitive with the ASIC flow. Furthermore, we produce 
designs with extreme physical regularity (far fewer distinct 
geometry shapes in the physical layout) compared to an ASIC, 
thereby improving printability and manufacturing yield. 
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Figure 9 : Generic Bricks - Performance 


