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ABSTRACT
Power has become a critical concern for battery-driven computing
systems, on which many applications that are run are interactive.
System-level voltage scaling techniques, such as dynamic voltage
scaling (DVS) and adaptive body biasing (ABB), have been shown
to reduce energy consumption effectively. Previous works on DVS
and ABB exploit low CPU utilization of the processor to drive volt-
age scaling. This has become inadequate for modern interactive
applications involving high CPU usage. In this work, we target
computer responsiveness during voltage scaling to exploit more op-
portunities for energy reduction. Instead of CPU utilization, we use
the user-perceived latency, the delay between user input and com-
puter response, to drive voltage scaling. Considering the tradeoff
between energy consumption and computer responsiveness during
voltage scaling not only reduces energy consumption effectively,
but also ensures good computer responsiveness for interactive ap-
plications. Experimental results show that for the 70nm technol-
ogy, during the execution of seven commonly-used interactive ap-
plications, the energy consumption of the processor using user-
perceived latency driven DVS is reduced by an average of 37.3%,
and the user-perceived latency by an average of 18.3%, compared
to CPU utilization driven DVS. If both DVS and ABB are per-
formed simultaneously based on the user-perceived latency, then
the energy consumption is reduced by another 38.9% compared to
when DVS is performed alone, while maintaining a similar com-
puter responsiveness level. We have implemented user-perceived
latency driven voltage scaling under Linux with X Window sys-
tem. However, the methodology is extensible to other operating
systems as well.
Categories and Subject Descriptors: D.4.1 [Operating System]:
Process Management - scheduling.
General Terms: Algorithms.
Keywords: Adaptive body biasing, computer responsiveness, dy-
namic voltage scaling, power consumption.
1. INTRODUCTION

Power has become a limiting factor for battery-driven comput-
ing systems. Dynamic and leakage power are two main sources of
power consumption. DVS, supported by various processors, e.g.
Intel XScale [1], exploits the quadratic dependence of dynamic
power consumption on the supply voltage [2,3]. It dynamically ad-
justs the clock frequency along with the supply voltage of the pro-
cessor to reduce power consumption. Leakage power consumption
is due to the subthreshold leakage current and junction leakage cur-
rent. ABB is a technique that adjusts the threshold voltage by vary-
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ing the body bias voltage at run-time to reduce leakage power con-
sumption [4,5]. Since leakage power is becoming increasingly im-
portant as technology size shrinks, optimizing dynamic and leakage
power consumption simultaneously has been demonstrated to be
important [6–8]. Combined DVS and ABB techniques have been
proposed to consider the tradeoff between supply voltage and body
bias voltage to manage both dynamic and leakage power consump-
tion for a multiply-accumulate unit [6], a single voltage-scalable
processor [7], and distributed embedded systems [8]. Many appli-
cations executed on battery-driven systems are interactive, involv-
ing human-computer interaction. Previous works have used CPU
utilization to drive voltage scaling. This was effective in the past
when interactive applications were primarily textual and involved
low CPU usage. Modern interactive applications, ranging from
video games to sophisticated simulation and virtual reality envi-
ronments, are compute-intensive. Voltage scaling driven by CPU
utilization has become inadequate.

Computer responsiveness is an important consideration for inter-
active applications. User attention has become the most precious
computing resource [9]. An immediate visual causality between
user input and computer response is expected. The delay between
the “cause,” e.g., pressing the mouse button, and the “effect,” e.g.,
a window popping up, is called the user-perceived latency. Hu-
man beings generally do not feel any delay if the user-perceived
latency is below the human-perceptual threshold (a value of 50-
100ms is commonly used [10,11]). In this work, we take computer
responsiveness into account during voltage scaling for interactive
applications to reduce energy consumption. By keeping track of
user-perceived latencies for past user inputs, we predict the user-
perceived latency for the upcoming user input and use it to drive
voltage scaling. We employ two system-level voltage scaling tech-
niques, DVS alone and combined DVS and ABB. Trading off com-
puter responsiveness for energy consumption enables voltage scal-
ing to reduce energy consumption more aggressively, while still en-
suring good computer responsiveness for interactive applications.

The rest of the paper is organized as follows. In Section 2, we use
a motivational example to illustrate the importance of considering
computer responsiveness during voltage scaling. In Section 3, we
first detail how to track and predict user-perceived latency. We then
discuss the tradeoff between energy consumption and computer re-
sponsiveness. We finally present the voltage scaling algorithm that
is driven by user-perceived latency. We present experimental re-
sults in Section 4 and conclude in Section 5.

2. MOTIVATION
This section presents a motivational example to illustrate the im-

portance of considering computer responsiveness during voltage
scaling.
Example 1: Consider the racing game, TuxRacer, running on an
IBM Thinkpad laptop having two performance levels with differ-
ent frequency/supply voltage settings: high (1.8GHz/1.3V) and low
(1.2GHz/1.2V). The CPU utilization driven DVS is interval-based
(50ms in this example). If the current CPU utilization is less than
or equal to 66.7%, the processor scales down its frequency/supply
voltage and runs at the low performance level. Otherwise, it runs at
the high performance level. Since TuxRacer involves high CPU us-
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Figure 1: Traces for the execution of TuxRacer

age (above 80%) after the racing starts (from 5s onwards) as shown
in Figure 1(a), there is no opportunity for scaling down the fre-
quency/supply voltage for energy reduction. The user-perceived
latency driven DVS policy decreases the frequency/supply volt-
age of the processor if the current user-perceived latency is be-
low the human-perceptual threshold (100ms in this example). As
seen from the user-perceived latency trace shown in Figure 1(b),
the user-perceived latency driven DVS policy has many opportuni-
ties for voltage scaling. For 58.1% of the total execution time for
TuxRacer, the processor runs at the low performance level under
user-perceived latency driven DVS, compared to only 14.2% un-
der CPU utilization driven DVS. This yields an energy reduction
of 15.3% with respect to CPU utilization driven DVS. Obviously,
user-perceived latency driven DVS provides more opportunities for
energy reduction than the CPU utilization driven one.

3. USER-PERCEIVED LATENCY DRIVEN
VOLTAGE SCALING

In this section, we first describe how to track and predict the
user-perceived latency for user inputs. We then discuss the trade-
off between energy consumption and computer responsiveness. Fi-
nally, we detail the user-perceived latency driven voltage scaling
algorithm for interactive applications.
3.1 Tracking and prediction of user-perceived

latency
The time it takes a computer to execute code to respond to a user

input is called the user-perceived latency. It is an indication of the
level of computer responsiveness. A user input is typically handled
under Linux/X Window system using the following steps.

1. When the user presses a key or button, an interrupt is generated.

2. The X server reacts to the interrupt by generating an X event and
sending it to the corresponding X client.

3. The X client processes the X event and sends a graphics request to
the X server.

4. The X server generates and sends updated display data to the moni-
tor, and then sends a reply to the X client.

In our work, the measurement of the user-perceived latency con-
sists of steps (2)-(4). Based on our experience, the contribution of
step (1) is negligible compared to that of steps (2)-(4). When a key-
board/mouse event is generated, the X server records its birth time,
relative to the X server start time. We modified the X server slightly
so that the time is recorded relative to the start of the day instead.
Most X clients call XNextEvent() directly or indirectly for fetch-
ing the new X events sent by the X server. If there is no new event,
XNextEvent() blocks, waiting for the next user input. Its restart
marks the end of processing for the previous event. We added book-
keeping code to record the difference between an X event’s birth
time and the time when the X client calls XNextEvent() again. The
difference is the user-perceived latency used in this work.

Given the history of the user-perceived latency for past user in-
puts, two prediction mechanisms are employed to predict the value
of the user-perceived latency for the upcoming user input in this
work: PAST and AVG(w). PAST predicts that the user-perceived

latency of the next user input will be the same as that of the previ-
ous one, UPLi = Mi−1, where UPLi and Mi denote the predicted
and measured values of the user-perceived latency for the ith user
input, respectively. For the first user input, we assume UPL1 = M1.
AVG(w) predicts that the user-perceived latency of the next user
input will be similar to those of the previous ones. It calculates
an exponentially moving average of past user-perceived latencies
given by Equation (1):

UPLi =
wUPLi−1 +Mi−1

w +1
(1)

where w is a decay factor. The value of w impacts the number
of voltage transitions. Smaller values of w imply the supply and
body bias voltages may be adjusted very frequently. The transition
time overhead increases the user-perceived latency. The transition
energy overhead increases the total energy consumption. Larger
values of w imply a reduced number of transitions. However, the
processor may continuously run at the higher (lower) performance
level before the supply and body bias voltages are changed to either
reduce energy consumption or improve computer responsiveness.
We will discuss this later in Section 4.
3.2 Energy consumption vs. computer respon-

siveness
Figure 2 shows the normalized energy consumption with respect

to the normalized user-perceived latency for TuxRacer. The nor-
malized values are relative to the processor running at 14GHz. The
parameters for the energy consumption model are adapted from [7]
for a 70nm technology. As the user-perceived latency increases, the
energy consumption of the processor decreases. This means that
sacrificing computer responsiveness can provide energy savings.
Therefore, to reduce energy consumption, while maintaining good
computer responsiveness for interactive applications, we require
the user-perceived latency to be less than the human-perceptual
threshold. This ensures the user will not perceive the delay in-
curred by scaling down the performance level. If the predicted
user-perceived latency is less than the human-perceptual thresh-
old, which means that computer responsiveness is acceptable, the
processor can drop its performance level to reduce the energy con-
sumption until the predicted user-perceived latency becomes larger
than or equal to the human-perceptual threshold. On the other hand,
if the predicted user-perceived latency is more than the human-
perceptual threshold, which means that computer responsiveness
is unacceptable, the processor can boost its performance level to
improve computer responsiveness, until the user-perceived latency
drops to a value lower than the human-perceptual threshold.
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Figure 2: Energy consumption vs. computer responsiveness
3.3 Voltage scaling algorithm

Algorithm 1 gives the pseudo-code for the user-perceived latency
driven voltage scaling algorithm. We assume the supply voltage
and body bias voltage can be scaled in parallel in a continuous
fashion. We use [Kmin,Kmax], instead of a single value, to repre-
sent the allowed range of the human-perceptual threshold K, where
Kmin and Kmax are the minimum and maximum allowed value of K,
respectively. This avoids oscillation during voltage scaling.

For each user input, the value of user-perceived latency for the
upcoming user input is predicted using either PAST or AVG(w), as
discussed in Section 3.1. If the predicted user-perceived latency
UPL falls in the range [Kmin,Kmax], the frequency f , supply volt-
age Vdd , and body bias voltage Vbs remain unchanged in order to
maintain the current computer responsiveness level. Otherwise, if
UPL is less than Kmin, there exist opportunities for voltage scaling
to reduce energy consumption. The following steps are repeated
until UPL increases beyond Kmax. We first save the current values
of f , Vdd , and Vbs. Then f is decreased by step ∆ f and the cor-
responding Vdd and Vbs are updated using DVS alone or combined
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DVS and ABB [8]. The predicted value of UPL is also updated
based on the frequency scaling ratio. If f , Vdd or Vbs drops below
its allowed minimum level, or the new UPL is above Kmax, the lat-
est voltage scaling changes get invalidated and f , Vdd , and Vbs are
switched back to the old values. If UPL is more than Kmax, which
means the user may perceive time-lags, we boost the performance
level to improve computer responsiveness. The following steps are
repeated until UPL is no longer more than Kmax. We first save the
current values of f , Vdd , and Vbs. Then f is increased by ∆ f and
the corresponding Vdd , Vbs, and UPL are updated. If f , Vdd or Vbs
becomes larger than its allowed maximum level, the latest voltage
scaling changes get invalidated and f , Vdd , and Vbs are switched
back to the old values. Finally, the algorithm returns Vdd and Vbs.
Algorithm 1 Voltage scaling algorithm driven by user-perceived latency

1: Predict UPL based on the history of user-perceived latency;
2: if Kmin≤UPL≤Kmax then
3: return Vdd and Vbs;
4: else
5: if UPL < Kmin then
6: while UPL < Kmax do
7: save current f , Vdd , and Vbs;
8: f = f −∆ f ;
9: update Vdd , Vbs, and UPL;

10: if f < fmin || Vdd < Vddmin || Vbs < Vbsmin || UPL > Kmax then
11: restore f , Vdd , and Vbs;
12: break;
13: end if
14: end while
15: else
16: while UPL > Kmax do
17: save current f , Vdd , and Vbs;
18: f = f +∆ f ;
19: update Vdd , Vbs, and UPL;
20: if f > fmax || Vdd > Vddmax || Vbs > Vbsmax then
21: restore f , Vdd , and Vbs;
22: break;
23: end if
24: end while
25: end if
26: end if
27: return Vdd and Vbs;

4. EXPERIMENTAL RESULTS
In this section, we present experimental results to evaluate the

effectiveness of our user-perceived latency driven voltage scaling
method. We then discuss the impact of the decay factor w used in
the AVG(w) prediction mechanism.

We applied our voltage scaling technique to seven commonly-
used applications, (1) TuxRacer, a video racing game; (2) GpsDrive,
a navigation system; (3) X pd f , a PDF viewer; (4) Mines, a small
mining game; (5) KCalc, a calculator; (6) KPaint, a simple drawing
application; (7) KEdit, a text editor, ranging from modern interac-
tive applications to simple textual ones. The CPU utilization and
user-perceived latency traces were collected on a IBM Thinkpad
laptop. The constants are adapted from [7] for the 70nm technol-
ogy. We chose 7GHz ≤ f ≤14GHz, ∆ f = 1GHz, 0.5V ≤Vdd ≤1.4V ,
and −1V ≤Vbs ≤0V . When the supply voltage changes from Vdd1 to
Vdd2 and body bias voltage from Vbs1 to Vbs2, the transition energy
overhead is derived based on Stratakos’s analysis [12]:

∆E = Cr(V 2
dd2 −V 2

dd1)+Cs(V 2
bs2 −V 2

bs1) (2)

where Cr is the capacitance of the power rail, and Cs is the total
capacitance of the substrate and wells of the device. The transition
time overhead is given by:

∆t = max(δVdd |Vdd2 −Vdd1|,δVbs |Vbs2 −Vbs1|) (3)
where δVdd and δVbs are the times needed to increase/decrease sup-
ply voltage and body bias voltage by 1V, respectively.
4.1 Effectiveness

We first discuss the effectiveness of our voltage scaling tech-
nique in terms of energy consumption and computer responsiveness
for interactive applications. We chose Cr = 1µF, Cs = 1µF, δVdd =
10µs/V , and δVbs = 10µs/V . The human perceptual threshold K is set
to 100ms. [Kmin,Kmax] = [K−∆K,K +∆K], where ∆K = 0.1K. Figure 3
shows the normalized energy consumption and user-perceived la-
tency for the benchmarks using different voltage scaling policies

based on the AVG(3) prediction mechanism. It can be seen that us-
ing user-perceived latency driven DVS, the energy consumption is
reduced by an average of 37.3% and the user-perceived latency is
reduced by an average of 18.3% with respect to the CPU utilization
driven one. This justifies the advantages of considering the tradeoff
between energy consumption and computer responsiveness during
voltage scaling for interactive applications. The energy consump-
tion is further reduced by an average of 38.9% when user-perceived
latency driven combined DVS and ABB is used compared to DVS
alone, while maintaining the computer responsiveness at a similar
level. The combined DVS and ABB approach optimizes dynamic
power and leakage power simultaneously to reduce energy con-
sumption effectively. The impact of ABB is expected to be larger as
we go deeper into the nanometer regime. We obtain similar results
when voltage scaling policies are based on the PAST prediction
mechanism. User-perceived latency driven DVS yields an average
energy reduction of 39.2% and an average user-perceived latency
reduction of 14.6% with respect to the CPU utilization driven one.
The energy consumption is further reduced by 34.0% when user-
perceived latency driven combined DVS and ABB is used com-
pared to DVS alone. AVG(w) will be compared against PAST later.
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Figure 3: Effectiveness of user-perceived latency driven voltage
scaling

Figures 4 and 5 show the performance setting decisions for DVS
driven by CPU utilization and user-perceived latency during the
execution of TuxRacer and KPaint, respectively. They provide a
qualitative insight into the characteristics of different voltage scal-
ing policies. For TuxRacer, after the race starts (from 5s onwards),
CPU utilization driven DVS maintains the processor mainly on two
higher performance levels, 13GHz and 12GHz, and switches be-
tween them as can be seen from Figure 4(a). This is due to the
high CPU usage of TuxRacer. Since CPU utilization driven DVS is
unaware of the user’s perception of unresponsiveness, it acts con-
servatively when deciding the performance levels. On the other
hand, user-perceived latency driven DVS is able to predict the nec-
essary performance level more accurately. The performance level
varies from 9GHz to 14GHz after the race starts as shown in Fig-
ure 4(b). Once the user-perceived latency is predicted to be less
than Kmin, the performance level is lowered to provide energy sav-
ings. The fraction of the total time that the processor runs at 9GHz
is 7.0%, compared to 0.6% for CPU utilization driven DVS. If the
user-perceived latency is predicted to be above Kmax, the perfor-
mance level is boosted to improve computer responsiveness. For
48.7% of the total execution time, the processor runs at 14GHz,
compared to 0.4% for CPU utilization driven DVS. User-perceived
latency driven DVS responds quickly to current user perception of
computer responsiveness and acts aggressively to decide the per-
formance levels for obtaining an energy reduction. For KPaint,
CPU utilization driven DVS boosts the performance level during
execution due to high CPU usage, as seen from Figure 5(a). How-
ever, since the user-perceived latency for KPaint usually hovers at
a low level (around 10ms), user-perceived latency driven DVS al-
ways maintains the processor at 7GHz to provide maximum energy
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savings, as shown in Figure 5(b), and reduces the energy consump-
tion by 53.6% with respect to CPU utilization driven DVS.
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(b) User-perceived latency driven DVS
Figure 4: Performance setting decisions for TuxRacer
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(b) User-perceived latency driven DVS
Figure 5: Performance setting decisions for KPaint

The value of the human-perceptual threshold K in user-perceived
latency driven voltage scaling is tunable. The normalized energy
consumption and user-perceived latency for TuxRacer using dif-
ferent values of K during voltage scaling, based on the AVG(3) pre-
diction mechanism, is shown in Figure 6. By changing the value of
K, the user can achieve different levels of computer responsiveness
and energy reduction. For example, if K = 75ms, the computer re-
sponsiveness is improved by 16.5%, while the energy consumption
is increased by 33.3%, with respect to the case when K = 100ms.
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Figure 6: Energy consumption and computer responsiveness
for TuxRacer
4.2 Impact of decay factor

Next, we consider the impact of the decay factor w in the AVG(w)
prediction mechanism on the user-perceived latency driven volt-
age scaling algorithm. As mentioned in Section 3.1, w impacts
the number of voltage transitions. To demonstrate the impact of w
on the transition overhead clearly, we chose Cr = 20µF, Cs = 20µF,
δVdd = 200µs/V , and δVbs = 200µs/V . The human perceptual threshold
K is set to 100ms. Table 1 shows the normalized energy consump-
tion and user-perceived latency for TuxRacer using AVG(w) with
different values of w. It can be seen that AVG(3) achieves the mini-
mum energy consumption. Using PAST, equivalent to AVG(0), the
energy consumption is increased by 53.1% and the user-perceived
latency by 40.7% with respect to no voltage scaling. This is due
to the frequent voltage transitions, as seen from Figure 7(a), which
incur a high transition overhead in energy and time.
5. CONCLUSIONS

In this paper, we discussed the importance of considering com-
puter responsiveness during voltage scaling for interactive appli-
cations. We showed how to track and predict the user-perceived

Table 1: Impact of decay factor w
PAST AVG(3) AVG(7)

Normalized energy consumption 1.22 0.71 0.73
Normalized user-perceived latency 1.41 1.23 1.17
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Figure 7: Performance setting decisions using different values
of w during the execution of TuxRacer
latency for user inputs and utilize it, instead of CPU utilization, to
drive voltage scaling. We considered the tradeoff between energy
consumption and computer responsiveness to enable the voltage
scaling technique to reduce energy consumption more aggressively
than the CPU utilization driven one. At the same time, computer re-
sponsiveness is improved with respect to the CPU utilization driven
one. Experimental results clearly demonstrated the effectiveness
of user-perceived latency driven voltage scaling in reducing en-
ergy consumption, while ensuring good computer responsiveness
for interactive applications. It is worth mentioning that although
the implementation of user-perceived latency driven voltage scal-
ing is based on Linux with the X Window system, the methodology
is extensible to other operating systems as well.
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