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ABSTRACT 

A new automatic IC mask layout code is described 
which avoids most of the problems inherent in the 
present generation of layout codes such as lack of 
flexibility~ inefficient use of area, and restricted 
design complexity. The structured hierarchical lay- 
out approach, construction graphs, and placement and 
routing algorithms are outlined. 

INTRODUCTION 

Computer aids have been used for a number of years 
in the design and layout of custom integrated circuit 
(IC) masks (Refs. I-5). These aids range from the use 
of interactive graphics systems to sets of programs 
designed to run in the batch mode on a large computer. 
Semiconductor manufacturers designing IC's with large 
production volumes have usually employed manual layout 
methods and have restricted the use of computer aids 
to digitizing and editing in the final phase of the 
design sequence. Although this approach usually leads 
to high design costs and long design cycles, the final 
circuit can be inexpensively manufactured because of 
the small chip size. An intermediate approach is the 
semiautomatic design aid. Typically, these programs 
require manual assistance to complete an IC design and 
have placement and routing algorithms which can be 
invoked by the user for sections of the total layout 
problem. At the opposite end of the design spectrum, 
designers involved with low production volumes have 
often relied on automatic design aids which produce 
circuit masks based on the use of a predefined library 
of circuit modules or cells and a circuit connection 
description. With the increasing emphasis on the use 
of custom IC's for low volume applications, the use 
of computer aids for the automatic layout of IC masks 
becomes increasingly important in minimizing the 
design cycle and development cost. 

For circuits containing approximately 500 gates 
and few restrictions regarding chip area, several 
automatic IC layout programs can rapidly produce error 
free designs at low cost. However, there are a number 
of deficiencies in the present codes. These include: 
lack of flexibility, inefficient use of silicon area, 
and limitation in circuit complexity. The mask lay- 
outs produced using computer aids are characterized 
by the use of standard cells placed in rows. This 
ordered arrangement does not allow easy incorporation 
of design requirements such as special cell or pad 
placement or use of special macrocells such as ROMs 
and RAMs. These non-standard layouts usually require 
the manual addition and interconnection of the special 
cells using an interactive graphics system which is 
time consuming and can result in the introduction of 
errors. The inefficient use of silicon area produced 
by the regularity and generality required in cell de- 
sign and the restriction of cell placement to rows can 
lead to long interconnection distances and use of ad- 
ditional silicon area. Another important deficiency 
is the limitation on chip complexity imposed by the IC 

*This work was supported by the U.S. Dept. of Energy, 
Contract AT(29-I)-789. 

206 

layout programs. The present limit is on the order 
of i000 equivalent gates. With the continuing de- 
crease in design rule tolerances made possible by 
improved circuit fabrication methods, the production 
of Very Large Scale Integrated (VLSI) circuits in 
the range of 10,000 to 409000 equivalent gates is 
possible and the present design aids and methods are 
becoming outdated. The present layout codes also 
tend to inhibit the design process rather than en- 
couraging successive refinement in a design. This 
does not prevent the automatic layout of a Io~ com- 
plexity chip but may prevent the successful design 
of a VLSI circuit. 

SICLO Th~PS goal for the new automatic layout code, 
(Sandia Integrated Circuit Layout Program 

System) is to avoid the problems noted above, provide 
flexlhl]ity for designing IC's using a variety of 
different technologies, and provide the basis neces- 
sary to design highly complex chips bordering on VLSI 
complexity. The code has been designed to provide 
automatic clrcu~t layout with manual overr~de to 
provide various degrees of user interaction with the 
layout process and to run within the batch mode for 
a variety of computer systems. 

This paper outlines the important algorithms 
used in the SICLOPS code and is divided into three 
major sections. The first section describes the ar- 
chitecture and building blocks for the layout pro- 
gram. The second section describes layout methods 
using standard cells and the third section describes 
the general cell assembly design. 

STRUCTURED DESIGN ARCHITECTURE 

To achieve the goals outlined in the previous 
section and to provide the capability for designing 
highly complex chips, an ordered design process must 
be introduced. Circuits containing tens of thousands 
of equivalent gates are several orders of magnitude 
larger than circuits which can be easily compre- 
hended. For circuits of this size, design techniques 
are required to reduce the level of detail considered 
during each step of the design to a manageable size. 
In drawing an analogy between the design of a large 
software program and the layout of the VLSI circuit, 
structured design methods must be used (Refs. 7-9). 
For example, hierarchical decomposition or parti- 
tioning must be used to reduce the system function 
into tractable module sizes. Bas~cally, this method 
reduces to top-down circuit partitioning and initial 
layout and a bottom-up circuit layout implementation 
at each level of hierarchy. By considering only the 
subfunction to be implemented and interface inter- 
connections, the degree of circuit complexity for 
each module design can be reduced to a level consis- 
tent with the available design capability. 

Modular Layout Approach 

Although the present IC layout programs are generally 
restricted to the use of standard cell building 
blocks placed in rows, the SICLOPS layout philosophy 



departs from this rigid order and approachs the flex- 
ibility provided by manual chip layout where module 
placement is not restricted to rows or columns. This 
approach allows arbitrary size rectangular modules to 
be placed in an optimum layout configuration and al- 
lows module interconnection via a number of irregu- 
larly shaped interconnection regions. 

One of the key generalizations incorporated in 
SlCLOPS is the recursive use of modules to solve the 
problems of design complexity and actual design pro- 
cess. In the context used in SlCLOPS, a module usu- 
ally performs a specific circuit function and is de- 
fined in terms of lower level modules and inter- 
connection regions. The modules are nested to im- 
plement a design of any complexity. By considering 
only the function to be implemented and the sub func- 
tions along with interface connections, the degree of 
complexity during each module design can be reduced 
to a level consistent with the available design cap- 
ability and designer understanding. This capability 
permits many of the same algorithms to be used at 
each recursion level and encourages the designer to 
use an orderly design process such as hierarchical 
decomposition and successive layout approximations. 

Building Blocks 

A number of fundamental building blocks and as- 
semblies are required to implement a general IC lay- 
out. For the fundamental blocks consisting of stan- 
dard cells, macro cells, and bonding pads, the layout 
program requires only the outline dimensions and lo- 
c~tions of the input and output connections. Funda- 
mental blocks are grouped together by the program and 
interconnected to form assemblies. 

One fundamental block is the standard cell. 
Standard cells are rectangular and may have input and 
output connections on one or opposite sides. The 
cells are uniform in height and vary in width as re- 
quired to implement the required circuit function. 
For cells with connections on two sides, an individual 
connection may, but need not, be repeated on both 
connection sides. Power and phase connections are 
routed to the ends of the cell row by the layout pro- 
gram; the distribution of these signals in the inter- 
ior cells of a row is provided by the cell design. 

Standard cells are grouped together and inter- 
connected to form a standard cell assembly. One or 
more cell rows are contained within the assembly and 
in general, each assembly contains input/output ter- 
minals on all four sides of the module. For an as- 
sembly consisting of a single row of cells, the posi- 
tion of the terminals is determined by the cell place- 
ment in the row. For assemblies containing several 
rows of cells, the terminals contained on the sides 
parallel to the cell rows are determined by the ter- 
minals on the outer cell rows. For the other two 
sides, the terminals are located at the termination 
of the tracks in the interconnection routing channels. 
In general, an assembly is rectangular in shape. 

Bonding pads are special standard cells. The 
bonding pad cells range from simple metal shapes used 
to provide external connections to the chip circuit 
to complex input pads containing static charge pro- 
tection and output pads containing buffer devices to 
provide the necessary signal drive for use in cir- 
cuitry external to the IC. 

Bonding pads are grouped together in rows to form 
a bonding pad assembly. The number of bonding pad 
assemblies placed end to end on the side of a chip is 
limited only by the physical dimension of the chip. 
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The spacing between pads may be varied as required to 
match the external package bonding requirements. 

Another fundamental cell is the macro cell. 
Typically, the macrocells consists of a custom layout 
(usually handcrafted) designed to perform a specific 
function. These cells may have an arbitrary rectan- 
gular size and shape and may contain input/output con- 
nections on one to four sides. Power and phase sig- 
nals must be provided as part of the standard inter- 
connection specification for the larger assembly con- 
taining the macrocell. 

General cell assemblies are the highest level blocks 
supported by the layout code. The general cell as- 
sembly may consist of combinations of standard cell 
assemblies~ macrocells, standard cells, or lower level 
general cell assemblies. Use of the general cell 
assembly in a recursive sequence allows very large 
assemblies to be defined. 

An IC chip is a complete circuit layout. The chip 
contains a general cell assembly, one or more bonding 
pad assemblies and a number of chip support cells and 
entities such as masking borders, alignment keys~ 
test structures and identification markings. All of 
these chip support functions are placed by the layout 
code. 

The SICLOPS input language used to describe the 
above modules is outlined in Reference 6. 

Examples of Structured Layout 

A general cell assembly is shown in Figure I. 
Each of the modules in the assembly can correspond to 
macrocells, standard cell assemblies or other smaller 
general cell assemblies. In general, terminals may 
be located on all four sides of each module. The 
modules can assume any orientation within the 
assembly as determined by the placement algorithms. 
The routing channels between modules may be input by 
the user or determined by the program and are used in 
constructing position and channel intersection graphs 
described later. 

Figure I. General Cell Assembly Containing 12 
Modules. One net has been routed as shown. 

A complete layout for a chip, following the structured 
format, is shown in Figure 2. This chip contains one 
general cell assembly, several bonding pad assemblies 
and the associated support entities. The general cell 
assembly, in turn~ contains a smaller general cell as- 
sembly (containing a macrocell and two standard cell 
assemblies)~ a standard cell assembly, and a macro- 
cell. The nesting of assemblies can be implemented, 
theoretically~ to any depth, thus permitting the de- 
sign of an arbitrarily complex chip. 
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Figure 2. Entire Layout for an IC. The layout con- 
tains one general cell assembly and four bonding pad 
assemblies. 

matic code, extension of channel routing algorithms, 
and use a figure of merit to optimize the layout based 
on modul'e width and height. 

CHIF' 

a b c 

In each of the above designs, the designers can 
interface with the layout program at a variety of 
levels. At the most detailed level of interaction~ 
the designer may implement the logic in several blocks 
of custom macrocells and use the computer aids to 
perform the interconnection routing. For this prob- 
lem, the designer specifies the interconnection and 
approximate size of the macrocells and makes several 
SICLOPS runs to determine the best shape for the chip 
and the approximate placement of the macrocells. 
After determining the optimum shapes for the macro- 
cells, the cells can be designed on an interactive 
graphics system, and a final SICLOPS run executed to 
incorporate the macrocells into the complete chip 
layout. 

For extremely complex chip layouts such as those 
encountered in VLSI circuits, the designer uses re- 
cursive hierarchical decomposition to reduce the sys- 
tem to small modules. For example, the designer par- 
titions the total system or circuit into first level 
subsystems, specifies the interconnection of the sub- 
systems and makes several SICLOPS runs to obtain the 
general placement and shape for each subsystem. The 
subsystems are, in turn, partitioned into smaller 
modules until the entire system is defined in terms 
of either standard cells or macrocells. At this 
point, a bottom up implementation process can be used, 
since block sizes and input/output connection loca- 
tions are known. The chip design is complete when 
the top level is reached. 

Structure Tree 

"l~e implementation of the hierearchical structure 
in the design of an IC is accomplished using a struc- 
ture tree. A structure tree for the chip layout in 
Figure 2 is shown in Figure 3. The largest module 
being designed is represented as the trunk and suc- 
cessive submodules are represented as smaller and 
smaller branches. For an IC chip, the trunk repre- 
sents the entire chip while the branches are denoted 
by general cell assemblies, macrocells, or standard 
cell assemblies. 

STANDARD CELL ASSEMBLY IMPLEMENTATION 

The standard cell assembly in SICLOPS is com- 
posed of standard cells placed in rows with routing 
surfaces between the rows. The placement algorithm 
for standard cells uses constructive initial placement 
followed by an iterative improvement step. Routing 
is performed using channel touters. Although this 
approach is typically used by the current generation 
of IC layout codes, several new features are incorpo- 
rated in SICLOPS. These features provide a high de- 
gree of user control over cell placement for an auto- 
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Figure 3. Structure Tree for IC Chip of Figure 2. 

Cell Placement 

The SICLOPS placement algorithm allows the user 
to specify (I) inital cell positions (suggestion to 
algorithm for a starting placement), (2) final posi- 
tions (corresponding to traditional fixed placement)~ 
or (3) permissible locations for cells using logical 
FORTRAN statements. The logical FORTRAN statement is 
TRUE for a permissible cell location and FALSE other- 
wise. The following functions may be used: ROWOF 
(cell) returns the row of the argument cell; POSOF 
(cell) returns the position of the argument cell 
within a row; and ORENOF(celI) returns the orienta- 
tion of the argument cell. 

The following example illustrates the flexibility 
provided to allow the designer to control placement 
of cells in an assembly and consists of a three-bit 
shift register which is to be included in a standard 
cell assembly (shown in Figure 4). The three-shift 
register cells do not need to be placed side by side 
in the module but should be placed on the same row 
and in sequential order. Figure 4 lists the input 
restrictions and shows the relative cell placement. 
For each of the three shift register cells, the first 
line of input information indicates the cell name 
followed by output and input signal names. The next 
two lines indicate logical restrictions to be satis- 
fied during cell placement. In each case, the logical 
variables THROW and THPOS are true when the cells are 
in the allowed locations. Because of the symmetrical 
wiring for the shift register, other placement algo- 
rithms based on minimizing wire length~ track count~ 
or area may not provide the same layout. 

SRBITI DFLPFP SRINP SHFTI SRCLK 
THSROW = ROWOF(SRBITI) ,EQ. ROWOF(Sk~IT2) 
THSPOS = POSOF(SRBITI) ,LT. POSOF(SRBIT2) 

SRBII2 DFLPFP SHFII S~IFT2 SRCLK 
THSkOW = ROWOF(SRBITI) ,E~, ROWOF(SRBII2) 
IHSPDS : POSOF(SRBI]I) ,LI, POSOF(SRBIT2) 

.A;~D, POSOF(SRBIT2) ,LT. PdSUF(SRBII3) 

SRBIT3 DFLPFP SHFT2 SROUT SRCLK 
THSROW = ROWOF(SRBITI) ,EQ, ROWOF(SRBIT~) 
THSPOS = POSOF(SRblT2) ,LI, ROWOF(SRBIi3) 

SRCLK 
SRINP l SHFTI I SHFT2 [_@SROUT 

I I I I I , I 

1 [ BSR~TI C[ [ DSR:IT2C ] . ] DSR:ITjC [ 

Figure 4. Shift Register Layout Using Standard Cells. 
The logical FORTRAN statements are satisfied to 
produce the layout shown in the lower portion of the 
figure. 



Routing 

Many standard channel routing algorithms (Ref. 
10-12) are used in the program. However, since the 
program is automatic, manual intervention to break 
constraint loops which prevent the completion of 
routing paths is not available and the algorithms 
have been modified to resolve constraint loops. Two 
techniques are used to break constraint loops: (i) 
doglegs or jogs are permitted at points intermediate 
to the cell pin loations, and (2) the routing is not 
restricted to lie within the area specified by the 
rectangle defined by the two outside pin locations 
for the interconnection net. In some cases, the con- 
straint loops are broken by increasing the number of 
tracks in the channel. 

The routing algorithms also permit the use of non- 
uniform channel widths and the use of wide vias to 
provide connections between different interconnect 
levels. Non-uniform channels usually result because 
of non-standard height cells or irregular boundaries 
between modules or assemblies of different size. 

Figure of Merit 

A new figure of merit is used in placement based 
on extensions of previous techniques (Ref. i0). 
During the iterative improvement step, a new place- 
ment is accepted only if the total standard cell as- 
sembly area is decreased. The area is calculated as 
follows: 

Area = height x width 

nrows 

height = ~ row height i 
i=l 

below. Figure 5 shows the channel intersection graph 
for the general cell assembly shown in Figure I. 

H3:I HB:2 
V2:4 

VI:'~ H7:1 

H~I ~2:3 

V2:2 H5;I 

Vh3 
V2:1 

H3:I H~2 H~3 

Vl:2 V3:2 
H2:1 

V h i V~ I 

HI:I 

HB: 3 
Vb:l V6:~ 

H7;2 

V~3 

H5:2 H5;3 

V6:2 
V7:l V4:3 

H4: l 
H3~ V~:2 

V~I 
V¢:I 

Hh2 Hh3 

Figure 5. Channel Intersection Graph for the General 
Cell Assembly Shown in Figure i. 

The horizontal channel position graph and the 
vertical channel position graph are directed graphs 
defining the positional constraints of the channels 
in relation to each other. A node on these graphs 
represents the boundary between a block and a channel 
and an arc corresponds to a physical dimension on the 
layout. Numerical values associated with each arc 
are weights representing the width of a routing chan- 
nel or the dimension of a block. ~le width and height 
of the general cell assembly may be obtained by find- 
ing the longest path through the horizontal and ver- 
tical channel position graphs respectively. Critical 
channels and critical blocks are arcs of these graphs 
that lie on any longest path. The channel position 
graphs for the general cell assembly shown in Figure 
I are outlined in Figure 6. 

nrows + 1 

for channel i ~ ~height I 

width = max (row width i) + [(max left s~de track 
density) + (max right side track density)| x track 
width. ] 

v? CH vs . .  

-V3~- C2 

To obtain standard cell assemblies with a speci- 
fied aspect ratio, restrictions can be introduced in 
the above calculation. 

GENERAL CELL ASSEMBLY IMPLEMENTATION 

A general cell assembly is a rectangular block of 
circuitry composed of subassemblies or blocks sepa- 
rated by routing channels. SICLOPS automatically 
places the block, determines and positions the chan- 
nels, and routes the interconnections. 

Design Representation 

Three graphs are used to represent a general cell 
assembly; these graphs are similar to those described 
in Reference 5 and consist of a channel intersection 
graph, a horizontal channel position graph and a 
vertical channel position graph. 

The channel intersection graph defines the topol- 
ogy of the general cell assembly. This graph repre- 
sents the non-uniform rectangular grid on which 
interconnection routing is performed. Each node of 
the graph is the intersection of two channels and 
each arc represents a self-contained routing channel 
or 'sub-channel.' Weights are assigned to the arcs 
of the graph to accomplish the loose routing described 
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(a) Horizontal Channel Positon Graph 

Cl(~ 12 

H7 

i C9 

H6 bH5 

cbTH3C H4 

H2' 

J C 3  
Cl ~ H I  

(b) Vertical Channel 
Position Graph 

Figure 6. Channel Position Graphs for 
General Cell Assembly Shown in Figure I. 

the 



Placement 

The solution to the placement problem consists of 
determining the locations for blocks of arbitrary 
size and shape which will minimize the interconnection 
area and the area within a rectangle enclosing the 
blocks. The placement algorithm consists of a con- 
structive initial placement phase and an iterative 
improvement phase. The initial positions of both the 
inner blocks and the channels are floating to avoid 
channel capacity constraints. During placement, 
channel definitions corresponding to the selected 
module placement are defined. 

The placement algorithms have been designed to 
provide the following four levels of interfacing with 
the designer: 

I. Completely free placement--The placement algorithm 
determines an initial starting placement, and 
then iteratively improves the placement. 

2. User defined initial placement--The placement 
algorithm iteratively improes the initial layout. 

3. User defined final placement--The relationship of 
the modules is fixed by the designer and the 
placement function simply determines the channel 
positions. 

4. User defined final placement and the channel def- 
initions--The layout is rigidly specified and the 
placement algorithm simply converts the input 
data into internal form. 

Constructive initial placement within an assembly 
consists of the following steps. The size of the 
general cell assembly is estimated based on the size 
of the modules and used to construct a temporary out- 
line of the general cell assembly. All input/output 
terminals with locations specified are placed around 
the periphery of this temporary outline. The modules 
with highest connectivity to the placed input/output 
terminals are located first as closely as possible to 
the fixed terminals. The remaining modules are sel- 
ected one at a time based on highest connectivity to 
the modules and input/output terminals already placed 
and added as close to the placed modules as possible. 
Holes left within the area of placed cells are filled 
if possible. 

Once an initial placement is found, the next step 
determines the location of the channels corresponding 
to the given placement. The first step consists of 
surrounding each module and the entire general cell 
assembly with channels. Channels are combined which 
overlap in the direction parallel to the channels. 
Any channels intersecting the combined channels are 
either stretched or shrunk to maintain an intersection 
with the combined channel. The four channels orig- 
inally surrounding the entire general cell assembly 
assure the channels are completely connected after 
the combining process is finished. Once the channels 
and their intersections have been identified, the 
three graphs described earlier are constructed. 

The iterative improvement phase consists of a 
loop which attempts to improve the current placement. 
The first step identifies the critical modules 
(modules corresponding to arcs on a longest path 
through either channel position graph). Next, each 
of the critical modules is input to orientation, 
movement and exchange improvement operations. These 
operations search for an improved placement by alter- 
ing the position of the critical modules. 
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The orientation improvement operation tries to 
improve the placement by altering the rotation or 
reflection of the given module. This step modifies 
the arc weights corresponding to this module in the 
channel position graphs. 

The movement operation searches for a new verti- 
cal or horizontal position for the module near other 
temporarily fixed modules. This operation has the 
effect of deleting the initial arcs corresponding to 
the moved module in channel position graphs, and 
creating a series of arcs in one channel position 
graph and parallel arcs in the other channel position 
graph from a single arc at the target position. 

The improvement operation searches for an ex- 
change partner for the specified critical module. 
This operation alters the weights of the arcs cor- 
responding to both modules but does not alter the 
topology of the channel position graph. 

If any of these operations successfully determine 
a placement with a smaller area, the change is 
accepted, the new general cell assembly area is de- 
termined, and this new placement is used as the basis 
for further improvement operations. Figure 7 out- 
lines the placement algorithm. 

PLACE 
Jill ] ]AL PLACE 

LSTI~TE SIZE OF GENERAL CELL ASSEMBLY 
PLACE FIXED ]/O PINS 
FOR EACIt CELL DO 

FIND MAXIMALLY CORRECTED CELL 
PLACE ~HIS CELL 
DID DO 

E;}U ]NIIIAL PLACE 
PLAC[ II']PROVEVILNT 

F[RD CHA;RILL3, DETE~'~I~IE SIZE, IDE~ITIFY CRITICAL 
MODULES AND CHANRELS 

ESll;II~TE TRACK DENSITY FOR INTERCONNECTIONS 
RERLAI Ui~T_I_L STOPPING CO~IDIIION LO 

F~R LACII CRITICAL MODULE DO 
S~ARCH FOR ALEERRATE ORIENTATION 
SEARCh FOR ALTER~.IATE LuCATION (MOVE) 
SLARCH FuR LXCIIA,IGE PARTNER 
t_~ GENERAL CELL ASSEMBLY IS SMALLER DO0 

I<AKE THIS PLACEI'IENI CORRECT 
13REAl, 
i IjD L~ 

ELbE DU 
~LS1ORE P~EVIOUS PLACEMENT 
L,~L bU 

[,~b REPEAl 
LRD PLALI IhPROVEMLrll 

~;;I3 PLAL[ 

Figure 7. Placement Algorithm for Locating Modules 
in a General Cell Assembly. 

Routing 

Several features combine to place very severe 
requirements on the routing function in the general 
cell assembly. First, the program must work auto- 
matically, since there is no interaction at this level 
in the design sequence. Second, 100% routing comple- 
tion is a requirement. This is especially important 
in VLSI where there are a large number of inter- 
connection nets. In fact, this requirement separates 
the IC layout and the printed circuit board layout 
problem. For printed circuit boards, the board area 
is specified and the objective is to optimze the com- 
pletion rate. For IC's, the completion rate is spec- 
ified (100%) and the objective is to minimize the 
area. 

Many techniques are available for routing. The most 
important methods fall into two classes. Search 
methods (primarily derivations of the Lee and 



Bightower ~ethods) attempt to serially connect nets 
to build up all interconnections. In general~ these 
methods suffer from completion problems because prev- 
ious interconnections can block a succeeding one. 
Methods have been developed to enhance completion 
rates; these methods in general, consist of rip-up 
and re-route and adding extra tracks (Refs. 13 & 14). 
For complex topologies~ 100% route completion is dif- 
ficult to obtain and the result can be wasted area 
because there is no global optimization step. Channel 
routing techniques have been successfully used in 
systems which require 100% completion; however, the 
cost is a restriction in layout topology. Layouts 
using channel routers have taken the form of modules 
placed in horizontal rows and vertical columns. 

The routing approach used for a general cell as- 
sembly finds a loose route specification for all 
interconnection nets and then assigns individual 
tracks using channel routing techniques. This two- 
step procedure approximates a parallel router. 

The loose routing phase finds a strategic route 
on the subchannel intersection graph for each inter- 
connection net and includes an explicit optimization 
step to reduce area. Further, since nets are assigned 
to channels~ but not to specific trscks~ rip-up and 
re-route is easy. The channels have infinite track 
capacity and 100% route completion is guaranteed. 
Loose route determination is a complex problem for a 
general cell assembly, since there are usually many 
acceptable ways to route a net. However~ the best 
path cannot be determined without considering the 
interaction with other nets. The longest route in 
geometric length may not add any incremental area to 
the chip because it does not pass through a position 
of maximum track density on a critical channel. 

The loose routing phase uses the subchannel 
intersection graph. Weights are assigned to the arcs 
of this graph to indicate the incremental area that 
would be added to the general cell assembly if an 
additional track was used in the subchannel associated 
with the arc. All noncritical subchannels and sub- 
channels of a critical channel which do not contain a 
position of maximum track density are assigned a 
weight of zero because no area would be added to the 
general cell assembly if a track on this subchannel 
was used. Subchannels of critical channels that con- 
tain a position of maximum track density are assigned 
a large weight because an extra track would add to 
the area of the general cell assembly. Pins of the 
net are added as nodes to the subchannel intersection 
graph and the weights are adjusted for the affected 
subchannel arcs. The remaining problem consists of 
determining an interconnection tree which connects 
the nodes corresponding to the pins of the given 
interconnection net to minimize the sum of the weights 
on the arcs used. 

Implementation of the loose routing algorithm 
uses a constructive initial solution followed by it- 
erative improvement. The constructive routing step 
locates an initial route for each interconnection net 
by: (I) selecting the net to be routed from a sel- 
ected subset 9 (2) determining the weights for the sub- 
channel intersection graph~ and (3) adding pins to 
the subchannel intersection graph as described above. 
The pins for each net are connected as a sequence of 
two point paths using shortest path algorithms. When 
all nets of the current set have been routed, a new 
set is selected and the process is repeated until an 
initial route has been found for all nets. Iterative 
improvement is accomplished as follows: First, the 
size of the general cell array is determined and the 
critical channels are identified using the channel 
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position graphs. Weights are assigned to the arcs of 
the subchannel intersection graph and a segment of a 
net is identified which contributes to the size of 
the general cell array. The identified segment is 
removed from the data array and the remaining portion 
of the net is added to the subchannel intersection 
graph with the connected vertices fused. The two 
parts of the net are then interconnected using a 
shortest path algorithm~ assuming the other nets and 
area of the assembly are fixed. If an area reduction 
is produced~ the new loose route for the net is ac- 
cepted; otherwise~ the old route is restored to the 
data array. The loose route algorithm is summarized 
in Figure 8. 

LOOSE ROUTE DETERF]INATION 
INITIAL LOOSE ROUTE 

FOR EACH INTERCONI~ECT]Or; NET DO 
DETERMh'IE LOOSE ROUTE FOR THIS NEI 
END DO 

END INITIAL LOOSE ROUTE 
LOOSE ROUTE II'IPROVEMENT 

FIN[; SIZE AhD CRI'IICAL CHAN(~ELS 
REPEAl UNTIL STOPPINC CO~¢[qllON b[_) 

E IND POSI I IoN. ~ OF I~AX TRACK bL;;SI IY 
CHOOSE NET TO RE-iRuUIE 
RU'IOVE tiLT FRU~ UATA 
ADZ' PINS OF THIS IIET TO SUB-ChAU,IEL 

I~ITERSEEI ION ~RAPR 
ASSIGN WEIGHIS TO SUE-CHA~NEL IH/LRSECI{U;I 

GRAPR 
FIND LOOSE ROUIE FOR TItlS NET 
~-IND SIZE AhU CklTICAL ChAIWNI.LS ~-dhl 

['~Ob I F ICAI ION 
LF SIZE IS S~.IALLER DO 

ACCEPT CHAi~GE 1o l'AIS ',,El 
E N~ DO 

ELSE DO 
REJECT CHAI~GE IO Ibis bET 
END uo 

END REPEAT 
E~ LOOSE ROHIE IMPRUVEMLNI 

Ei'ID LJOSE ROUTE UEII_R,~I!~AIIOL 

Figure 8. Routing Algorithm for DetermLning Loose 
Routing Paths for Nets in a General Cell A~sembly. 

Following completion of loose route, the in- 
dividual nets are assigned specific tracks within the 
channels. The extended channel routing discussed 
previously is used to complete the detailed routing 
within each channel. 

SUMMARY 

The methods employed in SICLOPS to design com- 
plex masks for integrated circuits have been 
described. The code is being implemented on a DEC i0 
computer and has been designed to provide a structured 
approach for the layout of complex IC's with the 
flexibility to design IC mask layouts ranging from 
very simple circuits containing a small number of 
standard cells to very large IC's involving the nest- 
ing of large numbers of assemblies containing 
standard cells and macrocells. Since the system of 
programs is being implemented in stages, an entire 
chip design has not been completed. However, the 
algorithms used for placement and routing have been 
verified for typical general layout configurations. 

Although specific improvements in the layout ef- 
ficiency are difficult to quantify, the initial goal 
for the program is to generate a CMOS IC layout using 
a silicon gate technology which is approximately a 
factor of five higher in device density than a metal 
gate technology for combinational logic circuits. 
This improvement is produced by the combined effects 
of using new cell design concepts, improved design 
tolerances~ and improved placement and routing 
algorithms. 
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