
Logic Block Clustering of Large Designs for
Channel-Width Constrained FPGAs∗

Marvin Tom
marvint @ ece.ubc.ca

Guy Lemieux
lemieux @ ece.ubc.ca

Dept of ECE, University of British Columbia, Vancouver, BC, Canada

ABSTRACT
In this paper we present a system level technique for mapping large,
multiple-IP-block designs to channel-width constrained FPGAs.
Most FPGA clustering tools [2, 3, 11] aim to reduce the amount
of inter-cluster connections, hence reducing channel width needs.
However, if this exceeds the FPGA’s channel width (a hard con-
straint), then the circuit still cannot be routed. Previous work [11,
12] depopulates logic clusters (CLBs) to reduce channel width. By
depopulating non-uniformly, i.e. depopulate more in hard-to-route
regions, we show a graceful trade-off between channel width and
CLB count. This makes it possible to target specific channel-width
constraints during clustering with minimal CLB inflation. Results
show channel width decreases of up to 20% with a 5% increase
in area. Further decreases of nearly 50% are possible at 3.3 times
the original area. Despite the area increase, this technique creates
routable solutions from otherwise-unroutable circuits.
Categories and Subject Descriptors: B.7.2 [Integrated Circuits]:
Design Aids
General Terms: Algorithms, Design, Experimentation
Keywords: Field-Programmable Gate Arrays (FPGA), Clustering,
Packing, Channel Width Constraints

1. INTRODUCTION
A commercial FPGA family consists of a number of devices,

each with a different logic capacity. Figure 1 illustrates the logic
resources: CLBs and BLEs. Logic capacity is measured by the
number of BLEs, or basic logic elements. Alternatively, it can be
measured by the number of CLBs, or configurable logic blocks,
which are simply fixed-size clusters of BLEs. Device logic capac-
ity is determined by the logical dimensions of the CLB array.

Interconnect capacity is determined by the channel width, i.e. the
number of wiring tracks in each channel. These channels appear
on all four sides of each CLB. Since the same layout tile is used
throughout the FPGA family, the channel width is fixed. This cre-
ates a strict channel-width constraint: if a circuit needs more rout-
ing tracks, it cannot be implemented regardless of available CLBs.
∗Code available at http://www.ece.ubc.ca/∼lemieux/downloads

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

{I shared inputs

N BLEs

BLE

BLE
{

SRAM
bits

0 01

1 10

0 10

1 10

0 11

1 11

N feedback connections

output
k inputs

SRAM bit

D Q

1

k-input LUT

1001

{

bypassable
register

k2
SRAM bits

a) A configurable logic block (CLB) b) A basic logic element (BLE)

Figure 1: A CLB and a BLE

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300 350 400 450 500 550 600 650

R
ou

te
d

C
ha

nn
el

 W
id

th

CLB Count

alu4

tseng
misex3diffeq
s298

ex5p
s38417apex2

seq
bigkey

dsip
s38584des

elliptic

elliptic

apex4

apex4

spla

spla

pdc

pdc

ex1010

ex1010

frisc

frisc

clma

FPGA 1 FPGA 2

NC=16
NC=6

Figure 2: Channel width / CLB count tradeoff (k = 6, NA = 16)

CAD tools should be able to target the channel-width constraint
of an FPGA family, possibly at the expense of using additional
CLBs. Today, it is quite common to specify a timing constraint to
FPGA CAD tools, but it is quite unusual to specify a channel width
constraint (even implicitly). We propose a systematic method for
addressing these channel-width constraints at the clustering stage.

First, we note it is possible to reduce the channel width needs of
a circuit through clustering. Traditional clustering algorithms, such
as T-VPack [2], fully pack the clusters to minimize the total number
of CLBs needed. However, DeHon [6] and Tessier [12] have shown
that the channel width needs of a circuit can be decreased by pack-
ing fewer BLEs into each CLB. The resulting “under-utilization”
of CLBs is known as depopulation.

To see how depopulation works, consider the two large dashed
boxes in Figure 2 representing the logic and routing capacities of
two FPGA devices. These FPGAs contain 16 BLEs per CLB and

726

44.2

http://www.ece.ubc.ca/~lemieux/downloads

60 wiring tracks per routing channel. The channel width needs of
20 MCNC benchmark circuits [4] after clustering (T-VPack) and
routing (VPR) are shown. Notice that circuits with similar CLB
counts can require vastly different channel widths (varying from 25
to 65). Similar results for industrial benchmarks are shown in [9].

FPGA 1 contains 300 CLBs and can implement all circuits in-
side its box. In comparison, FPGA 2 has 600 CLBs and the same
channel-width constraint of 60 because it is based on the same lay-
out tile. Even though it is larger, FPGA 2 is incapable of real-
izing any circuits that require a channel width greater than 60, e.g.
apex4 or elliptic. After depopulation (limiting to 6 BLEs per CLB),
apex4’s channel width shrinks from 62 to 41 tracks. Although the
CLB count increases, it still fits into FPGA 1. More importantly,
apex4 now has a viable, routed solution. Similarly, some circuits
like elliptic can now fit FPGA 2.

The problem with depopulation is that it quickly leads to an in-
flated CLB count. In the example, circuits pdc and clma are too
large for FPGA 2.1 They must be depopulated less to meet the
CLB constraint as well. What is needed is a way to depopulate only
the routing-congested regions of a circuit so CLB count is inflated
as little as possible. We believe such an approach is important for
fitting large System-on-Chip designs onto modern FPGAs.

The primary application of our depopulation technique is to re-
duce the channel width requirements of a circuit so that it can be
mapped to a channel-width constrained FPGA. Rather than depop-
ulate the entire circuit, which would inflate area rather quickly, we
suggest depopulating smaller regions (possibly entire IP blocks)
that are interconnect-intensive.

The secondary application of our depopulation technique is for
FPGA architects designing lower-cost FPGAs. When designing a
new FPGA architecture, it is important to determine a fixed channel
width for the entire family. Our approach allows adoption of a
slightly smaller channel width (perhaps 10%) without a net area
increase. This is done by mildly depopulating the hard-to-route
benchmarks just enough to match the planned CLB array sizes prior
to determining the family’s final channel width.

The remainder of paper is organized as follows. Section 2 de-
scribes previous work in cluster depopulation. Our benchmark cre-
ation strategy is discussed in Section 3. Section 4 discusses the new
clustering method. Results are presented in Section 5, followed by
conclusions in Section 6.

The following terms will be used in this paper:

k LUT size (number of inputs)
NC cluster size of circuit (BLE-limit, max. # used BLEs)
NA cluster size of architecture (# of BLEs per CLB)
I Number of inputs to a cluster

2. PREVIOUS WORK
One of the earliest attempts to balance logic and routing elements

to decrease area was performed by DeHon [6]. However, this anal-
ysis was performed for an FPGA with a binary tree interconnect
structure. In this work, we adopt a mesh interconnect which is
more representative of commercial FPGAs.

Tessier [12] showed that depopulation of clusters can result in
reduced channel widths. The algorithm presented in [12] depopu-
lates each cluster equally so there is a uniform distribution of empty
BLEs across the chip (e.g., NC is fixed). Although this reduces
channel width, it also depopulates regions of the circuit that are not
heavily congested. This leads to unnecessary CLB inflation in these

1In Figure 2, some circuits are depopulated more than necessary.

regions. We suggest using a different NC value for each partition of
the circuit. This NC value may vary between partitions in the circuit
such that routing-congested areas are depopulated more.

Singh [11] presented a clustering algorithm (iRAC) which is very
effective at reducing channel width. iRAC reduces channel width
by identifying low fan-out nets and completely absorbing them into
a cluster. This reduces the total number of external nets, hence re-
ducing the routed channel width. iRAC also limits the number of
inputs to each CLB by using the Rent parameter of the underly-
ing architecture, resulting in solutions that have some depopula-
tion. We have found limiting inputs is ineffective, so we limit BLE
usage. Our technique also differs from [11] by targeting specific
channel-width constraints.

To illustrate that our technique can be used with multiple clus-
tering algorithms, we use both T-VPack and iRAC. We have im-
plemented a replica of iRAC using the seed selection and attraction
functions in [11], but we did not implement the Rent-based input-
limiting function. Despite this, our iRAC replica achieves within
2% of [11] in the number of external nets. All of our experiments
were carried out using both T-VPack and the iRAC replica.

3. BENCHMARK CREATION
Current FPGAs can implement multi-million gate System-on-

Chip (SoC) designs. Unfortunately, large SoC designs are not avail-
able for academic research. Available benchmarks are small and do
not have obvious IP block partitions. However, FPGA researchers
need large circuits to investigate new architectures and CAD algo-
rithms. Hence, we created our own synthetic benchmark circuits to
cope with this problem.

SoC designs consist of multiple IP blocks integrated together.
The IP blocks can be widely varied in their function and purpose,
and are often worked on by different designers. During develop-
ment, each IP block might be individually placed and routed on
an FPGA several times. As well, these different blocks may have
different interconnect demands, just like those shown in Figure 2.

To mimic a large SoC, we create meta-circuit benchmarks by
treating the largest 20 MCNC circuits as individual IP blocks of a
common SoC. Each MCNC circuit is a unique, self-contained func-
tion with an appropriate I/O count, just like an IP block. Some of
these MCNC circuits (e.g. bigkey) have many inputs and outputs,
making them similar to “glue logic” that connects other IP blocks
together. To avoid creating combinational loops, a flip-flop is added
to the primary outputs of each MCNC circuit. Then, we stitched
these together into the following three different meta-circuits:

• Independent. Each primary input and primary output of
each IP block remains a primary input and primary output of
the meta-circuit. There is no interaction between IP blocks.

• Pipeline. The IP blocks are placed in a random, sequential
order, each representing stages in a pipeline. Additional (left-
over) inputs/outputs between pipeline stages become primary
inputs/outputs of the meta-circuit.

• Clique. The outputs of each individual IP block are uni-
formly distributed to the inputs of all other circuits in the
meta-circuit. The connections are made to encourage as
much inter-block communication as possible.

When stitching, precise output-to-input connections are assigned
once randomly and held constant for all benchmarks created. Only
connections with fan-out of 1 are formed. We connect only to the
IO boundaries and not any internal nodes of the IP blocks.

727

Alternatively, we could have used synthetic-circuit generating
techniques [7, 8, 13]. These techniques are good for cloning ex-
isting circuits: they typically work by top-down partitioning or
bottom-up clustering of modules and adding nets between the mod-
ules while enforcing stochastic interconnect parameters. Unfortu-
nately, we do not have any initial SoC designs to clone. Also, we
believe “scaling up” a single IP block to mimic a large SoC design
is not realistic: it ignores the natural efficiency of design partition-
ing and the well-defined IO boundaries of each IP block.

We could improve our random-assignment stitching by applying
the published synthetic techniques at the top level. This was not
done due to time constraints. Our primary concern was to create a
large circuit with varying interconnect usage among the IP blocks
to determine whether our depopulation approach is useful.

Experiments in this paper were carried out using all 3 meta-
circuits. We believe that large SoC designs would contain a mix-
ture of these 3 styles, but the single most-representative style would
have more inter-block connections like the Clique circuit.

4. CLUSTERING METHOD
This section describes the new clustering approach. We enforce

BLE-limits during clustering, profile each IP block’s channel width
needs for different depopulation levels, and choose the one with
the fewest CLBs. Then we predict the overall area based on the
assumption that the channel width of the meta-circuit will match
the most-congested IP block. This prediction shows a large, flat
area region where CLB count can be safely traded off for area.

4.1 Depopulation Strategies
We evaluated the effectiveness of two different CLB depopula-

tion methods. The first method, similar to [12], is to strictly limit
the number of BLEs that can be packed into a CLB (BLE-limit).
The second method, similar to [11], is to strictly limit the number
of inputs into a CLB (input-limit). Figure 3 shows the routed chan-
nel widths for circuit clma after implementing the two limits in
both clustering algorithms. Other circuits produce similar results.

Figure 3 shows that the BLE-limit method exhibits a monoton-
ically increasing relationship between the BLE-limit size and the
routed channel width. Hence, BLE-limit can be effectively used
to decrease routed channel widths. Surprisingly, the input-limit
approach did not exhibit this same predictable relationship. This
contradicts traditional thinking that reducing inputs is an effective
way to reduce channel width. Hence, we adopted the BLE-limiting
technique.

4.2 Channel-width Profile of IP Blocks
For FPGA designs that contain multiple IP blocks, we hypothe-

sized that the channel width needed to route will be similar to the
IP block with the highest channel width needs. That is, the other IP
blocks do not temper the channel width needs of the hard-to-route
IP block. Although this is just a first-order approximation that ig-
nores the effects of inter-block communication, we have found it
to be a good estimate of the final routed channel width. Hence, we
first develop a channel-width profile of each IP block. Then, we
select the depopulation level needed by each IP block to meet the
overall channel-width constraint.

The 20 MCNC benchmark circuits were synthesized and tech-
nology mapped using FlowMap [5] and FlowPack. A LUT size of
k = 6 was used for improved delay [10]. The circuits were clus-
tered using both T-VPack [2] and our iRAC replica and then placed
and routed using VPR v4.30 using length 4 wires [2]. We placed
and routed the circuits for cluster sizes NC = 2 to 16. The number
of inputs used is I = k(NC +1)/2 [1].

 30

 40

 50

 60

 70

 80

 90

 100

 110

 2 4 6 8 10 12 14 16

 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54

R
ou

te
d

C
ha

nn
el

 W
id

th

Cluster Size (BLE-Limit)

Number of Inputs (Input-Limit)

Input-limited T-VPack
Input-limited iRAC Replica
BLE-limited T-VPack
BLE-limited iRAC Replica

Figure 3: Input- and BLE-limits during clustering

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18

R
ou

te
d

C
ha

nn
el

 W
id

th

Cluster Size, NC

T-VPack clma
iRAC Replica clma
T-VPack tseng
iRAC Replica tseng

Figure 4: Circuit, algorithm, and NC impact

Figure 4 shows the channel width needs of two circuits as the
cluster size NC is increased. If a channel-width constraint of 60 is
imposed with T-VPack, a cluster size NC ≤ 6 is required to route
clma. We say 6 is the maximal cluster size for clma at the given
channel-width constraint. In contrast, the maximal cluster size for
tseng is 16 for the same constraint.

Using an architecture with a CLB size of NA = 16, we set 11
different channel-width constraints and determined these maximal
cluster sizes for each IP block using both T-VPack and our iRAC
replica. T-VPack results for some circuits are shown in Table 1.
Channel-width constraints below 45 were not possible because
some circuits could not be depopulated enough to route with such
a small channel width. Channel-width constraints greater than 95
were not interesting because all CLBs were fully populated.

4.3 Non-uniform Clustering of Meta-circuit
The meta-circuit is formed by stitching together individual clus-

tering solutions of each IP block. This allows us to depopulate only
the routing-intensive ones. Although this stitching also precludes
some inter-block optimizations, this should have little impact if the
IP blocks are sufficiently large enough. Also, clustering individu-
ally preserves each IP block in a form that more closely resembles
how each was developed and tested by separate designers prior to
integration.

728

Channel-width Constraint
Circuit 45 50 55 60 65 70 75 80 85 90 95
clma 3 5 5 6 8 10 11 12 14 15 16
dsip 6 13 16 16 16 16 16 16 16 16 16
frisc 4 5 7 7 9 10 13 15 16 16 16
spla 5 6 8 11 13 16 16 16 16 16 16

tseng 16 16 16 16 16 16 16 16 16 16 16

Table 1: Maximal NC cluster sizes from T-VPack

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 40 45 50 55 60 65 70 75 80 85 90 95 100
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

To
ta

l N
um

be
r o

f C
LB

s

B
LE

 U
til

iz
at

io
n

Channel Width Constraint

BLE Utilization, Non-uniform
BLE Utilization, Uniform
Num CLBs, Uniform
Num CLBs, Non-uniform

Figure 5: CLB count and BLE utilization with T-VPack

When clustering the IP blocks, we have two choices for the clus-
ter size NC with a given channel-width constraint:

• Uniform (Minimum) Cluster Size. Depopulate all of the IP
blocks to the same value of NC, the minimum of the maximal
cluster sizes for all IP blocks. This is similar to [12] which
also uses uniform depopulation of clusters.

• Non-uniform (Maximal) Cluster Size. Depopulate the IP
blocks by different amounts, using the maximal cluster size
for each one.

For each of the 11 constraints in Table 1, we generated a Uni-
form meta-circuit and Non-uniform meta-circuit. This was also
repeated for the iRAC clustering solutions.

As discussed earlier, the Uniform meta-circuit will contain more
CLBs than necessary and results in lower BLE utilization. Fig-
ure 5 shows the total CLBs and BLE utilization obtained from the
meta-circuits produced from T-VPack clusterings. Although not
shown, similar results were obtained using iRAC. It is clear from
Figure 5 that Non-uniform clustering of the IP blocks significantly
improves both BLE utilization and CLB count. Hence, we adopt
this approach for the remainder of the paper.

4.4 Area Prediction
The change in CLB count and the channel-width constraint can

be used to roughly predict the overall impact on area. Assuming
that routing consumes approximately 70% of the total FPGA area,
and logic consumes the remaining 30%, the predicted area can be
expressed as a factor of the original area:

Predicted Area Factor =

(

Wdepop
Wfull

RF+LF

)

CLBdepop
CLBfull

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 40 45 50 55 60 65 70 75 80 85 90 95 100

A
re

a
Fa

ct
or

Channel Width Constraint

Predicted Uniform
Routed Non-uniform Clique
Predicted Non-uniform

Figure 6: Predicted area with T-VPack

where:

Wdepop Channel width constraint (depopulated)
Wfull Original channel width (fully populated)

RF Routing fraction (=0.7)
LF Logic fraction (=0.3)

CLBdepop Total number of CLBs (depopulated)
CLBfull Original number of CLBs (fully populated)

Figure 6 shows the predicted area factor for the T-VPack Non-
uniform and Uniform meta-circuits. For example, it is predicted
that a channel-width constraint of 75 for Non-uniform lowers area
by 5% compared to the original fully-populated version with a
channel width of 95. From this figure, we see how Uniform clus-
tering is ineffective: it quickly leads to an area increase. In contrast,
the Non-uniform approach area is relatively flat from 65–95. This
suggests we can aggressively apply channel-width constraints with
little impact on overall area.

Also shown in Figure 6 is the actual area overhead obtained us-
ing VPR after routing the Non-uniform Clique meta-circuit. The
actual area is higher than the predicted area, but it still shows a
substantially flat area response for channel widths of 75–95.

5. RESULTS
The circuit stitching program was used to create meta-circuits for

each of the channel-width constraints listed in Table 1. The target
architecture has a LUT size of k = 6, cluster size of NA = 16, and
I = 51. We also carried out the same experiment with NA = 10,
I = 33 and observed similar results. These NA values were chosen
to match cluster sizes of Altera’s Stratix II [10] and Cyclone II.

In total, 66 large netlists were created and placed using VPR
(11 channel width constraints, 3 meta-circuits, using both T-VPack
and the iRAC replica). We expect that large SoC designs will be
floorplanned prior to the final placement process, but VPR does not
support floorplanning. Instead, it starts with a random placement
of all CLBs and uses simulated-annealing to find a minimum-cost
placement. Interestingly, VPR was able to generate solutions that
appear to be floorplanned. This reduced our need to impose an
artificial floorplan on the design a priori. Figure 7 shows a VPR
screen shot after placement. We have edited this figure to highlight
the IP block locations and to show the amount of depopulation.

Next, the placed netlists were routed using VPR. While routing,
the channel width was continuously reduced until the circuit be-
came unroutable. This produced the final maximum routed channel

729

Figure 7: VPR placement of Non-uniform Clique with T-VPack

width.2 The maximum channel width results for T-VPack and the
iRAC Replica versions of Clique are shown in Figure 8.

The results show that the maximum routed channel width was
slightly higher than what was imposed by the channel-width con-
straint. This is expected, as the channel-width constraint ignores
the effects of inter-block communication and I/O padframe ac-
cess. The most important result is that the routed channel width
decreases as the channel-width constraint is reduced.

Figure 8 shows that channel width decreases of almost 50% are
possible with Clique. Although this decrease comes with a large
overall area penalty (2.3x from Figure 6), it may be the only viable
solution to users of channel-width constrained FPGAs.

The same experiments were repeated for Independent and
Pipeline. Figure 9 shows the maximum routed channel width of
Pipeline produced from the iRAC replica. Here, we note that the
maximum channel width gets worse as channel-width constraints
are imposed. Similar results were obtained with T-VPack, and also
with Independent. This is not a failing of our clustering approach,
but a limitation of the interactions between the benchmark, VPR
placement, and the underlying FPGA architecture. Specifically, we
found that the IO-intensive IP blocks were strongly attracted to the
IO padframe during placement and stretched into highly rectangu-
lar shapes. This caused severe localized congestion in the routing
channels nearest to the padframe. This can probably be solved,
so we calculated the average channel width of all routing channels
and show this in Figure 9. The average channel width still tracks the
channel-width constraint, suggesting that our approach is viable.

Table 2 shows a summary of the best channel width decreases
that were obtained for each benchmark circuit. Small decreases of
0–20% are possible with only 5% increase in area. Large decreases
of nearly 50% are possible with up to 3.3 times overall area. Again,
although this is a high area cost, it may be the only viable solution
in a real FPGA device where hard channel-width constraints are
imposed.

2It is a maximum because the routing solution uses at most this
many routing tracks in each of the channels.

 40

 50

 60

 70

 80

 90

 40 45 50 55 60 65 70 75 80 85 90 95

R
ou

te
d

C
ha

nn
el

 W
id

th

Channel Width Constraint

iRAC Replica (maximum)
T-VPack (maximum)

Figure 8: Channel width of Non-uniform Clique

 40

 50

 60

 70

 80

 90

 40 45 50 55 60 65 70 75 80 85 90 95

R
ou

te
d

C
ha

nn
el

 W
id

th

Channel Width Constraint

iRAC Replica (maximum)
iRAC Replica (average)

Figure 9: Channel width of Non-uniform Pipeline

In some cases, only small decreases in maximum channel width
were achievable. As explained earlier, this is because some IP
blocks introduce heavy congestion at the periphery due to high IO-
pad needs. Instead, Table 2 also shows the average channel width
required. The average channel width can be reduced by up to 50%
using our depopulation technique. For this average width to be-
come a real savings, the placement tool and architecture must be
tuned to avoid the hotspots that are imposed by our benchmark.

Figure 10 shows the critical-path delay results. Critical-path de-
lay should gradually increase as more depopulation is applied. In
general, delay does seem to follow this trend, but it does tend to
jump around. This “delay noise” appears to result from instability
in the placement. As depopulation is applied, the VPR placement
engine keeps IP blocks together, but sometimes their location in the
floorplan is shifted significantly relative to other IP blocks. This
caused the critical path to sometimes relocate from within an IP
block (which gradually degrades as depopulation is applied) to con-
nections between IP blocks (which introduces large delay jumps).
Imposing a pre-defined floorplan may help reduce this “noise” in
large designs.

Figure 10 also shows the average wirelength per net. Average
wirelength per net increased as more depopulation is applied. This
is expected because an increase in CLB count must also increase
average distance traveled. Also, depopulating will cause connec-

730

Channel Width Decreases
Clustering (<1.05x area) (2.3x–3.3x area)

Circuit Tool MaxW AvgW MaxW AvgW
Clique T-VPack 20% 14% 49% 47%

iRAC Rep. 5% 6% 26% 38%
Indep- T-VPack 10% 9% 18% 44%
endent iRAC Rep. 2% 3% 14% 46%

Pipeline T-VPack 11% 9% 24% 44%
iRAC Rep. 0% 1% 1% 39%

Table 2: Best reductions in channel width

 20

 30

 40

 50

 60

 70

 80

 90

 100

 35 40 45 50 55 60 65 70 75 80 85 90 95 100
 13

 14

 15

 16

 17

 18

 19

 20

 21

C
rit

ic
al

 P
at

h
D

el
ay

 (n
s)

A
vg

. R
ou

te
d

W
ire

le
ng

th
 p

er
 N

et
 (#

 C
LB

s/
ne

t)

Channel Width Constraint

CP T-VPack
CP iRAC Replica
Avg. WL/Net T-VPack
Avg. WL/Net iRAC Replica

Figure 10: Critical-path delay for Clique

tions that were previously internal to a CLB (hence, ignored) to be-
come external nets with a measurable distance. This slightly tem-
pers the increase in average wirelength.

Notice that iRAC replica produces a higher average wirelength
than T-VPack. However, the total wirelength was lower and the
critical-path delay results were similar.

6. CONCLUSIONS
In this paper we have proposed a system level technique for map-

ping large system-on-chip (SoC) designs to channel-width con-
strained FPGAs. In particular, the method helps fit hard-to-route
circuits into FPGAs that have narrow channel widths at the expense
of using more CLBs. Since larger devices with more CLBs are usu-
ally available, this is a practical trade-off.

We have observed that depopulating CLBs (i.e., not filling them
to capacity) is a very effective way to reduce channel width needs
of a circuit. Limiting the number of BLEs in a CLB that are used is
much more effective than limiting the number of inputs to a CLB.

It is important to apply Non-uniform depopulation when clus-
tering. Otherwise, area increases very rapidly and limits the useful-
ness of the approach. This was demonstrated using a simple area
model.

We have demonstrated that it is sufficient to selectively depopu-
late parts of a large circuit that would otherwise have routing con-
gestion. We depopulate the most routing-intensive IP blocks until
the routing demands of those blocks are comparable to the demands
of the other blocks. This way, channel width can be reduced by 0–
20% with less than 5% increase in area. By continuing to depopu-
late more IP blocks, we can continue to decrease channel width by
about 50% at the expense of more CLBs. Overall, this uses up to
3.3 times the original area, but it may be the only viable solution in

a real FPGA device where hard channel-width constraints are im-
posed. By purchasing an FPGA device with higher logic capacity,
designs which are otherwise unroutable can be made routable.

Future work is being expanded on three fronts. First, we are
applying this technique to a commercial Bluetooth SoC. Second,
we are attempting to automate this approach into the CAD flow.
Third, we are attempting to address the VPR placement problem
that causes the channels near the padframe to become overly con-
gested.

7. ACKNOWLEDGMENTS
Thanks to Edmund Lee for his assistance. We are grateful for the

use of WestGrid3 computing resources.

8. REFERENCES
[1] E. Ahmed and J. Rose. The effect of LUT and cluster size on

deep-submicron FPGA performance and density. In Int’l
Symp. on FPGAs, pages 3–12, 2000.

[2] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD
for Deep-Submicron FPGAs. Kluwer Academic Publishers,
Boston, 1999.

[3] E. Bozorgzadeh, S. Ogrenci-Memik, et al. Routability-driven
packing: Metrics and algorithms for cluster-based FPGAs.
Journal of Circuits, Systems, and Computers, 13(1):77–100,
February 2004.

[4] Collaborative Benchmarking Laboratory. LGSynth93 suite.
North Carolina State University.

[5] J. Cong and Y. Ding. FlowMap: An optimal technology
mapping algorithm for delay optimization in lookup-table
based FPGA designs. IEEE Trans. on Computer-Aided
Design, pages 1–12, January 1994.

[6] A. DeHon. Balancing interconnect and computation in a
reconfigurable computing array. In Int’l Symp. on FPGAs,
pages 69–78, 1999.

[7] M. Hutton, J. Rose, and D. Corneil. Automatic generation of
synthetic sequential benchmark circuits. IEEE Trans. on
Computer-Aided Design, 21(8), August 2002.

[8] P. Kundarewich and J. Rose. Synthetic circuit generation
using clustering and iteration. IEEE Trans. on
Computer-Aided Design, 23(6), June 2004.

[9] P. Leventis, M. Chan, et al. Cyclone: A low-cost,
high-performance FPGA. In IEEE Custom Integrated
Circuits Conference, San Jose, CA, September 2003.

[10] D. Lewis, E. Ahmed, et al. The Stratix II logic and routing
architecture. In Int’l Symp. on FPGAs, Monterey, CA,
February 2005.

[11] A. Singh and M. Marek-Sadowska. Efficient circuit
clustering for area and power reduction in FPGAs. In Int’l
Symp. on FPGAs, pages 59–66, 2002.

[12] R. Tessier and H. Giza. Balancing logic utilization and area
efficiency in FPGAs. In Int’l Workshop on Field
Programmable Logic and Applications, 2000.

[13] P. Verplaetse, D. Stroobandt, and J. van Campenhout.
Synthetic benchmark circuits for timing-driven physical
design applications. In Int’l Conference on VLSI, pages
31–37, Las Vegas, NV, June 2002.

3WestGrid is funded in part by the Canada Foundation for Inno-
vation, Alberta Innovation and Science, BC Advanced Education,
and the participating research institutions. WestGrid equipment is
provided by IBM, Hewlett Packard and SGI.

731

