
METHODS FOR HIERARCHICAL AUTOMATIC LAYOUT
OF CUSTOM LSI CIRCUIT MASKS*

B. T. Press and C. W. Gwyn
Sandia Laboratories

Albuquerque, NM 87185

ABSTRACT

A new automatic IC mask layout code is described
which avoids most of the problems inherent in the
present generation of layout codes such as lack of
flexibility~ inefficient use of area, and restricted
design complexity. The structured hierarchical lay-
out approach, construction graphs, and placement and
routing algorithms are outlined.

INTRODUCTION

Computer aids have been used for a number of years
in the design and layout of custom integrated circuit
(IC) masks (Refs. I-5). These aids range from the use
of interactive graphics systems to sets of programs
designed to run in the batch mode on a large computer.
Semiconductor manufacturers designing IC's with large
production volumes have usually employed manual layout
methods and have restricted the use of computer aids
to digitizing and editing in the final phase of the
design sequence. Although this approach usually leads
to high design costs and long design cycles, the final
circuit can be inexpensively manufactured because of
the small chip size. An intermediate approach is the
semiautomatic design aid. Typically, these programs
require manual assistance to complete an IC design and
have placement and routing algorithms which can be
invoked by the user for sections of the total layout
problem. At the opposite end of the design spectrum,
designers involved with low production volumes have
often relied on automatic design aids which produce
circuit masks based on the use of a predefined library
of circuit modules or cells and a circuit connection
description. With the increasing emphasis on the use
of custom IC's for low volume applications, the use
of computer aids for the automatic layout of IC masks
becomes increasingly important in minimizing the
design cycle and development cost.

For circuits containing approximately 500 gates
and few restrictions regarding chip area, several
automatic IC layout programs can rapidly produce error
free designs at low cost. However, there are a number
of deficiencies in the present codes. These include:
lack of flexibility, inefficient use of silicon area,
and limitation in circuit complexity. The mask lay-
outs produced using computer aids are characterized
by the use of standard cells placed in rows. This
ordered arrangement does not allow easy incorporation
of design requirements such as special cell or pad
placement or use of special macrocells such as ROMs
and RAMs. These non-standard layouts usually require
the manual addition and interconnection of the special
cells using an interactive graphics system which is
time consuming and can result in the introduction of
errors. The inefficient use of silicon area produced
by the regularity and generality required in cell de-
sign and the restriction of cell placement to rows can
lead to long interconnection distances and use of ad-
ditional silicon area. Another important deficiency
is the limitation on chip complexity imposed by the IC

*This work was supported by the U.S. Dept. of Energy,
Contract AT(29-I)-789.

206

layout programs. The present limit is on the order
of i000 equivalent gates. With the continuing de-
crease in design rule tolerances made possible by
improved circuit fabrication methods, the production
of Very Large Scale Integrated (VLSI) circuits in
the range of 10,000 to 409000 equivalent gates is
possible and the present design aids and methods are
becoming outdated. The present layout codes also
tend to inhibit the design process rather than en-
couraging successive refinement in a design. This
does not prevent the automatic layout of a Io~ com-
plexity chip but may prevent the successful design
of a VLSI circuit.

SICLO Th~PS goal for the new automatic layout code,
(Sandia Integrated Circuit Layout Program

System) is to avoid the problems noted above, provide
flexlhl]ity for designing IC's using a variety of
different technologies, and provide the basis neces-
sary to design highly complex chips bordering on VLSI
complexity. The code has been designed to provide
automatic clrcu~t layout with manual overr~de to
provide various degrees of user interaction with the
layout process and to run within the batch mode for
a variety of computer systems.

This paper outlines the important algorithms
used in the SICLOPS code and is divided into three
major sections. The first section describes the ar-
chitecture and building blocks for the layout pro-
gram. The second section describes layout methods
using standard cells and the third section describes
the general cell assembly design.

STRUCTURED DESIGN ARCHITECTURE

To achieve the goals outlined in the previous
section and to provide the capability for designing
highly complex chips, an ordered design process must
be introduced. Circuits containing tens of thousands
of equivalent gates are several orders of magnitude
larger than circuits which can be easily compre-
hended. For circuits of this size, design techniques
are required to reduce the level of detail considered
during each step of the design to a manageable size.
In drawing an analogy between the design of a large
software program and the layout of the VLSI circuit,
structured design methods must be used (Refs. 7-9).
For example, hierarchical decomposition or parti-
tioning must be used to reduce the system function
into tractable module sizes. Bas~cally, this method
reduces to top-down circuit partitioning and initial
layout and a bottom-up circuit layout implementation
at each level of hierarchy. By considering only the
subfunction to be implemented and interface inter-
connections, the degree of circuit complexity for
each module design can be reduced to a level consis-
tent with the available design capability.

Modular Layout Approach

Although the present IC layout programs are generally
restricted to the use of standard cell building
blocks placed in rows, the SICLOPS layout philosophy

departs from this rigid order and approachs the flex-
ibility provided by manual chip layout where module
placement is not restricted to rows or columns. This
approach allows arbitrary size rectangular modules to
be placed in an optimum layout configuration and al-
lows module interconnection via a number of irregu-
larly shaped interconnection regions.

One of the key generalizations incorporated in
SlCLOPS is the recursive use of modules to solve the
problems of design complexity and actual design pro-
cess. In the context used in SlCLOPS, a module usu-
ally performs a specific circuit function and is de-
fined in terms of lower level modules and inter-
connection regions. The modules are nested to im-
plement a design of any complexity. By considering
only the function to be implemented and the sub func-
tions along with interface connections, the degree of
complexity during each module design can be reduced
to a level consistent with the available design cap-
ability and designer understanding. This capability
permits many of the same algorithms to be used at
each recursion level and encourages the designer to
use an orderly design process such as hierarchical
decomposition and successive layout approximations.

Building Blocks

A number of fundamental building blocks and as-
semblies are required to implement a general IC lay-
out. For the fundamental blocks consisting of stan-
dard cells, macro cells, and bonding pads, the layout
program requires only the outline dimensions and lo-
c~tions of the input and output connections. Funda-
mental blocks are grouped together by the program and
interconnected to form assemblies.

One fundamental block is the standard cell.
Standard cells are rectangular and may have input and
output connections on one or opposite sides. The
cells are uniform in height and vary in width as re-
quired to implement the required circuit function.
For cells with connections on two sides, an individual
connection may, but need not, be repeated on both
connection sides. Power and phase connections are
routed to the ends of the cell row by the layout pro-
gram; the distribution of these signals in the inter-
ior cells of a row is provided by the cell design.

Standard cells are grouped together and inter-
connected to form a standard cell assembly. One or
more cell rows are contained within the assembly and
in general, each assembly contains input/output ter-
minals on all four sides of the module. For an as-
sembly consisting of a single row of cells, the posi-
tion of the terminals is determined by the cell place-
ment in the row. For assemblies containing several
rows of cells, the terminals contained on the sides
parallel to the cell rows are determined by the ter-
minals on the outer cell rows. For the other two
sides, the terminals are located at the termination
of the tracks in the interconnection routing channels.
In general, an assembly is rectangular in shape.

Bonding pads are special standard cells. The
bonding pad cells range from simple metal shapes used
to provide external connections to the chip circuit
to complex input pads containing static charge pro-
tection and output pads containing buffer devices to
provide the necessary signal drive for use in cir-
cuitry external to the IC.

Bonding pads are grouped together in rows to form
a bonding pad assembly. The number of bonding pad
assemblies placed end to end on the side of a chip is
limited only by the physical dimension of the chip.

207

The spacing between pads may be varied as required to
match the external package bonding requirements.

Another fundamental cell is the macro cell.
Typically, the macrocells consists of a custom layout
(usually handcrafted) designed to perform a specific
function. These cells may have an arbitrary rectan-
gular size and shape and may contain input/output con-
nections on one to four sides. Power and phase sig-
nals must be provided as part of the standard inter-
connection specification for the larger assembly con-
taining the macrocell.

General cell assemblies are the highest level blocks
supported by the layout code. The general cell as-
sembly may consist of combinations of standard cell
assemblies~ macrocells, standard cells, or lower level
general cell assemblies. Use of the general cell
assembly in a recursive sequence allows very large
assemblies to be defined.

An IC chip is a complete circuit layout. The chip
contains a general cell assembly, one or more bonding
pad assemblies and a number of chip support cells and
entities such as masking borders, alignment keys~
test structures and identification markings. All of
these chip support functions are placed by the layout
code.

The SICLOPS input language used to describe the
above modules is outlined in Reference 6.

Examples of Structured Layout

A general cell assembly is shown in Figure I.
Each of the modules in the assembly can correspond to
macrocells, standard cell assemblies or other smaller
general cell assemblies. In general, terminals may
be located on all four sides of each module. The
modules can assume any orientation within the
assembly as determined by the placement algorithms.
The routing channels between modules may be input by
the user or determined by the program and are used in
constructing position and channel intersection graphs
described later.

Figure I. General Cell Assembly Containing 12
Modules. One net has been routed as shown.

A complete layout for a chip, following the structured
format, is shown in Figure 2. This chip contains one
general cell assembly, several bonding pad assemblies
and the associated support entities. The general cell
assembly, in turn~ contains a smaller general cell as-
sembly (containing a macrocell and two standard cell
assemblies)~ a standard cell assembly, and a macro-
cell. The nesting of assemblies can be implemented,
theoretically~ to any depth, thus permitting the de-
sign of an arbitrarily complex chip.

[l

i I i B

. _I ? L

Figure 2. Entire Layout for an IC. The layout con-
tains one general cell assembly and four bonding pad
assemblies.

matic code, extension of channel routing algorithms,
and use a figure of merit to optimize the layout based
on modul'e width and height.

CHIF'

a b c

In each of the above designs, the designers can
interface with the layout program at a variety of
levels. At the most detailed level of interaction~
the designer may implement the logic in several blocks
of custom macrocells and use the computer aids to
perform the interconnection routing. For this prob-
lem, the designer specifies the interconnection and
approximate size of the macrocells and makes several
SICLOPS runs to determine the best shape for the chip
and the approximate placement of the macrocells.
After determining the optimum shapes for the macro-
cells, the cells can be designed on an interactive
graphics system, and a final SICLOPS run executed to
incorporate the macrocells into the complete chip
layout.

For extremely complex chip layouts such as those
encountered in VLSI circuits, the designer uses re-
cursive hierarchical decomposition to reduce the sys-
tem to small modules. For example, the designer par-
titions the total system or circuit into first level
subsystems, specifies the interconnection of the sub-
systems and makes several SICLOPS runs to obtain the
general placement and shape for each subsystem. The
subsystems are, in turn, partitioned into smaller
modules until the entire system is defined in terms
of either standard cells or macrocells. At this
point, a bottom up implementation process can be used,
since block sizes and input/output connection loca-
tions are known. The chip design is complete when
the top level is reached.

Structure Tree

"l~e implementation of the hierearchical structure
in the design of an IC is accomplished using a struc-
ture tree. A structure tree for the chip layout in
Figure 2 is shown in Figure 3. The largest module
being designed is represented as the trunk and suc-
cessive submodules are represented as smaller and
smaller branches. For an IC chip, the trunk repre-
sents the entire chip while the branches are denoted
by general cell assemblies, macrocells, or standard
cell assemblies.

STANDARD CELL ASSEMBLY IMPLEMENTATION

The standard cell assembly in SICLOPS is com-
posed of standard cells placed in rows with routing
surfaces between the rows. The placement algorithm
for standard cells uses constructive initial placement
followed by an iterative improvement step. Routing
is performed using channel touters. Although this
approach is typically used by the current generation
of IC layout codes, several new features are incorpo-
rated in SICLOPS. These features provide a high de-
gree of user control over cell placement for an auto-

208

Figure 3. Structure Tree for IC Chip of Figure 2.

Cell Placement

The SICLOPS placement algorithm allows the user
to specify (I) inital cell positions (suggestion to
algorithm for a starting placement), (2) final posi-
tions (corresponding to traditional fixed placement)~
or (3) permissible locations for cells using logical
FORTRAN statements. The logical FORTRAN statement is
TRUE for a permissible cell location and FALSE other-
wise. The following functions may be used: ROWOF
(cell) returns the row of the argument cell; POSOF
(cell) returns the position of the argument cell
within a row; and ORENOF(celI) returns the orienta-
tion of the argument cell.

The following example illustrates the flexibility
provided to allow the designer to control placement
of cells in an assembly and consists of a three-bit
shift register which is to be included in a standard
cell assembly (shown in Figure 4). The three-shift
register cells do not need to be placed side by side
in the module but should be placed on the same row
and in sequential order. Figure 4 lists the input
restrictions and shows the relative cell placement.
For each of the three shift register cells, the first
line of input information indicates the cell name
followed by output and input signal names. The next
two lines indicate logical restrictions to be satis-
fied during cell placement. In each case, the logical
variables THROW and THPOS are true when the cells are
in the allowed locations. Because of the symmetrical
wiring for the shift register, other placement algo-
rithms based on minimizing wire length~ track count~
or area may not provide the same layout.

SRBITI DFLPFP SRINP SHFTI SRCLK
THSROW = ROWOF(SRBITI) ,EQ. ROWOF(Sk~IT2)
THSPOS = POSOF(SRBITI) ,LT. POSOF(SRBIT2)

SRBII2 DFLPFP SHFII S~IFT2 SRCLK
THSkOW = ROWOF(SRBITI) ,E~, ROWOF(SRBII2)
IHSPDS : POSOF(SRBI]I) ,LI, POSOF(SRBIT2)

.A;~D, POSOF(SRBIT2) ,LT. PdSUF(SRBII3)

SRBIT3 DFLPFP SHFT2 SROUT SRCLK
THSROW = ROWOF(SRBITI) ,EQ, ROWOF(SRBIT~)
THSPOS = POSOF(SRblT2) ,LI, ROWOF(SRBIi3)

SRCLK
SRINP l SHFTI I SHFT2 [_@SROUT

I I I I I , I

1 [BSR~TI C[[DSR:IT2C] .] DSR:ITjC [

Figure 4. Shift Register Layout Using Standard Cells.
The logical FORTRAN statements are satisfied to
produce the layout shown in the lower portion of the
figure.

Routing

Many standard channel routing algorithms (Ref.
10-12) are used in the program. However, since the
program is automatic, manual intervention to break
constraint loops which prevent the completion of
routing paths is not available and the algorithms
have been modified to resolve constraint loops. Two
techniques are used to break constraint loops: (i)
doglegs or jogs are permitted at points intermediate
to the cell pin loations, and (2) the routing is not
restricted to lie within the area specified by the
rectangle defined by the two outside pin locations
for the interconnection net. In some cases, the con-
straint loops are broken by increasing the number of
tracks in the channel.

The routing algorithms also permit the use of non-
uniform channel widths and the use of wide vias to
provide connections between different interconnect
levels. Non-uniform channels usually result because
of non-standard height cells or irregular boundaries
between modules or assemblies of different size.

Figure of Merit

A new figure of merit is used in placement based
on extensions of previous techniques (Ref. i0).
During the iterative improvement step, a new place-
ment is accepted only if the total standard cell as-
sembly area is decreased. The area is calculated as
follows:

Area = height x width

nrows

height = ~ row height i
i=l

below. Figure 5 shows the channel intersection graph
for the general cell assembly shown in Figure I.

H3:I HB:2
V2:4

VI:'~ H7:1

H~I ~2:3

V2:2 H5;I

Vh3
V2:1

H3:I H~2 H~3

Vl:2 V3:2
H2:1

V h i V~ I

HI:I

HB: 3
Vb:l V6:~

H7;2

V~3

H5:2 H5;3

V6:2
V7:l V4:3

H4: l
H3~ V~:2

V~I
V¢:I

Hh2 Hh3

Figure 5. Channel Intersection Graph for the General
Cell Assembly Shown in Figure i.

The horizontal channel position graph and the
vertical channel position graph are directed graphs
defining the positional constraints of the channels
in relation to each other. A node on these graphs
represents the boundary between a block and a channel
and an arc corresponds to a physical dimension on the
layout. Numerical values associated with each arc
are weights representing the width of a routing chan-
nel or the dimension of a block. ~le width and height
of the general cell assembly may be obtained by find-
ing the longest path through the horizontal and ver-
tical channel position graphs respectively. Critical
channels and critical blocks are arcs of these graphs
that lie on any longest path. The channel position
graphs for the general cell assembly shown in Figure
I are outlined in Figure 6.

nrows + 1

for channel i ~ ~height I

width = max (row width i) + [(max left s~de track
density) + (max right side track density)| x track
width.]

v? CH vs . .

-V3~- C2

To obtain standard cell assemblies with a speci-
fied aspect ratio, restrictions can be introduced in
the above calculation.

GENERAL CELL ASSEMBLY IMPLEMENTATION

A general cell assembly is a rectangular block of
circuitry composed of subassemblies or blocks sepa-
rated by routing channels. SICLOPS automatically
places the block, determines and positions the chan-
nels, and routes the interconnections.

Design Representation

Three graphs are used to represent a general cell
assembly; these graphs are similar to those described
in Reference 5 and consist of a channel intersection
graph, a horizontal channel position graph and a
vertical channel position graph.

The channel intersection graph defines the topol-
ogy of the general cell assembly. This graph repre-
sents the non-uniform rectangular grid on which
interconnection routing is performed. Each node of
the graph is the intersection of two channels and
each arc represents a self-contained routing channel
or 'sub-channel.' Weights are assigned to the arcs
of the graph to accomplish the loose routing described

209

(a) Horizontal Channel Positon Graph

Cl(~ 12

H7

i C9

H6 bH5

cbTH3C H4

H2'

J C 3
Cl ~ H I

(b) Vertical Channel
Position Graph

Figure 6. Channel Position Graphs for
General Cell Assembly Shown in Figure I.

the

Placement

The solution to the placement problem consists of
determining the locations for blocks of arbitrary
size and shape which will minimize the interconnection
area and the area within a rectangle enclosing the
blocks. The placement algorithm consists of a con-
structive initial placement phase and an iterative
improvement phase. The initial positions of both the
inner blocks and the channels are floating to avoid
channel capacity constraints. During placement,
channel definitions corresponding to the selected
module placement are defined.

The placement algorithms have been designed to
provide the following four levels of interfacing with
the designer:

I. Completely free placement--The placement algorithm
determines an initial starting placement, and
then iteratively improves the placement.

2. User defined initial placement--The placement
algorithm iteratively improes the initial layout.

3. User defined final placement--The relationship of
the modules is fixed by the designer and the
placement function simply determines the channel
positions.

4. User defined final placement and the channel def-
initions--The layout is rigidly specified and the
placement algorithm simply converts the input
data into internal form.

Constructive initial placement within an assembly
consists of the following steps. The size of the
general cell assembly is estimated based on the size
of the modules and used to construct a temporary out-
line of the general cell assembly. All input/output
terminals with locations specified are placed around
the periphery of this temporary outline. The modules
with highest connectivity to the placed input/output
terminals are located first as closely as possible to
the fixed terminals. The remaining modules are sel-
ected one at a time based on highest connectivity to
the modules and input/output terminals already placed
and added as close to the placed modules as possible.
Holes left within the area of placed cells are filled
if possible.

Once an initial placement is found, the next step
determines the location of the channels corresponding
to the given placement. The first step consists of
surrounding each module and the entire general cell
assembly with channels. Channels are combined which
overlap in the direction parallel to the channels.
Any channels intersecting the combined channels are
either stretched or shrunk to maintain an intersection
with the combined channel. The four channels orig-
inally surrounding the entire general cell assembly
assure the channels are completely connected after
the combining process is finished. Once the channels
and their intersections have been identified, the
three graphs described earlier are constructed.

The iterative improvement phase consists of a
loop which attempts to improve the current placement.
The first step identifies the critical modules
(modules corresponding to arcs on a longest path
through either channel position graph). Next, each
of the critical modules is input to orientation,
movement and exchange improvement operations. These
operations search for an improved placement by alter-
ing the position of the critical modules.

210

The orientation improvement operation tries to
improve the placement by altering the rotation or
reflection of the given module. This step modifies
the arc weights corresponding to this module in the
channel position graphs.

The movement operation searches for a new verti-
cal or horizontal position for the module near other
temporarily fixed modules. This operation has the
effect of deleting the initial arcs corresponding to
the moved module in channel position graphs, and
creating a series of arcs in one channel position
graph and parallel arcs in the other channel position
graph from a single arc at the target position.

The improvement operation searches for an ex-
change partner for the specified critical module.
This operation alters the weights of the arcs cor-
responding to both modules but does not alter the
topology of the channel position graph.

If any of these operations successfully determine
a placement with a smaller area, the change is
accepted, the new general cell assembly area is de-
termined, and this new placement is used as the basis
for further improvement operations. Figure 7 out-
lines the placement algorithm.

PLACE
Jill]]AL PLACE

LSTI~TE SIZE OF GENERAL CELL ASSEMBLY
PLACE FIXED]/O PINS
FOR EACIt CELL DO

FIND MAXIMALLY CORRECTED CELL
PLACE ~HIS CELL
DID DO

E;}U]NIIIAL PLACE
PLAC[II']PROVEVILNT

F[RD CHA;RILL3, DETE~'~I~IE SIZE, IDE~ITIFY CRITICAL
MODULES AND CHANRELS

ESll;II~TE TRACK DENSITY FOR INTERCONNECTIONS
RERLAI Ui~T_I_L STOPPING CO~IDIIION LO

F~R LACII CRITICAL MODULE DO
S~ARCH FOR ALEERRATE ORIENTATION
SEARCh FOR ALTER~.IATE LuCATION (MOVE)
SLARCH FuR LXCIIA,IGE PARTNER
t_~ GENERAL CELL ASSEMBLY IS SMALLER DO0

I<AKE THIS PLACEI'IENI CORRECT
13REAl,
i IjD L~

ELbE DU
~LS1ORE P~EVIOUS PLACEMENT
L,~L bU

[,~b REPEAl
LRD PLALI IhPROVEMLrll

~;;I3 PLAL[

Figure 7. Placement Algorithm for Locating Modules
in a General Cell Assembly.

Routing

Several features combine to place very severe
requirements on the routing function in the general
cell assembly. First, the program must work auto-
matically, since there is no interaction at this level
in the design sequence. Second, 100% routing comple-
tion is a requirement. This is especially important
in VLSI where there are a large number of inter-
connection nets. In fact, this requirement separates
the IC layout and the printed circuit board layout
problem. For printed circuit boards, the board area
is specified and the objective is to optimze the com-
pletion rate. For IC's, the completion rate is spec-
ified (100%) and the objective is to minimize the
area.

Many techniques are available for routing. The most
important methods fall into two classes. Search
methods (primarily derivations of the Lee and

Bightower ~ethods) attempt to serially connect nets
to build up all interconnections. In general~ these
methods suffer from completion problems because prev-
ious interconnections can block a succeeding one.
Methods have been developed to enhance completion
rates; these methods in general, consist of rip-up
and re-route and adding extra tracks (Refs. 13 & 14).
For complex topologies~ 100% route completion is dif-
ficult to obtain and the result can be wasted area
because there is no global optimization step. Channel
routing techniques have been successfully used in
systems which require 100% completion; however, the
cost is a restriction in layout topology. Layouts
using channel routers have taken the form of modules
placed in horizontal rows and vertical columns.

The routing approach used for a general cell as-
sembly finds a loose route specification for all
interconnection nets and then assigns individual
tracks using channel routing techniques. This two-
step procedure approximates a parallel router.

The loose routing phase finds a strategic route
on the subchannel intersection graph for each inter-
connection net and includes an explicit optimization
step to reduce area. Further, since nets are assigned
to channels~ but not to specific trscks~ rip-up and
re-route is easy. The channels have infinite track
capacity and 100% route completion is guaranteed.
Loose route determination is a complex problem for a
general cell assembly, since there are usually many
acceptable ways to route a net. However~ the best
path cannot be determined without considering the
interaction with other nets. The longest route in
geometric length may not add any incremental area to
the chip because it does not pass through a position
of maximum track density on a critical channel.

The loose routing phase uses the subchannel
intersection graph. Weights are assigned to the arcs
of this graph to indicate the incremental area that
would be added to the general cell assembly if an
additional track was used in the subchannel associated
with the arc. All noncritical subchannels and sub-
channels of a critical channel which do not contain a
position of maximum track density are assigned a
weight of zero because no area would be added to the
general cell assembly if a track on this subchannel
was used. Subchannels of critical channels that con-
tain a position of maximum track density are assigned
a large weight because an extra track would add to
the area of the general cell assembly. Pins of the
net are added as nodes to the subchannel intersection
graph and the weights are adjusted for the affected
subchannel arcs. The remaining problem consists of
determining an interconnection tree which connects
the nodes corresponding to the pins of the given
interconnection net to minimize the sum of the weights
on the arcs used.

Implementation of the loose routing algorithm
uses a constructive initial solution followed by it-
erative improvement. The constructive routing step
locates an initial route for each interconnection net
by: (I) selecting the net to be routed from a sel-
ected subset 9 (2) determining the weights for the sub-
channel intersection graph~ and (3) adding pins to
the subchannel intersection graph as described above.
The pins for each net are connected as a sequence of
two point paths using shortest path algorithms. When
all nets of the current set have been routed, a new
set is selected and the process is repeated until an
initial route has been found for all nets. Iterative
improvement is accomplished as follows: First, the
size of the general cell array is determined and the
critical channels are identified using the channel

2 1 1

position graphs. Weights are assigned to the arcs of
the subchannel intersection graph and a segment of a
net is identified which contributes to the size of
the general cell array. The identified segment is
removed from the data array and the remaining portion
of the net is added to the subchannel intersection
graph with the connected vertices fused. The two
parts of the net are then interconnected using a
shortest path algorithm~ assuming the other nets and
area of the assembly are fixed. If an area reduction
is produced~ the new loose route for the net is ac-
cepted; otherwise~ the old route is restored to the
data array. The loose route algorithm is summarized
in Figure 8.

LOOSE ROUTE DETERF]INATION
INITIAL LOOSE ROUTE

FOR EACH INTERCONI~ECT]Or; NET DO
DETERMh'IE LOOSE ROUTE FOR THIS NEI
END DO

END INITIAL LOOSE ROUTE
LOOSE ROUTE II'IPROVEMENT

FIN[; SIZE AhD CRI'IICAL CHAN(~ELS
REPEAl UNTIL STOPPINC CO~¢[qllON b[_)

E IND POSI I IoN. ~ OF I~AX TRACK bL;;SI IY
CHOOSE NET TO RE-iRuUIE
RU'IOVE tiLT FRU~ UATA
ADZ' PINS OF THIS IIET TO SUB-ChAU,IEL

I~ITERSEEI ION ~RAPR
ASSIGN WEIGHIS TO SUE-CHA~NEL IH/LRSECI{U;I

GRAPR
FIND LOOSE ROUIE FOR TItlS NET
~-IND SIZE AhU CklTICAL ChAIWNI.LS ~-dhl

['~Ob I F ICAI ION
LF SIZE IS S~.IALLER DO

ACCEPT CHAi~GE 1o l'AIS ',,El
E N~ DO

ELSE DO
REJECT CHAI~GE IO Ibis bET
END uo

END REPEAT
E~ LOOSE ROHIE IMPRUVEMLNI

Ei'ID LJOSE ROUTE UEII_R,~I!~AIIOL

Figure 8. Routing Algorithm for DetermLning Loose
Routing Paths for Nets in a General Cell A~sembly.

Following completion of loose route, the in-
dividual nets are assigned specific tracks within the
channels. The extended channel routing discussed
previously is used to complete the detailed routing
within each channel.

SUMMARY

The methods employed in SICLOPS to design com-
plex masks for integrated circuits have been
described. The code is being implemented on a DEC i0
computer and has been designed to provide a structured
approach for the layout of complex IC's with the
flexibility to design IC mask layouts ranging from
very simple circuits containing a small number of
standard cells to very large IC's involving the nest-
ing of large numbers of assemblies containing
standard cells and macrocells. Since the system of
programs is being implemented in stages, an entire
chip design has not been completed. However, the
algorithms used for placement and routing have been
verified for typical general layout configurations.

Although specific improvements in the layout ef-
ficiency are difficult to quantify, the initial goal
for the program is to generate a CMOS IC layout using
a silicon gate technology which is approximately a
factor of five higher in device density than a metal
gate technology for combinational logic circuits.
This improvement is produced by the combined effects
of using new cell design concepts, improved design
tolerances~ and improved placement and routing
algorithms.

ACKNOWLEDGMENT

The authors would like to thank Professors Ro W.
Dutton and W. M. vanCleemput of Stanford University
for their helpful discussions and suggestions con-
cerning the architecture and development of a general
IC layout code and guidance during the initial phases
of the code development.

REFERENCES

I. A. Feller, "Automatic Layout of Low-Cost Quick-
Turnaround Random-Logic Custom LSI Devices,"
Proceedings of the Design Automation Conference,
p. 79, June 1976.

2. R. L. Mattison, "Design Automation of MOS
Artwork," Computer, p. 21, January 1974.

3. J.G.M. Klomp, "CAD for LSI-Production's Interest
in Its Economics," 13th Design Automation
Conference, June 1976.

4. G. Persky, D. N. Deutsch, and D. G. Schweikert,
"LTX-A System for the Directed Automatic Design
of LSI Circuits,"Proceedings of the Design
Automation Conference~ p. 399, June 1976.

5. H. Kato, H. Kawanishi, S. Goto, T. Oyamada, and
K. Kani, "On Automated Wire Routing for
Building-Block MO$ LSI," Proceedings ISCAS, p.
309, April 1974.

6. B. T. Preas and C. W. Gwyn, "Architecture for
Contemporary Computer Aids to Generate IC Mask
Layouts," Eleventh Annual Asilomar Conference on
Circuits, Systems, and Computers, November 1977.

7. C. W. Gwyn, "A View of Integrated Circuit
Design," Conference on Industrial Integrated
Circuit Design," California Institute of
Technology, May 1977.

8. W. M. vanCleemput, "An Hierarchical Language for
the Structural Description of the Digital
Systems," Proceedings of the Design Automation
Conference t p. 377, June 1977.

9. W. M. vanCleemput and E. Slutz, "InitialDesign
Considerations for a Hierarchical IC Design
System," Eleventh Annual Asilomar Conference on
Circuits, Systems, and Computers, November 1977.

I0. B. W. Kernighan, D. G. Schweikert, and G. Persky,
"An Optimum Channel Routing Algorithm for
Polycell Layouts of Integrated Circuits," Design
Automation Workshop Proceedings, p. 50, June 1973.

II. T. Asano, T. Kitahashi, K. Tanaka, H. Horino, and
T. Amano, "A Graph-Theoretical Approach to the
Routing Problems�" Electronics and Communications
in Japan, Vol. 56-A9 No. 12, 1973.

12. D. N. Deutsch, "A Dogleg Channel Router,"
Proceedings of the Design Automation Conference~
p. 425, June 1976.

13. R. L. Mattison, "A High Quality, Cost
MOS/LSI," 9th Design Automation
Proceedings~ p. 94, June 1972.

Router for
Workshop

14. F. Rubin, "An Iterative Technique for
Wire Routing," llth Design Automation
Proceedings~ p. 308, June 1974.

Printed
Workshop

212

