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ABSTRACT
This paper presents a novel gate sizing methodology to mini-
mize the leakage power in the presence of process variations.
The leakage and delay are modeled as posynomials functions
to formulate a geometric programming problem. The exist-
ing statistical leakage model of [18] is extended to include
the variations in gate sizes as well as systematic variations.
We propose techniques to efficiently evaluate constraints on
the α-percentile of the path delays without enumerating the
paths in the circuit. The complexity of evaluating the ob-
jective function is O(|N |2) and that of evaluating the delay
constraints is O(|N | + |E|) for a circuit with |N | gates and
|E| wires. The optimization problem is then solved using a
convex optimization algorithm that gives an exact solution.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—Optimization

General Terms
Algorithms, Design, Performance

Keywords
Leakage, Statistical, Optimization, Geometric Programming

1. INTRODUCTION
The lack of process uniformity in the semiconductor man-

ufacturing has caused variability to become the primary
cause of concern for nanometer scale CMOS design. Sig-
nificant research efforts have focused on understanding the
causes and effects of spatial variations [24, 23, 13, 1, 10, 15,
26]. The variations are caused by either global effects [24]
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such as mask imperfections and lens aberration, or local ef-
fects [9] such as layout pattern variations.

As shown in [1], for 30% variations in the circuit delay
there can be 20X variations in the leakage current. Various
design techniques for leakage reduction such as transistor
stacking [12], sleep transistor insertion [8], body biasing [14]
and driving the circuit into a minimum leakage sleep state
have been proposed in the past. The power savings accrued
by these techniques can be supplemented by gate sizing and
dual-threshold voltage (Vt) assignment [29, 20, 7, 21].

Traditional deterministic gate sizing [19, 3] and dual-Vt as-
signment techniques [6] can be classified into two major cat-
egories: discrete optimization approaches and non-linear op-
timization techniques. In discrete optimization techniques,
starting with an initial feasible implementation (say, all gates
assigned the smallest gate size and low-Vt), the gates to be
sized up (or assigned a higher Vt) are selected based on their
sensitivities. In every iteration, the timing constraints are
checked for any possible violations. These techniques pro-
vide good solutions but because of large number of feasible
solutions, it is difficult to guarantee the optimal solution.
Non-linear programming based techniques use suitable mod-
els for the objective function (power) and the constraints
(delay) to formulate an optimization problem. This prob-
lem can then be solved using non-linear optimization tech-
niques [5, 19] to obtain an optimal solution.

In the presence of process variations, the parameters have
to be modeled as random variables. Due to this, there has
been an increased interest in techniques for statistical anal-
ysis [27] and optimization of circuit performance. A number
of statistical optimization methods ([4, 25] to name a few)
have been proposed in the past. These approaches are pri-
marily based on evaluating the yield (probability that a de-
sign has acceptable performance) as the integral of the joint
probability distribution (jpdf) of the circuit performance φ
over its acceptability region, Aφ. Once an approximation to
Aφ is obtained, the design center is moved to the interior
of Aφ such that the yield is maximized. Because of their
high computational complexity, these techniques are suit-
able only for small circuits where the number of design pa-
rameters is small. Another class of statistical optimization
techniques [22, 17] have been proposed recently. These tech-
niques are similar to the deterministic optimization tech-
niques described above but they model the variability in the
device parameters.

In this paper we present a statistical optimization ap-
proach based on modeling the statistics (mean and second
moment) of leakage and delay as posynomial functions [16]
of nominal gate sizes. A function of mean and variance of
leakage is minimized subject to constraints on α-percentile
of the delay. The posynomial functions can be transformed
into convex functions by a variable transformation. This
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convex optimization problem is then solved to obtain a glob-
ally optimal solution [19].

The organization of rest of the paper is as follows: The
problem is formally defined in Section 2. Section 3 describes
the statistical leakage and delay models used in the formu-
lation. The proposed solutions is discussed in detail in Sec-
tion 4. Finally the experimental results and conclusions are
described in Sections 5 and 6.

2. PROBLEM FORMULATION

Let a circuit be represented using a Directed Acyclic Graph
(DAG) G = (N, E), where N = {1, 2, .., n} is the set of nodes
and E = {(i, j) : i, j ∈ N} is the set of edges. The nodes
correspond to the gates in the original circuit. An edge (i, j)
represents that gate i fanouts to gate j.

Let the parameter space for each gate i be defined as
ûi = (ui

1, u
i
2, .., u

i
r), where r denotes the number of parame-

ters. In the presence of process variations, each of these pa-
rameters is a random variable. Hence, if Ω denotes the space
of manufacturing outcomes, ûi : Ω → Rr is a function that
maps every outcome ω ∈ Ω to a point in an r-dimensional
Euclidean space. Hence, the parameters for the manufactur-
ing outcome ω are given by bui(ω) = (ui

1(ω), ui
2(ω), .., ui

r(ω)).
The parameters considered in this work include the gate
length (Li), threshold voltage (Vi), the gate size (wi) and
the oxide thickness (Ti). For simplicity, the parameters are
modeled as independent random variables. Other param-
eters such as supply voltage (Vdd) are modeled as deter-
ministic quantities. For convenience, henceforth the explicit
dependency of û on the argument ω will not be shown.

The circuit leakage and delay under this variational model
are also random variables as they are functions of random
parameters. Let IT denote the total leakage of the circuit
and Dp denote the delay of path p ∈ P, where P repre-
sents the set of paths in the circuit. The stochastic leakage
minimization problem can now be formulated as follows

min
ω∈Ω

IT (û1, û2, .., ûn, ω) (1)

sub. to P(Dp(û1, .., ûn, ω) ≤ Treq) ≥ α ∀ p ∈ P. (2)

where P(X ≤ x) denotes the probability that the random
variable X is less than or equal to x. α can be considered
to be a confidence level. As the number of manufacturing
outcomes ω can be infinite, it does not make sense to solve
the optimization problem for every ω. Moreover, solving for
a single ω will give the optimal choice of parameters for that
particular manufacturing outcome (the probability of which
is close to zero). Hence, a more relevant objective would
be some statistic (such as mean or variance) of the leakage
current. From Figure 1, it can be seen that minimizing the
expected value of the leakage without any regard to its vari-
ance results in an increased number of chips having lower
frequency (curve A). Whereas, minimizing just the variance
without optimizing the mean leaves a scope of reduction in
the leakage of the manufactured circuits (curve B). Hence
the goal of maximizing the leakage yield can be achieved by
minimizing a linear combination of the square of the mean
and the variance of leakage (curve C). Thus, the new objec-
tive becomes λ µ2(IT )+ (1−λ) σ2(IT ), where µ(X) = E[X]
and σ2(X) = E[(X − E(X))2] for any random variable X.
λ ∈ [0, 1]. The constraints on the path delay probability
as shown in (2) can be translated into constraints on the
α-percentile (zα[Dp]) of the path delay. zα[X] is defined as
the smallest value of the random variable X for which its
cumulative distribution function is greater than 0.01× α.

Figure 1: Leakage Reduction

The stochastic leakage minimization problem can now be
written as a deterministic optimization problem in the fol-
lowing form

min λµ2(IT (û1, .., ûn, ω)) + (1−λ)σ2(IT (û1, .., ûn, ω))(3)

sub to zα[Dp] ≤ Treq ∀ p ∈ P. (4)

The model parameter u is modeled as u = uo + us + uξ,
where uo is the value of the parameter specified by the de-
signer (e.g. gate sizes) or determined by the technology (e.g.
gate length), us is the systematic component of the varia-
tions and uξ∼N(0, σ2(uo)) is the random component of the
variations. N(0, σ2(uo)) represents a normal random vari-
able with 0 mean and variance σ2(uo). u can then be written
as u∼N(uo+us, σ

2(uo)), where σ2(uo) is the variance of the
parameter u as a result of specifying the value uo. Hence
uo are the decision variables of the optimization problem.
In this work, the only decision variables considered are the
gate sizes (wo,i).

There seems to be a consensus in the design as well as
EDA community that the variations in a parameter increase
if the nominal value of that parameter is decreased. Based
on this, we model the variance of the circuit size wi as being
inversely proportional to its nominal value wso,i. Thus

σ(wi) =
kw

wl
so,i

(5)

where kw and l are model parameters.
A circuit can potentially have exponential number of paths.

Section 3.2 discusses how to overcome this problem by mod-
ifying the set of constraints so that all the constraints can
be replaced by a single constraint. This single constraint
can be obtained by performing a single PERT-like traversal
of the circuit DAG.

3. LEAKAGE AND DELAY MODELS
Recent advances in the statistical models for leakage [18]

have provided an opportunity for development of statistical
optimization techniques. In this work, the leakage model
of [18] is extended to accommodate the variations in the gate
sizes as well as include the effect of systematic variations.
The objective function of the optimization problem (3) un-
der this model is shown to be a posynomial function of gate
sizes. For delay, the Elmore delay model is used.

3.1 Statistical Leakage Model
Let ISi and IGi denote the sub-threshold leakage and the

gate leakage of gate i respectively. The total leakage, ITi for
gate i, is the sum of the sub-threshold leakage and the gate
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leakage as shown in Equation 6.

ITi = IGi + ISi. (6)

Other sources of leakage such as Band-to-Band Tunneling
(BTBT) through the reverse biased source-substrate and
drain-substrate junctions will also become prominent in fu-
ture technologies [11]. However, the current work only tar-
gets the sub-threshold leakage and gate leakage because sta-
tistical models have already been developed for them. The
model developed in [18] assumed the sub-threshold leakage
to be dependent on the gate length and threshold voltage.
The gate leakage has an exponential dependence on the gate
oxide thickness. Hence the total leakage of a circuit can be
written as:

IT =
X
i∈N

wi

 
ISo exp

„
−(Li + c2L

2
i + c3Vi)

c1

«

+ IGo exp

„
−T i

β

«!
. (7)

where

ISo : Nominal sub− threshold leakage,
IGo : Nominal gate leakage,

c1, c2, c3, β : Fitting parameters.

The parameters can be expanded in terms of their system-
atic and random components to obtain the total leakage as
shown in Equation (8).

IT =
X
i∈N

wi

 
I ′So,i exp

„−(αiLξ,i + c2L
2
ξ,i + c3Vξ,i)

c1

«

+ I ′Go,i exp

„
−T ξ,i

β

«!
. (8)

where

I ′So,i = ISo exp

„
−(Lso,i + c2(Lso,i)

2 + c3Vso,i)

c1

«
(9)

I ′Go,i = IGo exp

„
−(To,i + Ts,i)

β

«
(10)

αi = 1 + 2c2(Lo,i + Ls,i). (11)

The leakage currents I ′So,i and I ′Go,i are dependent only on
the systematic component of the variations, Lso,i = Ls,i +
Lo,i and Vso,i = Vs,i+Vo,i. This work models the global vari-
ations in the gate length and the threshold voltage. Thus,
the random variables corresponding to the parameters of the
individual gates can be replaced by a single random vari-
able for every parameter. Hence Lξ,i = Lξ, Vξ,i = Vξ and
Tξ,i = Tξ for i ∈ N . As a result of this, both the leakage
components can be written as product of two factors, one
common to all the gates in the circuit and the other factor
dependent on the individual gate size wi.

IS=

 X
i∈N

wiI
′
So,i exp

„
−αiLξ

c1

«!
exp

 
−(c2L

2
ξ+c3Vξ)

c1

!
(12)

IG=

 X
i∈N

wiI
′
Go,i

!
exp

„
−T ξ

β

«
. (13)

Thus both gate leakage and sub-threshold leakage have the
form Z = X · Y where X and Y are independent random
variables. Hence, their mean and second moment can be
computed using Equations (14) and (15).

E[Z] = E[X] ·E[Y ] (14)

E[Z2] = E[X2] ·E[Y 2]. (15)

For the random variable dependent only on wi, the moments
can be obtained as

E
hX

i∈N

kiwi

i
=
X
i∈N

ki E[wi] =
X
i∈N

kiwso,i (16)

E

»„X
i∈N

kiwi

«2–
=
X
i∈N

k2
i E[w2

i ] +
X

i,j∈N
i6=j

kikjwso,iwso,j .(17)

where ki = I ′So,i for sub-threshold leakage and ki = I ′Go,i

for the gate leakage component. Also, wso,i = wo,i + ws,i

and E[w2
i ] = σ2(wi) + w2

so,i. The second component of the
leakage (that is independent of the gate sizes), has the form
U = exp(−(W + aW 2)/b) where W ∼ N(0, σ2

W ). Its mo-
ments can be computed using Equations (18) and (19). [18]
also utilizes these equations for computing the statistics of
leakage.

E[U ] =

 
1 +

2a

b
σ2

W

!− 1
2

· exp

 
σ2

W

2b2 + 4σ2
W ab

!
(18)

E[U2] =

 
1 +

4a

b
σ2

W

!− 1
2

· exp

 
2σ2

W

b2 + 4σ2
W ab

!
. (19)

Hence the mean and variance of total leakage can be com-
puted by using Equations (12) through (19) and performing
some algebraic manipulation. The complexity of computing
the mean of the leakage is O(|N |) and that of computing the
variance of the leakage is O(|N |2).

3.2 Statistical Delay Model
The on-resistance of a gate i is inversely proportional to

its size wi. Thus, using the Elmore delay model, the delay
of gate i, di can be written as

di = αi + βi
Cld,i

wi
(20)

where αi is a fitting parameter, Cld,i is the capacitive load
at the output of gate i. The load capacitance (input capac-
itance of the fanout gates) is directly proportional to the
sizes of the fanout gates. Hence, Cld,i = c ·

P
j∈FO(i) wj ,

where FO(i) represents the set of fanout gates for gate i. c
is the capacitance per unit size. βi captures the dependency
of the delay on Li and Vi. This dependency is modeled up
to its first order approximation. That is:

βi = βLiLi + βViVi (21)

βLi and βVi correspond to the sensitivity of the delay di to
Li and Vi. In the presence of variations, wi, Li, Vi and di

are all random variables. Hence Equations (20) and (21)
can be used to obtain the mean of the gate delay as:

E[di] = αi + E[βi]E

»
1

wi

–„ X
j∈FO(i)

c ·E[wj ]

«
(22)

It can be seen from Equation (22) that all the expecta-
tions can be easily computed except E[w−1

i ] as the expec-
tation of the reciprocal of a normal random variable does
not exist. We make a simplifying assumption here that
E[w−1

i ] = E[wi]
−1 = w−1

so,i. The error involved in this ap-
proximation is around 3-4%. This error is quantified in the
Appendix. Thus

E[di] = αi + E[βi]
c ·
P

j∈FO(i) wso,j

wso,i
(23)

From Equation (20) it is not possible to compute the vari-
ance of the gate delay. Hence, we use a simple model for the
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standard deviation of the gate such that the standard devia-
tion of the gate delay is directly proportional to the standard
deviation of the sizes of its fanout gates (this is a reason-
able assumption as the variations in the load is expected to
increase the variations in the delay). Also the standard devi-
ation is assumed to be inversely proportional to its nominal
size (δ captures this effect). Hence

σ(di) = γi

P
j∈FO(i) σ(wso,j)

wδ
so,i

(24)

These models for mean and standard deviation are used
for computing the α-percentile, zα[Dp] of a path delay, Dp.
Under the assumption of the path delays being random vari-
ables, the α-percentile of a path delay can be written as

zα[Dp] = µ(Dp) + zασ(Dp)

=
X
i∈p

µ(di) + zα

„X
i∈p

σ2(di) +
X
i,j
i6=j

Cij

« 1
2

(25)

where Cij = ρijσ(di)σ(dj) is the covariance of gate delays
di and dj . |ρij | ≤ 1 is the correlation coefficient of di and
dj . zα is the α-percentile of the standard normal random
variable (N(0, 1)). From Equation (25), computations of the
largest α-percentile in a circuit, requires the enumeration of
all the paths and then computing their α-percentiles. This
is a computationally expensive procedure. Hence in order
to check whether a particular assignment of the gate sizes
satisfies the delay constraints, we utilize Theorem 3.1.

Theorem 3.1. Let w = (w1, . . . , w|N|) be the vector of
the assigned gate sizes to the gates in a circuit. Given
the feasible set of sizes, S = {w ∈ R|N| : zα[Dp(w)] ≤
Treq, ∀ p ∈ P} and an upper bound zU

α [Dp] on the α-percentile
of Dp. Then SU ⊆ S, where SU is the feasible set of sizes
defined by the constraints on the upper bound zU

α [Dp].

Proof. Let w ∈ SU , this implies zU
α [Dp(w)] ≤ Treq, ∀ p ∈

P. But zα[Dp(w)] ≤ zU
α [Dp(w)] ≤ Treq, ∀ p ∈ P. Hence

zα[Dp(w)] ≤ Treq ⇐⇒ w ∈ S. ThusSU ⊆ S.

Hence, checking the satisfiability of an upper bound on
the α-percentile of a path delay for a particular assignment
of gate sizes, w guarantees that w is in the original feasible
region. We now compute an upper bound on the zα[Dp]. It
is clear that

Cij = ρijσ(di)σ(dj) ≤ σ(di)σ(dj) (26)

Thus „X
i∈p

σ2(di) +
X
i,j
i6=j

Cij

« 1
2

≤
X
i∈p

σ(di) (27)

Hence, the upper bound on the α-percentile of the delay can
be written as

zU
α [Dp] =

X
i∈p

µ(di) + zα

„X
i∈p

σ(di)

«
(28)

In order to check the feasibility of a particular gate size as-
signment, we need to check whether the path having largest
zU

α [Dp] satisfies the constraint. This can be done by assum-
ing that every gate i in the circuit DAG has a fixed delay
of µ(di) + zασ(di) (using Equation 28) and using Dijkstra’s
algorithm (the complexity of this is O(|N |+ |E|)). However,
replacing the α-percentile of every path by its upper bound
in the constraints results in a reduction in the feasible region
of the optimization problem. Hence it might be possible that

the optimal solution does not lie in the new feasible region.
Thus, this transformation results in considerable reduction
in the complexity at the cost of slight degradation in the
quality of the solution. The quality of the solution can be
improved by increasing the required time in the constraint.

4. OPTIMIZATION METHODOLOGY
Under the proposed leakage and delay models, the opti-

mization problem is a multivariable non-linear optimization
problem. However, when the delay constraints are replaced
by their upper bounds, the problem becomes a Geometric
Programming problem [16, 2]. This is of much significance
as a particular class of geometric programs (where the ob-
jective and constraints are posynomials) can be transformed
into convex optimization problems. For convex optimization
problems an exact solution can be found as locally optimal
solution is also the global optimum.

A posynomial function f of variable x ∈ R+n has the form

f(x) =
X

j

βj

nY
i=1

x
αij

i (29)

where αij ∈ R and βj ∈ R+. The significance of posynomials
comes from the fact that they can be transformed into con-
vex functions through the transformation, xi = ezi , ∀ i =
1, . . . , n. For the proposed leakage model, the objective func-
tion of the optimization problem (3) is a posynomial only if
λ ≥ 0.5 (because the coefficient of one of the terms in the
variance of total leakage becomes negative). Thus the opti-
mization was performed for different values of λ such that
λ ≥ 0.5. We now briefly describe the convex optimization
algorithm used for solving our problem.

4.1 Optimization Algorithm
This paper uses the convex optimization algorithm used

in [19]. The algorithm works by successively reducing the
problem region by introducing cutting planes in every it-
eration. The cutting planes (or hyperplanes) are obtained
by conditions on the gradient of the objective functions and
that of the constraints. The cutting planes are chosen such
that they guarantee the presence of the optimal solution in
the problem region of the next iteration. Let x ∈ R+n be
the decision variable, f(x) be the convex objective function
and gi(x) ≤ Treq, i = 1, .., n be the convex constraints.
Let S be the feasible set defined by {x : gi(x) ≤ Treq}
and x∗ ∈ S be the optimal solution. Initially, the solu-
tion space is determined by the polytope defined by the set
{x : xL ≤ x ≤ xU}, where xL and xU are the minimum
and maximum possible values of x. Algorithm 1 outlines
the convex optimization algorithm [19] for completeness.

Algorithm 1 Convex Optimization Algorithm

1: Find the center xc of the current polytope P .
2: If xc /∈ S, find the gradient ∇gk(x) of the constraint

having the largest value at xc. Goto Step 3.
3: Insert a hyperplane of the form cT x ≥ β = cT xc, where

c = −[∇gk(x)]T , update P .
4: If xc ∈ S, compute c = −[∇f(x)]T and insert the hy-

perplane of the form cT x ≥ β = cT xc, update P .
5: If the size of the polytope P is less than a user specified

limit ε, stop. Otherwise goto Step 1.

The center of the polytope in Step 1 is obtained by mini-
mizing a log-barrier function. The complexity of computing
the center has been shown to be O(|N |2.5) [19]. The con-
straints in our problem are zU

α [Dp] ≤ Treq.
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5. EXPERIMENTAL RESULTS
The proposed optimization technique was implemented

in C++. The tool takes in a blif file as well as the param-
eters of the leakage and delay models of the gates. The
optimization methodology was tested on ISCAS’85 bench-
mark circuits. The parameters of the models were fitted to
correspond to 0.13µm technology. In the following sections
we study the effect of various parameters of the optimization
problem such as λ, Treq and α-percentile on the quality of
the obtained solution.

5.1 Effect of varying λ

With all other parameters (Treq, zα) fixed, the parameter
λ varies the relative weight of mean(µ) and standard devi-
ation (σ) in the optimization problem. Figure 2 show that
for circuits C432 and C499, as λ increases from 0.5 to 1.0,
the µ of the leakage decreases monotonically, whereas the σ
increases monotonically. This shows that µ and σ are infact
conflicting objectives in the case of leakage minimization.
Hence, neither one of them can be neglected while perform-
ing the optimization. The main cause of this conflicting
behavior is that the variations increase as the dimensions
decrease. Since the expected leakage is a linear function of
the gate sizes, decreasing the expected leakage reduces the
sizes of the gates. This increases the variance of the sizes
and hence the variance of the leakage power.

(a) (b)

Figure 2: µ-σ trade-off for: (a) C432, and (b) C499

5.2 Effect of varying Treq

This section discusses the power-delay trade-off for a cir-
cuit. From Figure 3, we see that as the delay constraint is
tightened, the expected leakage starts to increase rapidly.
This can be attributed to the fact that delay minimization
is achieved by assigning larger sizes to the gates. The sizes
of large gates vary by small amount. Hence the variance of
the leakage as well as delay decreases. Table 2 shows that

(a) (b)

Figure 3: Power-Delay curves: (a) C432, and (b)
C880

for a circuit tuned for performance, a significant power sav-
ings can be achieved by relaxing the delay constraint by only
a small amount. From column 3 and 4, we see that an X

amount of increase in delay can contribute to more than 2X
reduction in the leakage.

Circuit Treq(ps) ∆Treq(%) ∆µPower(%)
55 8.33 18.00

C432 60 7.69 11.36
65 4.41 4.28

55.5 0.89 2.29
C880 56.0 1.75 2.20

65.0 5.00 9.83

Table 1: Power-Delay Trade-off

5.3 Effect of varying zα

A significant amount of pessimism associated with worst
case analysis can be removed by incorporating statistical de-
sign techniques. Figure 4 shows the probability distributions
of an optimized circuit for different values of zα. While con-
sidering a gate delay model such as µ + zασ, a higher value
of zα (3 or 4) corresponds to a more pessimistic delay model.
As can be seen from Figure 4 and Table 2, use of a worst
case model causes the optimization to satisfy an extremely
pessimistic delay constraint which leads to a design having
unusually high leakage power. This gives an impression that
even more optimization is required to bring down the power.
The use of statistical models and optimization techniques re-
moves this pessimism to provide the designer a much better
estimate of the expected performance. The runtime of the

Figure 4: Effects of using a worst case model

C432 C880
zα Mean Std. dev Mean Std. dev
1 49.7 12.1 97.6 18.7
2 60.4 11.6 122.2 17.4
3 71.8 10.5 139.6 17.8
4 76.9 10.4 155.4 18.4
5 87.0 10.4 170.0 19.2
6 94.3 10.9 182.9 20.2

Table 2: A pessimistic delay model causes an in-
crease in the optimized circuit’s leakage (all values
in (µW ))

optimization process for various benchmark circuits on an
Intel Pentium IV-1.7GHz with 512MB RAM are outlined in
Table 3.

6. CONCLUSIONS
We presented a novel gate sizing technique for statisti-

cal optimization of leakage power subject to constraints on
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Circuit Gates runtime(min.)

C17 7 0.01
C432 160 3.3
C499 202 4.8
C880 383 12.2
C1355 546 38
C1908 880 65
C2670 1193 112
C3540 1660 298

Table 3: Gate sizes and runtimes of ISCAS’85
benchmark circuits

some α-percentile of the circuit delay. We derived models
for the leakage power in presence of variations in the gate
sizes. A particular subclass of the formulated optimization
problem was identified as being convex optimization prob-
lem. This problem was then solved exactly to obtain a low
leakage implementation of the circuit. This technique pro-
vides sufficient freedom (by choosing the parameters of the
optimization) to the designer to fine tune it for desired per-
formance. The technique removes the pessimism associated
with the worst case design to provide a better estimate of
the expected performance.

APPENDIX
The inequality in Equation 30 holds irrespective of the prob-
ability distribution of random variable w [28].˛̨̨̨

˛E
»

1

w

–
− 1

E[w]

˛̨̨̨
˛ ≤

˛̨̨̨
˛ 1w
˛̨̨̨
˛
max

σ2
w

E[w]2
(30)

According to the ITRS (International Technology Roadmap
for Semiconductors) the maximum variation in the CD is
less than 30%. Hence,

3σw ≤ 0.30(E[w]) (31)

⇒ σ2
w ≤ 0.01(E[w]2) (32)

From our model, E[w] = wso, where wso is the specified
size of the gate. Hence from Equation (30) and (31), we
have˛̨̨̨
˛E
»

1

w

–
− 1

E[w]

˛̨̨̨
˛ ≤

˛̨̨̨
˛ 1w
˛̨̨̨
˛
max

· 0.01 · w2
so

w2
so

= 0.01

˛̨̨̨
˛ 1w
˛̨̨̨
˛
max

(33)

Jensen’s inequality states that if f is a convex function of
random variable x, then

E[f(x)] ≤ f(E[x]) (34)

Since 1/w is a convex function, Equation (33) becomes

E

»
1

w

–
− 1

wso
≤ 0.01

wmin
(35)

where wmin is the minimum value of the width that can be
specified by the designer. The average gate size of the gates
in the circuit is around 2-4 times the minimum size (only
the gates along the critical path have big sizes, other gates
have small sizes). Hence wso ∼ 4wmin. Hence Equation (35)
becomes

E [1/w] ≤ 1.04

wso
=

1.04

E[w]
(36)

Thus, the error in this approximation is less than 4%.
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