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ABSTRACT 

This paper presents an analytical model for 
projecting the yield loss due to random delay 
defects for modules or VLSI packages containing 
multiple semiconductor chips. A module to be 
analyzed is characterized by distribution of 
path delays. Statistical analysis is applied to 
obtain the distribution of delays caused by 
defects in logic circuits of LSI chips. The 
model usas these two distributions to calculate 
the probability that a module contains a path 
that do.os not meet the system timing 
requirements. All inputs to the model can be 
obtained much earlier than the availability of 
modules for actual testing. Therefore expected 
module yield loss due to delay defects can be 
projected before the modules are actually 
manufactured. 

In high-performance large computer 
systcmstll statistical techniques are used to 
determine the cycle time (which is the maximum 
time allowed for propagation of signals from 
latch to latch). The statistical techniques 
take into consideration the normal variation in 
delays of logic circuits and wiring. Random 
manufacturing defects such as transistor 
emitter-collector shorts, open Schottky diodes, 
contact opens, etc. cause the logic circuits to 
switch at speeds slower than normal. Faults 
caused by such defects are called AC or delay 
faultsf2,33. An AC defect causes an increase in 
the delay of the paths going through ths 
circuit. We consider a system that is packaged 
using several mU3 ti-chip modules. Each module 
contains several LSI chips. A module can fail 
in a system environment if it contains a system 
path whose delay exceeds the cycle time. 
Whether a module failure occurs will depend on 
the size of the defect (in nano seconds) and the 
delays of the paths affected by the defect. The 
problem we are investigating is that, given that 
the LSI chips that make up the module have a 
certain probability of having AC defects in 
them, what is the probability that the module 
would fail in the system? Fror a manufacturing 
point of view , WC) would like to ensure that no 
more than a given fraction (a small percentage> 

of modules fail due to AC defects. By 
monitoring the manufacturing processt we can 
ensure that the probability that a logic chip 
contains an AC defect is low and that the 
magnitude of a delay fault is small (a few 
nanoseconds or lcss1. However. this does not 
guarantee that the probability of AC failure of 
a module that contains, say, 100 chips would be 

low. To be able to control module AC failures 
under the assumptions stated above, WC develop a 
mathematical model to calculate the probability 
that a module would fail to meet system timing 
requirements due to an AC defect. This model is 
based upon chip level information on AC defects 
and statistical characterization of the paths on 
the module. Using the model, we can project the 
percent of modules that would fail to meet 
system timing requirements before making a 
single module. This is important because 
analysis of AC problems in multi-chip VLSI 
modules is complex. Without the model one may 
have to manufacture and test a large number of 
modules to determine how many fail the test. If 
a significant number of modules arc found 
defective, we need to determine whether the 
failures are due to random AC defects in a chip 
or some other type of defects on the chips or 
the substrate. Therefore the cost of detecting 
module AC failure problems by module testing is 
prohibitive. The model described in the paper 
provides a cost-affective and convenient way of 
analyzing the expected module fallout due to AC 

defects. 

In what follows, the probability that a 
module fails in the system due to an AC defect 
is denoted by ACQL. In section II, wa define 
the concept of system sensitivity and give an 
equation for ACQL in terms of system 
sensitivity, the number of circuits on the 
module. and the probability that a circuit 
contains an AC defect. We describe the concepts 
of distribution of path delays on a module in 
section III, and the AC defect size distribution 
function in section IV. These concepts arc 
crucial to understanding the mathematical model 
for calculating system sensitivity, which is 
presented in section V. In section VI. wa study 
a typical multi-chip module to show how the 
model is used in the analysis of ACQL. We also 

study the effects of defect delay size and the 
module path delay distribution on system 
sensitivity and ACQL 
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II SYSTEM SENSITIVITY - JXI. DISTRlBUTION OF PATH DELAYS 

For a given circuit i on a nodule WC define 
system sensitivity a S(i), as the average 
probability that when there is a random AC 
defect in logic ,circuit i on the module. it 
causes the module to fail. In defining the 
system sensitivity for a circuit, the average is 
taken over all possible defect sizes, and the 
rest of the circuits on the module arc assumed 
defect free. We shall consider the computation 
of system sensitivity in section V. Here WC 
present how we can express the module ACQL in 
terms of system sensitivity S(i). Let N be the 
number of logic c:ircuits on the module. We 
assume that each logic circuit is equally likely 
to have an AC defect. The probability that a 
logic circuit contains an AC defect is p. The 
value of p is generally low and the chances of 
two AC defects in a single logic path are 
therefore low. We assume that if nultipla AC 
defects occur on a module. they arc on distinct 
system paths. From the definition of system 
sensitivity of circuit i, it follows that the 

probability that module AC failure occurs due to 
an AC defect in circuit i is p S(i). 

Let E(i) be the event that circuit i is either 
AC defect free or contains a defect that does 
not result in module AC failure. PI E(i) 3, the 
probability of E(i), is given by 

PI E(i) 1 = 1 - p S(i) 

Now, the probability that the module AC failure 
does not OCCUI, P(good1. is same as the 
probability that each of the H independent 
events E(i) occur. Therefore. 

N 
P(good) = IT (1 - p S(i)) 

i=l 

But. from the definition of ACPL, 

ACQL = 1 - P(good1 

Therefore, 

ACQL = 1 - ?T (1 - p S(i)) 
iZ= 1 

(1) 

Before we can present the matheaatical 
model for calculating S(i). we describe the 
concepts of distribution of path delays on a 
module (in section III), and describe the AC 
defect size distribution (in section IV). These 
concepts are crucial to understanding the 
mathematical model. 

A simple example of interconnection of 
logic blocks on a module is shown in Figure 1 
which serves as the basis for the discussion. A 
block represents a logic circ:uit. The number 
inside the block is the block delay. Thus, for 
example, the time taken by the signal to get 
from PI1 to PO in Figure 1 is 4. There arc two 
PIs and one PO. The blocks through which the 
signals pass in going from a PI to a PO define a 
path. The delay of the first path (which goes 
through blocks AA, BA. and CA) is 9 and the 
delay of the second path ( which goes through 
blocks AB. BB, and CA1 is 5. 

AA BA 

AB BB 

Figure 1. Example of a Logic Network 

Consider a set of modules that arc 
logically identical and AC-defect-free. Because 
of variations in the manufacturing process, the 
actual delay of a given logic .block varies from 
module to module. Paths on such modules arc 
characterizedLl3 by computing the mean and 
variance of the path delay. and the path delay 
of a given path is a random variable with normal 
distribution. Timing analysis programst 13 

identify the longest path through a block and 
provide the following information on every 
block. 

1. flean delay (n(i)) for the pnth. 
2. Variance of the path delay distribution. 

The mean delay, m(i), varies from block to 
block. In large multi-chip modules the variance 
of path delay is approximately constant. 
Therefore, in our analysis we use a single 
number z to denote this variance. 

To characterize a module we use timing 
analysis to determine z and m(i) for each 
circuit i. Let w(x) be the number of blocks i 
which have m(i) equal to x. w(x)/ N is the 
probability that a randomly chc.sen circuit will 
have m(i) = x. A convenient way to show the 

variation of m(i) on a module is to plot the 
distribution of m(i). An example of this 
distribution is shown in Figure 2. The Y value 

in Figure 2 is w(x). The function w(x) will be 
used in section V. 
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V. MATHEMATICAL MODEL FOR CALCULATING SYSTEM 
SENSITIVITY 

Figure 2. Distribution of mean path delay 

IV. DISTRIBUTION OF DEFECT SIZE 

The size of an AC defect is the additional 
delay in the switching time of a circuit due to 
the defect. Methods of measuring the circuits 
to determine the distribution of the size of AC 
defects in logic circuits have been discussed in 
References 3,4 and 5. They use in-line process 
monitoring to determine the probability of an AC 
defect and the size of a defect. Data are 
collected over a large number of circuits and 
the distribution is obtained. An example of a 
typical defect size distribution is shown in 
Figure 3. The defect size distribution gives 
f(d), which is the conditional probability that 
given there is an AC defect in a circuit. the 
size of the defect is d. 
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Figure 3. Distribution of size of ac defects 

Consider a circuit i for which the me an 
path delay is m(i) and the variance of path 
delay is z. Suppose an AC defect of size d 

affects the circuit. The effect of the defect 
is to change the mean path delay from m(i) to 
m(i) t d for a path passing through the circuit. 
So the delay of this path in any particular 
module is a random variable, X(d), which has a 
normal distribution with mean equal to m(i) + d 

and variance equal to z. Let system cycle time 

be C. Those modules for which X(d) exceeds C 
would fail because they have a path whose delay 
exceeds the cycle time. Therefore, the 
probability that the module fails when a defect 
of size d affects circuit i. Q(i,d), is 

P(i,d) = Prob. I X(d) > C 3 

From the definition of S(i), 

(2) 

S(i) r C f(d) Q(i.d) 
d 

(3) 

X(d) is a random normal variable with mean 
m(i)+d and variance z and hence, the right-hand 
side of Equation 2 can be evaluated for specific 
values of n(i) , d and I by using statistical 
tablesl61 or computer programsI71. f(d) can be 
obtained as discussed in section IV, and we can 
use Equation 3 to get S(i). 

Suppose the defect distribution and cycle 
time are fixed and we want to evaluate system 
sensitivity. For a fixed value of f(d), z and 
C. S(i) depends only on m(i). Therefore, all 
circuits that have the same m(i) would have the 
same S(i). We now describe how this fact can be 
used to simplify Equation 1 and the computation 
of system sensitivity. 

We can group circuits into classes. where 
all circuits in a class have the same m(i) 
value. Let R(x) be the set of values of i for 
which m(i) q x. One calculation is required to 
determine S(i) for all circuits i in set R(x). 
Let SS(xl be the system sensitivity of each 
circuit i in R(x). From section III, w(x) is 
the number of circuits for which m(i) is equal 
to x. 

Since I R(x) I = w(x), we get 

W(X) 
71 (1 - p S(i)) = (1 - p SS(X)) (4) 

ieR(x) 

Using Equation 4, we can rewrite Equation 1 as 

ACQL = 1 - 71 (l- p SS(x)) (5) 
xeD 
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where D is the set of distinct values of m(i?. 
Equation 5 can be simplified by observing that 
when p is small higher powers of p can be 
neglected, and we get 

ACQL = C p SS(x) WC%> (6) 
XED 

We define the average system sensitivity of a 
module. S', by the following equation 

S’ = c SSCx) w(x) / N (7) 
XED 

Using Equation 7, we can rewrite Equation 6 as 

AWL = p N 5' (8) 

Therefore, to compute ACQL. we first compute 
SS(x) for each distinct value x and then either 
use Equation 5 or if p is small use Equations 7 
and a. 

The mathematical model gives a quantitative 
relationship between various design and 
manufacturing parameters and ACQL. From 
Equation 8 we know that ACQL is a linear 
function of p, N,, 5’. Suppose one factor is 
changed and the remaining factors in Equat.ion 8 
are held constant.. We can project the effect of 
the factor on AWL. For example, if defect 
probability doubles, ACQL will double; if the 
number of circuits on a module double, ACQL will 
double. 5' is a function of the defect size 
distribution, the mean path delay distribution 
and the cycle tine. We reduce ACQL by reducing 
5' or p. Various alternative ways of reducing 
ACQL can be evaluated using Equation 8. In the 
next section we show some numerical examples of 
how the model can be used to analyzt ACQL. 

VI. EXAMF'LES OF ACQL ANALYSIS 

An APL package is available for ACQL 
analysis using theI mathematical model developed 
above. Input to the APL program are the cycle 
time, the defect size distribution and the path 
delay distribution. We now consider a numerical 
example to show the output of the APL model. 

The module to be analyzed is characterized 
by the distribution of mean path delay shown in 
Figure 2. There are 16,800 logic circuits on 
the module. The cycle time is 22 nanoseconds. 
The standard deviation of mean path delay is 1.5 
nanoseconds. The distribution of the size of AC 
defects is shown in Figure 3. The probability 
that a circuit contains an AC defect, p, is 
.OOOl. 

To calculate ACQL. we first calculate the 

system sensitivity. For each distinct value of 
mean path delay, SS(i) is calculated and shown 

IlEAN PATH DELAY MS.) 

Figure 4. System Sensitivity vs. Rem Path Delay 

in Figure 4. The chart shows, that as the mean 
path delay increases the a,ystem sensitivity 
increases exponentially. Paths that have mean 

delay of 17 ns are 4 times more prone to AC 

failures than paths that have 16 ns mean delay, 
when we hold all other factors constant. We 
shall discuss the implications of this 
observation later. 

Using Equation 7, we get S', the average system 
sensitivity. as 0.00178. This says that on the 
average 1.78 module AC 
1000 AC defects. From 

ACQL = .003 

or 3 out of every 1000 
AC defects. 

failures occur for every 
Equation 8 we get, 

modulss would fail due to 

We next consider the set of modules that 
fail due to AC defects and ask the question, 
what percent of them were due to a given size 
defect? The answer is shown in Figure 5. 

60 
r 

AC OEFECT DELAY SIZE INS.) 

Figure 5. Module failure breakdown by defect 
size 
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Approximately 55% of module AC failures were due 
to ft.2 ns defects. But, only 1% of defects are 
4.2 ns defects (see Figure 3.1. In contrast, 
approximately 5% of module AC failures ar* due 
to 0.2 ns defects, and 49% of defects arc 0.2 ns 
defects. This observation tells us that the 
larger the size of the defect, the more likely 
it will result in an AC failure. To further 
understand the relationship between defect size 
and the likelihood that it results in a module 
failure, we calculate the probability that a 
module will fail given that it contains a single 
defect of a given size. This probability is 
shown in Figure 6. For small defects, up to 5 
nanoseconds, we set that the probability that a 
single defect causes a module failure increases 
exponentially with defect size. Thus WC can get 
a 4 times reduction in ACQL by lowering the 
defect size from 3 to 2 nanoseconds. for 
example. 

When a module fails due to an AC defect. wc 
want to determine the failing path. On a VLSI 
module there arc hundreds of thousands of 
paths. Each has a different mean dcl.ay value. 
The designers would like to know what effect the 
mean path delay has on the likelihood of an AC 
failure. It may bc easy to make design changes 
on some paths but not on others. The term w(x) 
SS(x) in Equation 6 is proportional to the 

likelihood of an AC failure due to a path whose 
mean delay is x ns. The conditional probability 
that if a module fails the failure is in a path 
with mean delay x is given by : 

w(x) SS(x) / c w(x) SSCX) 
XED 

This probability is shown in Figure 7. Wc 
see that 55 % of module failures arc due to 
failures in path with mean delay of 17 ns. WC 
also note that the longer the mean path delay, 
the more likely that the path would fail due to 
an AC defect. 

We next consider the effect of variation in 
the variance of the path delay. Dus to changas 
in material or the semiconductor manufacturing 
processt the variance of the path delay can 
change. In Figure 8, we compare three different 
values of the variance of the path delay. Wc 
see that the system sensitivity (and hence ACQL) 
increases exponentially with increase in the 
variance of the path delay. 

VII. SUMmARx 

AC defects in logic chips can cause a 
multi-chip module to fail. ACQL <the 
probability that a module fails due to an AC 
defect) is a function of the path delay 
distribution. defect size distribution. 
probability of defect ooourrenoc. and the cycle 
time. An analytic model for projecting ACQL was 
presented. The model can be used to determine 
the factors that have the most effect on ACQL. 

o.ml ’ ’ ’ ’ ’ * 1 
0 2 1 6 0 10 

AC DEFECT DELAY SIZE OiS) 

Figure 6. Probability of a Module failure due to 
a single ac defect 
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Figure 7. Module failure breakdown by mean path 
delay 

Figure 6. System Sensitivity vs. standard 
deviation of path delay 
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It also allows us +o determine what changes in 
path delay distribution. defect size 
distribution and cycle time are required to meet 
a grven ACQL value. 
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