
42.4

 696

Frequency-Based Code Placement for Embedded
Multiprocessors

Corey Goldfeder
Columbia University

500 West 120th Street, M.C. 0401
New York, New York, 10027

coreyg@cs.columbia.edu

ABSTRACT
Multiprocessor embedded systems often have processor-local
caches and a shared memory. If the system’s code is available at
design time we can maximize cache hits by rearranging code in
memory so that frequently executed tasks reside in reserved areas
of the caches and are not overwritten by less frequent tasks.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management - Main
memory; C.3 [Special-Purpose and Application-Based
Systems]: Real-time and embedded systems

General Terms
Algorithms, Performance, Design.

Keywords
Embedded Systems, Multiprocessors, Caching, Memory, Code
Placement, Frequent Code

1. INTRODUCTION
A common setup for an embedded system is a system composed
of several commodity processors, each with local cache, sharing a
single main memory. For various reasons, mostly economic, the
processors in embedded systems are often direct-mapped. The
inclusion of more than one processor in an embedded system,
which is likely to be already restricted in terms of power and
memory, creates a host of new problems such as resource sharing
and memory synchronization. This paper focuses on how to
optimally place code in the shared memory. Although an
equivalent problem can be formulated for a single processor both
the problem and its solutions are expressed more naturally in
regards to a multiprocessor system.

The usual relationship between memory and cache is that code is
placed in memory and then dynamically mapped into cache at
run-time. The location of the code in memory determines where it

will map in the cache. With a direct-mapped cache, however, a
different paradigm is possible. Direct mapping is deterministic,
and so we can choose where we wish the task to map to in the
cache and then work backwards and determine a suitable
placement in memory. This is somewhat non-intuitive, but placing
data in the cache first is a useful technique, as it allows us to
avoid collisions between tasks likely to be in the cache at the same
time by ensuring that they map to different cache locations.

1.1 Reserving Cache Lines
The goal of code placement is to ensure that high frequency code
is in the cache as often as possible. Aside from improving the hit
ratio, this has an important side benefit of increasing the energy
efficiency of the entire system, as cache hits consume far less
energy than cache misses [2]. For embedded systems, this energy
savings may be of greater importance than the speedup.

We break code into individual tasks, or sub-programs, which can
fit entirely into a cache. We assume that the system we are
optimizing has been analyzed carefully and that each task has
been assigned a frequency rating based on how often it is likely to
be executed [5]. We then reserve part of the cache for the highest
frequency code so that it is rarely if ever overwritten.

1.2 Prior Work
How much of the cache should be reserved for the high frequency
code? Li and Wolf [3] proposed a system in which the cache is
evenly split between high and low frequency tasks. This
somewhat simplistic heuristic was chosen to enable the algorithm
to do run-time placement. In fact, most of the work done in code
placement has been done either at the run time level or at the
compiler level [4]. Only rarely has code placement been addressed
at the system design level, at which point tasks may be rearranged
(although code within a task may not), and the more flexible
bound on execution time allows for somewhat more complex
solutions. The advantage of design time code placement over
compilation time algorithms is that design time placement does
not alter the size of the code, while compilation time cache-
optimization algorithms may increase code size significantly. A
major goal of this paper is to reduce cache-misses without
significantly increasing the required memory.

This paper proposes an extension of the design-time code
placement algorithm proposed by Parameswaran in [1], and our
problem statement in Section 3 follows the formulation presented
in that work.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.

 697

2. MOTIVATIONAL EXAMPLE
Consider a two-processor system, where each processor has an
instruction cache but both processors share a main memory. We
are given a set of tasks to be run by each processor and a static
task graph, in which each task has a directed edge to any other
task that can possibly follow it in execution order. The weight of
edge (u,v) is the probability that task v will follow task u. From
this graph we can calculate the expected frequency of execution of
each task. Suppose that Processor 1 has a 500 line cache, and
Processor 2 a 1000 line cache, and that the following tasks were
assigned to each processor:

Table 1: Example System Load
 Task # Size Frequency
Processor 1 Task1 300 10
 Task2 400 5
 Task3 200 1
Processor 2 Task4 800 10
 Task5 300 1
 Task6 900 10

So our system has a total of 6 tasks in it. If we place the tasks in
memory first come first served, we will get the following
placement of code in memory, and resulting cache mappings:

Table 2: Unoptimized code placement
 Task Memory Cache Lines
Processor 1 Task1 0-299 0-299
 Task2 300-699 300-499 & 0-199
 Task3 700-899 200-299
Processor 2 Task4 900-1699 900-999 & 0-699
 Task5 1700-1999 700-999
 Task6 2000-2899 0-899

In Processor 1, Task1 has the highest frequency. Suppose it is
executed first, and fills lines 0-299. If Task2 is executed, lines 0-
199 of Task1 will be overwritten, and if Task3 is executed, the
remainder of Task1 will be overwritten. When Task1 is executed,
which we expect to happen frequently, it may not be in the cache
and might to be copied from memory. In fact, there are only 100
lines in the cache of Processor 1 (lines 400-499) that are never
overwritten, and they are not assigned to the highest frequency
task. In Processor 2, there are no lines that are never overwritten.

The algorithms described in this paper suggest an alternate way of
placing this code in memory. We allow each cache to have an
offset which is added to a memory address before it is mapped
into that cache, as will be explained below. Without explaining
the method here, we present an alternative memory table, with
offsets of 400 for Processor 1 and 100 for Processor 2:

Table 3: Optimized Code Placement
 Task Memory Cache Lines
Processor 1 Task1 2100-2399 0-299
 Task2 1700-2099 100-499
 Task3 3200-3399 100-299
Processor 2 Task4 900-1699 0-799
 Task5 2700-2999 100-399
 Task6 0-899 100-999

In this optimized memory layout, the first 100 lines of Task1 and
the last 200 lines of Task3 in the cache of Processor 1 are never
overwritten. The same is true for the first 100 lines of Task4 and
the last 200 lines of Task6 in Processor 2’s cache. This gain
comes at the cost of increased memory fragmentation, with 500
unused lines in the optimized table, necessitating a 17% larger
memory. The algorithm in this paper attempts to minimize
memory bloat, but it cannot be entirely avoided.

3. PROBLEM STATEMENT
Suppose there are n processors labeled each with a cache. The
sizes of the caches need not be uniform, but we assume that only
Level 1 caches are available, both for simplicity and because more
than one level of cache is unusual in the commodity processors
usually used in embedded systems [1]. We also have m tasks, each
with an associated size and frequency. A processor has an
assigned set of tasks, each of which can fit in its cache. When a
task is run it is direct-mapped from memory into the cache of the
processor it will run on. We can relax the direct-mapping
condition slightly by assigning to each cache an offset that is
added to all memory addresses before mapping. Such an offset is
simple to implement, and allows for more powerful algorithms.

For each cache, we wish to reserve for the highest frequency tasks
a maximum number of cache lines to never be overwritten. To
determine how many lines we can possibly reserve, we fill the
cache with as many highest frequency tasks as will fit and call the
total number of cache lines used ‘HighFrequency’. The size of the
largest remaining task limits how many cache lines can be
reserved. Let us call the size of the largest remaining task
‘Largest’ and the size of the second largest remaining task
‘2ndLargest’. For a cache of size ‘CacheSize’, we can reserve
exactly CacheSize - Largest + min(CacheSize - HighFrequency,
Largest - 2ndLargest) cache lines for the high frequency tasks
HighFrequency, and still have room to place the remaining tasks.

Figure 1: Maximum number of never-overwritten cache lines
(the gray areas of the fourth bins are never overwritten)

Addresses in memory that map to the reserved area cannot be used
for low frequency code, and so there will of necessity be unused
gaps between tasks in memory. Tasks from other processors’
tasksets, since they are never written into the current cache, can be
placed into the gap areas. Our goal is to find the mapping of tasks
into memory that has the least total fragmentation in memory
without placing any low frequency code where it would map to
the reserved section of its cache.

3.1 Local Problem vs. Global Problem
We need an algorithm for mapping code into the cache that
maximizes the reserved area. This algorithm is run once for each
cache, and so we refer to it as the local problem. The local
problem is to assign to each task a set of positions in the cache
where it can be mapped without violating the reserved area. We
need a second algorithm to take tasks from all the caches and

 698

place them in the shared memory so that each task maps into a
legal cache position as computed by the local algorithm, and
memory fragmentation is minimized. We call this the global
problem.

3.2 Difficulty of the Problem
If the offsets of all the caches are set to 0 then the global problem
reduces to bin-packing, [1] which is NP-Hard [7]. Assigning an
offset to a cache is equivalent to rearranging the contents of the
bins in the standard bin-packing problem in the middle of
packing, since it alters the set of legal positions where the task
may be placed. Rearranging the bins of the bin-packing algorithm
makes the problem harder, and so the global problem with offsets
is at least NP-Hard as well. The identification of the global
problem (with the offsets set to 0) with bin-packing might imply
that we should employ some form of the best-fit heuristic, which
is known to have a worst-case 22% deviation from the optimal
solution for bin-packing [7]. Unfortunately, the mapping
constraints on the global problem make this standard solution
inapplicable in its proven form.

4. LOCAL PROBLEM SOLUTIONS
The local problem can be solved exactly in θ(nlogn)time. We have
already shown in the problem statement that the maximum
possible size of the reserved area = CacheSize – Largest + min
(CacheSize – HighFrequency, Largest – 2ndLargest)

4.1 Parameswaran’s Solution
Parameswaran in [1] gave an θ(n2) algorithm for the local
problem, which presented two difficulties. First, while it reserves
the CacheSize-Largest area of the cache, it fails to reserve the
min(CacheSize-Frequent, Largest-2ndLargest) area. As well, this
algorithm finds only a single legal position in the cache for each
task, while in fact there may be a range of legal positions.

4.2 Proposed Solution
The algorithm describe below addresses both of these concerns:

▪ Sort the tasks in order of descending frequency
▪ Until the cache is full, allocate the remaining task with the

highest frequency to the first unused cache position
▪ Set the flex value of all the tasks allocated so far to 0
▪ Set HighFrequency = the total size of the placed tasks so far
▪ Sort the remaining tasks in order of descending size
▪ Allocate the largest remaining task so that it maps to the

bottom of the cache, and set its flex to 0
▪ Set Top = the cache position where that task begins
▪ Set Bottom = the maximum of HighFrequency and (Top –

size of the next largest remaining task)
▪ For each remaining task:
 ○ Map the task to Top
 ○ Set the flex of the task to Bottom – Top – (size of the

 task), or to 0 if this is a negative value

This algorithm is θ(nlogn) since unlike Parameswaran’s
algorithm, the final step does not attempt to fit the remaining tasks
into existing bins. The nlogn cost is from sorting.

The flex term introduced in this algorithm is the range of legal
positions for a task so that the task lies between Top and Bottom.

A task will be allowed to map into the cache starting anywhere
from address Top to (Top+flex). By forcing tasks to lie above
Bottom and not just above the actual bottom of the cache, we have
reserved the min(CacheSize-Frequent, Largest-2ndLargest) area.
The never-overwritten code in this area will be from the bottom of
the largest remaining task after the high frequency code has been
placed.

5. GLOBAL PROBLEM SOLUTIONS
After running the local algorithm on each cache, every task has
been mapped to an address in its cache, and assigned a flex, or
legal range that the start address can be shifted downwards by.
The global problem is to place every task in memory so that its
address satisfies the formula:

Equation 1: MemoryAddress = CacheAddress + C *
(CacheSize) + (CacheOffset)

where C is a nonnegative integer, and CacheOffset is an integer in
the range of 0 to CacheSize, referring to the cache associated with
this task. We want to place in memory the tasks from all the
caches, according to the constraints given by the local algorithm,
while minimizing the amount of memory used. The minimization
clause is the difficulty, since given an unlimited amount of
memory the tasks from each processor could be placed far apart
from each other and satisfy the local constraints.

5.1 Choosing an Offset
For each cache there are as many possible offsets as cache lines,
and while we could go through each of them for every cache, we
would have to place every task in memory with each possible
offset for each of the caches to determine which offset is best.
This would take exponential time, so we need to choose an offset
heuristically. If we assume that the largest task in a cache is the
most difficult to place (since it requires the largest available gap
in memory to be placed into) then it might make sense to choose
the offset that helps place the largest task, without considering
whether this is the best offset for the remaining tasks in the
taskset. This is the approach Parameswaran uses, and although we
experimented with several other heuristics it is the approach
which we eventually adopted as well.

5.2 Proposed Solution
In the algorithm proposed in [1], all of the tasks associated with a
particular cache are placed in memory before any tasks from the
next cache, and the algorithm only considers one possible cache
position for each task. The algorithm described here addresses
both of these issues. First, when we place a task we consider the
full range of Top to (Top + flex). Second, we place tasks in
descending order of size, regardless of associated processor.
When implementing the algorithm, this requires some extra care
to ensure that each cache’s offset is properly applied to all tasks in
that cache, since tasks from a given cache are no longer placed at
once. The algorithm is as follows:

▪ Place all of the tasks in a single list and sort in order of
descending size

▪ For each task:
 ○ If this is the first task from its cache to be placed:

▪ Place the task at the start of the first memory
gap large enough to hold it

 699

▪ Solve Equation 1 for the offset term, and set the
CacheOffset of the task’s cache to this value

○ Else
▪ C = 0
▪ Until we find an unused memory gap with a

start address that satisfies Equation 1:
○ Increment C and loop through

CacheAddress = Top to (Top + flex),
testing Equation 1 with each set of values

▪ Place the task at this address

The run time of this algorithm is θ(n2k) where n is the number of
tasks and k is the size of the largest cache. This is because each of
the n tasks may need to be compared to as many as θ(n) gaps in
the worst case where each task creates a new gap when it is
placed, and for each gap the algorithm must consider up to flex
positions, where flex is bounded above by the size of the cache
and therefore by k.

6. SIMULATION AND RESULTS
We chose to test the algorithms on a system with four processors.
The caches were allowed to vary randomly from 1K to 32K in
size, and the number of tasks was varied systematically from 28 to
168. Task sizes were random, but always chosen to fit inside the
cache. The largest task in each cache was given the highest
frequency, to give worst-case performance. We ran the simulation
20 times for each system load and averaged the results. On each
run of the simulation, a random dataset was created and both
Parameswaran’s and our algorithm were run on the same data. We
then calculated the total size of all tasks, which is the minimum
amount of memory needed to hold all the code, and calculated
how much more memory the placement algorithms required. We
give the results in the form of percent wasted memory. The mean
results for 20 runs of the simulation are presented in Figure 2 and
Table 4. Parameswaran’s algorithm is roughly invariant to system
load, while the proposed algorithm improves very fast as system
load grows, performing better on large tasksets than on smaller. In
addition, our algorithm is more consistent, with a smaller standard
deviation than Parameswaran’s algorithm.

Table 4: Overall results
 Parameswaran Proposed
Mean % Wasted Memory 15.815 4.403
Worst Case % Wasted Memory 29.198 13.526
Mean Standard Deviation 4.061 2.018

Figure 2: Average results over 20 runs

7. CONCLUDING REMARKS
Although we focused on embedded multiprocessors, this work has
some broader applications. Large specialized multiprocessor
systems such as scientific clusters are often programmed using a
paradigm called Distributed Shared Memory in which each
processor maintains a local memory, and a logical shared memory
is implemented over the network by having local memories update
each other when necessary. A similar code placement algorithm
for these systems could ensure that code remains in the faster local
memory whenever possible. Even for single processor embedded
systems, our algorithm can serve a useful purpose. Parameswaran
[2] outlines a method for isolating “superloops,” or section of
code which references code within the section frequently but other
code only rarely. A superloop can be placed in memory so that
higher frequency code within the superloop remains in the cache
whenever the superloop is active. In practice, isolating superloops
is very difficult and for a given program may not be possible,
which is one of the reasons why we chose to focus on the
multiprocessor case.

8. ACKNOWLEDGMENTS
My thanks to Dr. Bhaskar Sengupta of ExxonMobil for guiding
me as I researched this problem, and to Dr. Luca Carloni of
Columbia University for his help in assembling this paper.

9. REFERENCES
[1] Parameswaran, S. “Code placement in hardware/software

co-synthesis to improve performance and reduce cost.” In
Proceedings of the Conference on Design, Automation and
Test in Europe. pages 626-632, 2001

[2] Parameswaran, S. “I-CoPES: fast instruction code
placement for embedded systems to improve performance
and energy efficiency.” In Proceedings of the 2001
IEEE/ACM international conference on Computer-aided
design. pages 635-641, 2001

[3] Yanbing, L. and W. Wolf. “A Task-Level Hierarchical
Memory Model for System Synthesis of Multiprocessors.”
In Proceedings of the 34th annual conference on Design
automation - Volume 00. pages 153-156, 1997.

[4] Tomiyama, H. and H. Yasuura. “Size-Constrained Code
Placement for Cache Miss Rate Reduction.” In Proceedings
of the 9th International Symposium on System Synthesis.
pages 96-104, 1996.

[5] McFarling, S. “Program Optimization for Instruction
Caches.” In Proceedings of 3rd International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 183-191, 1989.

[6] Hennessy, J.L. and D.A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers,
Inc. 2nd edition, 1996.

[7] Corman, T., et. al. Introduction to Algorithms. MIT Press,
2001.

[8] Tannenbaum, A. Structured Computer Architecture.
Prentice Hall, Inc. 4th edition, 2001

System Load (Number of Tasks)

%
 W

as
te

d
M

em
or

y

