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ABSTRACT 
Multiprocessor embedded systems often have processor-local 
caches and a shared memory. If the system’s code is available at 
design time we can maximize cache hits by rearranging code in 
memory so that frequently executed tasks reside in reserved areas 
of the caches and are not overwritten by less frequent tasks. 

Categories and Subject Descriptors 
D.4.2 [Operating Systems]: Storage Management - Main 
memory; C.3 [Special-Purpose and Application-Based 
Systems]: Real-time and embedded systems 

General Terms 
Algorithms, Performance, Design. 
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1. INTRODUCTION 
A common setup for an embedded system is a system composed 
of several commodity processors, each with local cache, sharing a 
single main memory. For various reasons, mostly economic, the 
processors in embedded systems are often direct-mapped. The 
inclusion of more than one processor in an embedded system, 
which is likely to be already restricted in terms of power and 
memory, creates a host of new problems such as resource sharing 
and memory synchronization. This paper focuses on how to 
optimally place code in the shared memory. Although an 
equivalent problem can be formulated for a single processor both 
the problem and its solutions are expressed more naturally in 
regards to a multiprocessor system.  

The usual relationship between memory and cache is that code is 
placed in memory and then dynamically mapped into cache at 
run-time. The location of the code in memory determines where it 

will map in the cache. With a direct-mapped cache, however, a 
different paradigm is possible. Direct mapping is deterministic, 
and so we can choose where we wish the task to map to in the 
cache and then work backwards and determine a suitable 
placement in memory. This is somewhat non-intuitive, but placing 
data in the cache first is a useful technique, as it allows us to 
avoid collisions between tasks likely to be in the cache at the same 
time by ensuring that they map to different cache locations.  

1.1 Reserving Cache Lines 
The goal of code placement is to ensure that high frequency code 
is in the cache as often as possible. Aside from improving the hit 
ratio, this has an important side benefit of increasing the energy 
efficiency of the entire system, as cache hits consume far less 
energy than cache misses [2]. For embedded systems, this energy 
savings may be of greater importance than the speedup.  

We break code into individual tasks, or sub-programs, which can 
fit entirely into a cache. We assume that the system we are 
optimizing has been analyzed carefully and that each task has 
been assigned a frequency rating based on how often it is likely to 
be executed [5]. We then reserve part of the cache for the highest 
frequency code so that it is rarely if ever overwritten.  

1.2 Prior Work 
How much of the cache should be reserved for the high frequency 
code? Li and Wolf [3] proposed a system in which the cache is 
evenly split between high and low frequency tasks. This 
somewhat simplistic heuristic was chosen to enable the algorithm 
to do run-time placement. In fact, most of the work done in code 
placement has been done either at the run time level or at the 
compiler level [4]. Only rarely has code placement been addressed 
at the system design level, at which point tasks may be rearranged 
(although code within a task may not), and the more flexible 
bound on execution time allows for somewhat more complex 
solutions. The advantage of design time code placement over 
compilation time algorithms is that design time placement does 
not alter the size of the code, while compilation time cache-
optimization algorithms may increase code size significantly. A 
major goal of this paper is to reduce cache-misses without 
significantly increasing the required memory. 

This paper proposes an extension of the design-time code 
placement algorithm proposed by Parameswaran in [1], and our 
problem statement in Section 3 follows the formulation presented 
in that work. 
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2. MOTIVATIONAL EXAMPLE 
Consider a two-processor system, where each processor has an 
instruction cache but both processors share a main memory. We 
are given a set of tasks to be run by each processor and a static 
task graph, in which each task has a directed edge to any other 
task that can possibly follow it in execution order. The weight of 
edge (u,v) is the  probability that task v will follow task u. From 
this graph we can calculate the expected frequency of execution of 
each task. Suppose that Processor 1 has a 500 line cache, and 
Processor 2 a 1000 line cache, and that the following tasks were 
assigned to each processor: 

Table 1: Example System Load 
 Task # Size Frequency 
Processor 1 Task1 300 10 
 Task2 400 5 
 Task3 200 1 
Processor 2 Task4 800 10 
 Task5 300 1 
 Task6 900 10 

 

So our system has a total of 6 tasks in it. If we place the tasks in 
memory first come first served, we will get the following 
placement of code in memory, and resulting cache mappings: 

Table 2: Unoptimized code placement 
 Task Memory  Cache Lines 
Processor 1 Task1 0-299 0-299 
 Task2 300-699 300-499 & 0-199 
 Task3 700-899 200-299 
Processor 2 Task4 900-1699 900-999 & 0-699 
 Task5 1700-1999 700-999 
 Task6 2000-2899 0-899 

 

In Processor 1, Task1 has the highest frequency. Suppose it is 
executed first, and fills lines 0-299. If Task2 is executed, lines 0-
199 of Task1 will be overwritten, and if Task3 is executed, the 
remainder of Task1 will be overwritten. When Task1 is executed, 
which we expect to happen frequently, it may not be in the cache 
and might to be copied from memory. In fact, there are only 100 
lines in the cache of Processor 1 (lines 400-499) that are never 
overwritten, and they are not assigned to the highest frequency 
task. In Processor 2, there are no lines that are never overwritten. 

The algorithms described in this paper suggest an alternate way of 
placing this code in memory. We allow each cache to have an 
offset which is added to a memory address before it is mapped 
into that cache, as will be explained below. Without explaining 
the method here, we present an alternative memory table, with 
offsets of 400 for Processor 1 and 100 for Processor 2:  

Table 3: Optimized Code Placement 
 Task Memory  Cache Lines 
Processor 1 Task1 2100-2399 0-299 
 Task2 1700-2099 100-499 
 Task3 3200-3399 100-299 
Processor 2 Task4 900-1699 0-799 
 Task5 2700-2999 100-399 
 Task6 0-899 100-999 

 

In this optimized memory layout, the first 100 lines of Task1 and 
the last 200 lines of Task3 in the cache of Processor 1 are never 
overwritten. The same is true for the first 100 lines of Task4 and 
the last 200 lines of Task6 in Processor 2’s cache. This gain 
comes at the cost of increased memory fragmentation, with 500 
unused lines in the optimized table, necessitating a 17% larger 
memory. The algorithm in this paper attempts to minimize 
memory bloat, but it cannot be entirely avoided. 

3. PROBLEM STATEMENT 
Suppose there are n processors labeled each with a cache. The 
sizes of the caches need not be uniform, but we assume that only 
Level 1 caches are available, both for simplicity and because more 
than one level of cache is unusual in the commodity processors 
usually used in embedded systems [1]. We also have m tasks, each 
with an associated size and frequency. A processor has an 
assigned set of tasks, each of which can fit in its cache. When a 
task is run it is direct-mapped from memory into the cache of the 
processor it will run on. We can relax the direct-mapping 
condition slightly by assigning to each cache an offset that is 
added to all memory addresses before mapping. Such an offset is 
simple to implement, and allows for more powerful algorithms. 

For each cache, we wish to reserve for the highest frequency tasks 
a maximum number of cache lines to never be overwritten. To 
determine how many lines we can possibly reserve, we fill the 
cache with as many highest frequency tasks as will fit and call the 
total number of cache lines used ‘HighFrequency’. The size of the 
largest remaining task limits how many cache lines can be 
reserved. Let us call the size of the largest remaining task 
‘Largest’ and the size of the second largest remaining task 
‘2ndLargest’. For a cache of size ‘CacheSize’, we can reserve 
exactly CacheSize - Largest + min(CacheSize - HighFrequency, 
Largest - 2ndLargest) cache lines for the high frequency tasks 
HighFrequency, and still have room to place the remaining tasks. 

 

 

 

Figure 1: Maximum number of never-overwritten cache lines 
(the gray areas of the fourth bins are never overwritten) 

Addresses in memory that map to the reserved area cannot be used 
for low frequency code, and so there will of necessity be unused 
gaps between tasks in memory. Tasks from other processors’ 
tasksets, since they are never written into the current cache, can be 
placed into the gap areas. Our goal is to find the mapping of tasks 
into memory that has the least total fragmentation in memory 
without placing any low frequency code where it would map to 
the reserved section of its cache.  

3.1 Local Problem vs. Global Problem 
We need an algorithm for mapping code into the cache that 
maximizes the reserved area. This algorithm is run once for each 
cache, and so we refer to it as the local problem. The local 
problem is to assign to each task a set of positions in the cache 
where it can be mapped without violating the reserved area. We 
need a second algorithm to take tasks from all the caches and 
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place them in the shared memory so that each task maps into a 
legal cache position as computed by the local algorithm, and 
memory fragmentation is minimized. We call this the global 
problem. 

3.2 Difficulty of the Problem 
If the offsets of all the caches are set to 0 then the global problem 
reduces to bin-packing, [1] which is NP-Hard [7]. Assigning an 
offset to a cache is equivalent to rearranging the contents of the 
bins in the standard bin-packing problem in the middle of 
packing, since it alters the set of legal positions where the task 
may be placed. Rearranging the bins of the bin-packing algorithm 
makes the problem harder, and so the global problem with offsets 
is at least NP-Hard as well. The identification of the global 
problem (with the offsets set to 0) with bin-packing might imply 
that we should employ some form of the best-fit heuristic, which 
is known to have a worst-case 22% deviation from the optimal 
solution for bin-packing [7]. Unfortunately, the mapping 
constraints on the global problem make this standard solution 
inapplicable in its proven form.  

4. LOCAL PROBLEM SOLUTIONS 
The local problem can be solved exactly in θ(nlogn)time. We have 
already shown in the problem statement that the maximum 
possible size of the reserved area = CacheSize – Largest + min 
(CacheSize – HighFrequency, Largest – 2ndLargest) 

4.1 Parameswaran’s Solution 
Parameswaran in [1] gave an θ(n2) algorithm for the local 
problem, which presented two difficulties. First, while it reserves 
the CacheSize-Largest area of the cache, it fails to reserve the 
min(CacheSize-Frequent, Largest-2ndLargest) area. As well, this 
algorithm finds only a single legal position in the cache for each 
task, while in fact there may be a range of legal positions. 

4.2 Proposed Solution 
The algorithm describe below addresses both of these concerns: 

▪ Sort the tasks in order of descending frequency 
▪ Until the cache is full, allocate the remaining task with the 

highest frequency to the first unused cache position 
▪ Set the flex value of all the tasks allocated so far to 0 
▪ Set HighFrequency = the total size of the placed tasks so far  
▪ Sort the remaining tasks in order of descending size 
▪ Allocate the largest remaining task so that it maps to the 

bottom of the cache, and set its flex to 0 
▪ Set Top = the cache position where that task begins 
▪ Set Bottom = the maximum of HighFrequency and (Top – 

size of the next largest remaining task) 
▪ For each remaining task: 
 ○ Map the task to Top 
 ○ Set the flex of the task to Bottom – Top – (size of the 

 task), or to 0 if this is a negative value 

This algorithm is θ(nlogn) since unlike Parameswaran’s 
algorithm, the final step does not attempt to fit the remaining tasks 
into existing bins. The nlogn cost is from sorting.  

The flex term introduced in this algorithm is the range of legal 
positions for a task so that the task lies between Top and Bottom. 

A task will be allowed to map into the cache starting anywhere 
from address Top to (Top+flex). By forcing tasks to lie above 
Bottom and not just above the actual bottom of the cache, we have 
reserved the min(CacheSize-Frequent, Largest-2ndLargest) area. 
The never-overwritten code in this area will be from the bottom of 
the largest remaining task after the high frequency code has been 
placed.  

5. GLOBAL PROBLEM SOLUTIONS 
After running the local algorithm on each cache, every task has 
been mapped to an address in its cache, and assigned a flex, or 
legal range that the start address can be shifted downwards by. 
The global problem is to place every task in memory so that its 
address satisfies the formula: 

Equation 1: MemoryAddress = CacheAddress + C * 
(CacheSize) + (CacheOffset) 

where C is a nonnegative integer, and CacheOffset is an integer in 
the range of 0 to CacheSize, referring to the cache associated with 
this task. We want to place in memory the tasks from all the 
caches, according to the constraints given by the local algorithm, 
while minimizing the amount of memory used. The minimization 
clause is the difficulty, since given an unlimited amount of 
memory the tasks from each processor could be placed far apart 
from each other and satisfy the local constraints.  

5.1 Choosing an Offset 
For each cache there are as many possible offsets as cache lines, 
and while we could go through each of them for every cache, we 
would have to place every task in memory with each possible 
offset for each of the caches to determine which offset is best. 
This would take exponential time, so we need to choose an offset 
heuristically. If we assume that the largest task in a cache is the 
most difficult to place (since it requires the largest available gap 
in memory to be placed into) then it might make sense to choose 
the offset that helps place the largest task, without considering 
whether this is the best offset for the remaining tasks in the 
taskset. This is the approach Parameswaran uses, and although we 
experimented with several other heuristics it is the approach 
which we eventually adopted as well.  

5.2 Proposed Solution 
In the algorithm proposed in [1], all of the tasks associated with a 
particular cache are placed in memory before any tasks from the 
next cache, and the algorithm only considers one possible cache 
position for each task. The algorithm described here addresses 
both of these issues. First, when we place a task we consider the 
full range of Top to (Top + flex). Second, we place tasks in 
descending order of size, regardless of associated processor. 
When implementing the algorithm, this requires some extra care 
to ensure that each cache’s offset is properly applied to all tasks in 
that cache, since tasks from a given cache are no longer placed at 
once. The algorithm is as follows: 

▪ Place all of the tasks in a single list and sort in order of 
descending size 

▪ For each task: 
 ○ If this is the first task from its cache to be placed: 

▪ Place the task at the start of the first memory 
gap large enough to hold it 
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▪  Solve Equation 1 for the offset term, and set the 
CacheOffset of the task’s cache to this value 

○ Else 
▪ C = 0 
▪ Until we find an unused memory gap with a 

start address that satisfies Equation 1: 
○ Increment C and loop through 

CacheAddress = Top to (Top + flex), 
testing Equation 1 with each set of values 

▪ Place the task at this address 

The run time of this algorithm is θ(n2k) where n is the number of 
tasks and k is the size of the largest cache. This is because each of 
the n tasks may need to be compared to as many as θ(n) gaps in 
the worst case where each task creates a new gap when it is 
placed, and for each gap the algorithm must consider up to flex 
positions, where flex is bounded above by the size of the cache 
and therefore by k. 

6. SIMULATION AND RESULTS 
We chose to test the algorithms on a system with four processors. 
The caches were allowed to vary randomly from 1K to 32K in 
size, and the number of tasks was varied systematically from 28 to 
168. Task sizes were random, but always chosen to fit inside the 
cache. The largest task in each cache was given the highest 
frequency, to give worst-case performance. We ran the simulation 
20 times for each system load and averaged the results. On each 
run of the simulation, a random dataset was created and both 
Parameswaran’s and our algorithm were run on the same data. We 
then calculated the total size of all tasks, which is the minimum 
amount of memory needed to hold all the code, and calculated 
how much more memory the placement algorithms required. We 
give the results in the form of percent wasted memory. The mean 
results for 20 runs of the simulation are presented in Figure 2 and 
Table 4. Parameswaran’s algorithm is roughly invariant to system 
load, while the proposed algorithm improves very fast as system 
load grows, performing better on large tasksets than on smaller. In 
addition, our algorithm is more consistent, with a smaller standard 
deviation than Parameswaran’s algorithm. 

Table 4: Overall results 
 Parameswaran Proposed 
Mean % Wasted Memory 15.815  4.403  
Worst Case % Wasted Memory 29.198  13.526 
Mean Standard Deviation 4.061 2.018 

Figure 2: Average results over 20 runs 

7. CONCLUDING REMARKS 
Although we focused on embedded multiprocessors, this work has 
some broader applications. Large specialized multiprocessor 
systems such as scientific clusters are often programmed using a 
paradigm called Distributed Shared Memory in which each 
processor maintains a local memory, and a logical shared memory 
is implemented over the network by having local memories update 
each other when necessary. A similar code placement algorithm 
for these systems could ensure that code remains in the faster local 
memory whenever possible.  Even for single processor embedded 
systems, our algorithm can serve a useful purpose. Parameswaran 
[2] outlines a method for isolating “superloops,” or section of 
code which references code within the section frequently but other 
code only rarely. A superloop can be placed in memory so that 
higher frequency code within the superloop remains in the cache 
whenever the superloop is active. In practice, isolating superloops 
is very difficult and for a given program may not be possible, 
which is one of the reasons why we chose to focus on the 
multiprocessor case. 
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