
SKILL’“: A CAD System
Extemsion Language

Timothy J. Barnes

Cadence Design Systems, Inc.
555 River Oaks Pakway

San Jose, California 95 134

Abstract Related Work
SKILL is a programming language that supports both

command entry and procedural customization in

OpusTM Design Frameworkm. After briefly consid-

ering some related work, we examine the requirements

that motivate the provision of a programming language

available to the user and describe some of the technical

All CAD systems provide some facility fol
customization: Calma GPL [Sm75] and AutoCAD
AutoLisp [SR89] are characterized below as typical
examples. However, there are many other CAD system
extension languages that we do not have space to
consider: for example, EDA Systems Inc. E-machine
[BG87] and the Berkeley CAD tools [Ha%] VemLisp.

characteristics of the language design and implemen-
tation. Finally, we describe our experience with the

language and outline future work. A number of pro-

gramming examples are appended.

Calma GPL

Introduction
The design of a modem system for Electronic Design
Automation (EDA) is motivated by two opposing
concerns. The first of these is efficiency. Layout,
synthesis, and simulation algorithms, for example, are
dominated by concerns for efficiency. On the other hand,
it is critical that the system beflexible because changing
implementation technologies, design tools, and
methodologies require rapid customization.

GPL is the extension language for the Calma GDSII
product. Its syntax is Algol-like, and it functions both
as the command language and as a programming
language. GPL provides both read and write access to
the database and supports an interface to the underlying
programming language in which GDSII is implemented.
Both functions and procedures are available, but they are
limited to a maximum of two arguments.

GPL is somewhat limited in data management terms,
providing no garbage collection.

AutoCAD AutoLisp

We use the term extension language to refer to a
programming language that explicitly supports
extensibility of the CAD system.

This paper describes one such language. SKILL is
designed to be invisible until needed while still
providing the user with a level of tool and design
control that cannot otherwise be achieved.

AutoCAD AutoLisp language provides both facilities
for command definition and extension language
programming. AutoLisp also provides special constructs
for command definition, which defines syntax
independent of the underlying Lisp language. This means
that there is a difference between extension language
programs and commands, though both may be
implemented in the same language.

SKILL has been phenomenally successful both within
the company and for our customers. Programs of over
30,000 lines in length are in current use, ranging in
function from netlisters to module generators to a
Prolog interpreter implemented in SKILL. SKILL is
widely used both as a rapid prototyping tool and as the
principal implementation language for a number of
products.

Requirements
We can divide the requirements for an extension
language into four major areas:

D Command definition and modification
Cl Control structure
Cl Access to CAD system services
c1 Environmental requirements

Paper 16.1
266

27th ACM/IEEE Design Automation Conference@

Q 1990 IEEE 0738-l 00X190/0006/0266 $1 .OO

Command Definition
CAD software is extremely complex. The command set
is inevitably large. In different circumstances, one may
wish either to disable some commands, to provide
simplified versions of commands, or to add new
commands built either from previous commands or
from more primitive system functionality.

Most systems support some mechanism through which
commands can be modified. In Opus, however, SKILL is
not only a fully featured programming language; it is
also the command language. This has the obvious
advantage that the user has to learn only one language in
order to execute commands, define new commands, or
write a program to traverse the database, for example.
This appealing simplicity, however, fails to account for
the different syntactic requirements of an interactive
command language and a full-fledged programming
language.

In detail, the requirements for a command language are
the following:

0

cl

Cl

0

cl

Very simple syntax: While modem CAD systems
do not require users to type commands in general,
there are occasions where this input method is used
by experienced users. A simple, clean syntax is a
valuable productivity aid.

Support for graphical input: It should be possible
to combine textual and graphical (pointer-based)
command input in the same command. This requires
clean integration of graphical event handling with
the command interpreter.

Accelerator support: Facilities to bind short
combinations of key-press and pointer-click events
to commands offer a valuable speedup of command
entry.

Macro generation: The ability to group a number
of consecutive commands into a single new
command provides a simple kind of customization
that is particularly appropriate for repetitive
operations.

On-line help: Ideally there should be some
automatic link between command entry and on-line
help. It should be possible at any time to find out
how to proceed with the current command or to
find out which commands are available for some
purpose. Context-sensitive help facilities require
that the help system be integrated with the
command interpreter.

It is important to recognize, that although all command
entry ultimately takes place through the command
interpreter, commands originate there infrequently. The
command interpreter is backed up by an extensive set of
user interface facilities, managing menus, forms, dialog
boxes, and a variety of editors, all of which generate
commands in response to user interaction.

Control Structure
To support applications of useful complexity, the
extension language must provide a full set of control
structures. A minimum set includes procedural
abstractions (function definition), control flow
operators (if, while), iterative constructs such as for
loops, the ability to perform recursive evaluation, and a
mechanism for clean recovery from errors. Error
recovery is a particularly difficult problem when the
extension language is integrated with the underlying
implementation language.

Access to CAD System Services
In order to be useful, an extension language must
provide access to all the facilities of the CAD system.
This includes the capabilities of both the CAD
framework and those of the tools. It should be possible
to write a single program in the extension language that
makes use of user interface facilities, accesses the design
database, and invokes primitive capabilities of one or
more CAD tools.

The extension language should also provide access to
operating system facilities and, through some form of
Inter-Process Communication, offer an interface to
CAD tools and other applications running in another
address space.

Finally, the extension language should provide access to
the meta-data associated with design methodology
management and the version and project control aspects
of data management.

A secondary, but very important requirement associated
with access to CAD system services is the provision of
appropriate datatypes to model the objects manipulated
by the CAD tools. This includes window objects and
database objects, for example. This suggests the
provision of facilities to map new objects into the
extension language, perhaps through an interface to the
underlying implementation language.

Environmental Requirements
In addition to the functional requirements, we identify
a number of requirements that have to do with the
environment in which the extension language is used:

Cl Access to the extension language from the
underlying implementation language

0 Ability to register application functions with the
extension language to provide new extension
language functionality

0 Garbage collection
Cl Debugging and trace facilities
Cl Performance analysis tools

The Structure of SKILL
SKILL is built upon a dynamically scoped Lisp
interpreter fashioned after Franz Lisp [FS831. We chose

Paper 16.1
267

an interpreted language because it is easier to provide a
supportive development environment with an inter-
preter than with a compiled language. In addition, our
software is ported to many different machines, and we
were unwilling to undertake the development and
maintenance of code generators for an unknown set of
current and future architectures.

Run-time speed was not one of the requirements listed
in the previous section. Obviously there comes a point
where a piece of software runs so slowly that it is
impossible to undertake tasks of useful complexity;
however, it is our experience that most programmers
are not limited by the interpretive nature of the
language. The decision to use Lisp was motivated by the
very simple evaluation model of that language,
combined with the great flexibility and extensibility it
provides. We endeavor to hide much of the syntactic
flavor of Lisp behind a custom-built parser that
supports an expression syntax reminiscent of C, the
language with which CAD people, if not design
engineers, are most familiar.

We do not believe that C programming language [KR78]
is an appropriate extension language for several reasons.
First, C is not an extensible language. It provides
procedural abstractions and support for complex data
structures, but no support for the creation of new
control structures. Second, C syntax is extremely
complex. This is not appropriate for either a command
language or an extension language to be used by
nonexperts. Finally, of course, a C compiler is available
on the platforms we support, and interface libraries are
available for those who wish to go to the trouble of
writing C programs. Such a choice is motivated by
concern for efficiency rather than flexibility.

The choice of Lisp as the basis for our extension
language immediately meets a number of the
requirements:

Cl An interactive readtevallprint loop that can be used
as a command input mechanism

Cl A full set of control structures as specified above
0 An intrinsically extensible language, supporting

not only the addition of new functions, but also the
provision of new control and data structures

0 Automatic memory allocation and garbage
collection

In addition to the list above, SKILL provides the
following:

0 A broad set of operating system functions
0 An interactive debugger
0 Trace and performance analysis facilities
0 A function registration mechanism by which new

commands can be added
0 Access to SKILL functions and data structures from

within C programs

0 An inter-process communication protocol through
which bidirectional communication is supported
between SKILL programs and applications running
in a different address space

0 An integrated error-management strategy that
works across the C - SKILL boundary

0 A system for creating new datatypes

Types and Type Checking in SKILL
One way in which SKILL differs from other Lisp-like
languages is in the provision of automatic type checking.
This is a safety net that simplifies application code by
automating a number of run-time checks that would
otherwise need to be coded explicitly.

The primitive types supported by SKILL include the
following:

0 integers
0 floating point numbers

0 lists

0 symbols
0 strings

0 ports (a stream-like abstraction for input/output)

0 window objects
0 database objects

Each object type has a special letter associated with it
that is used to provide type information in function
definitions and also as a format character for formatted
input or output.

In addition to the built-in types, we provide a “user-
defined” type system. This allows programmers to
encapsulate new objects within the SKlL,L environment
for specific purposes. These are implemented in an
object-oriented manner. Their internal structure is
hidden from SKILL, but a set of “methods” is provided
to support standard operations such as field access,
initialization, and comparison.

Special Syntactic Facilities
Because we use SKILL both as a command language and
as a programming language, we have developed a parser
that is much less restrictive than the usual Lisp parser.
Much of the additional syntax is similar to operators in
the C Programming Language; however, special syntax
simplifies some CAD-specific operations. The reason
for providing C-like syntax is simply that designers and
CAD engineers tend to be more familiar with C than
with Lisp.

In summary, our goals in providing a “new” syntax
were as follows:

0 Eliminate Lots of Irritating Silly Parentheses,
thus simplifying typein

Paper 16.1

268

Cl Provide some of the special C functions to which
CAD developers and integrators have become
attached

0 Provide simple notations for common CAD-specific
operations

Cl Support infix representation of arithmetic and other
operations

Cl Continue to support the full Lisp language for the
experienced programmer

It is important to note that all the new syntactic forms
are generated through the parser, and that the output
from the parser is actually “normal” Lisp forms. We
do, however, provide a pretty-printer that formats the
internal representation in a manner consistent with the
input.

Syntactic Examples
By providing a new syntax layered on top of Lisp, we
were able to avoid designing a new language from
scratch, while providing some specific benefits to the
CAD user who is not familiar with Lisp.

Let us examine some of the special syntactic forms.

>x= 4.0 * sin(a + b * c)

This assignment statement is parsed into the following
Lisp form, which is then executed in the normal way:

(setq x (times 4.0 (sin (plus a (times b c)))))

Either form is legal input; most users prefer the
former, however.

> a.b
> a.b = c

The dot operator mimics C structure accessors by
mapping to a property list function. In the first case the
resulting expression would be (getqq a b). In the
second, the entire expression becomes a single call as
follows: (putpropqq a b c). These functions require
that the first element (a in this case) be a symbol, and
the property list involved is that of the symbol. We use
property lists in SKILL to model C structures with
named fields.

> a->b
> a->b = c

The arrow operator functions similarly to the dot
operator: however, the symbol on the left is evaluated
and its result is required to be a property list. We call
these property lists that exist as symbol values
disembodied property lists, or dpls.

> a->b
> a->b = c

The “squiggle-arrow” operator is a more sophisticated
version of the property list functions previously
described, it is CAD-specific in the sense that it applies
only to database objects. The advantage of this operator

is that the left-hand side can be a list of database
objects, in which case the function is automatically
mapped across the set. This provides a simple kind of
automatic iteration that is particularly useful. An
example is provided in the appendix.

> n:m

The colon operator is used as a simple way to define a
coordinate pair. n and m may be either constants or
expressions. The result of parsing, however, is a list of
two expressions, which upon evaluation becomes a list
of two numbers.

> n++

The postincrement operator provides the familiar C
behavior. We implement a special function that returns
the original value of its argument in addition to
incrementing the variable’s value.

>a==b

This operator is translated into the lisp equal function.
This is not necessarily the most efficient function to
use. If the arguments are atomic symbols, for example,
the eq function would be better. This is an example of a
minor efficiency loss due to the special syntax. The
SKILL == operator, however, compares strings and
other SKILL objects, so it represents a good
compromise with respect to our goals of simplicity and
flexibility.

Command Aliases
In addition to the above facilities, we provide an
aliasing mechanism that allows a user or programmer to
associate a new name with an existing command. This is
a simple way of reducing typing. For example, the
following expression, which may be typed in directly
or included in a startup configuration file, allows a
clock-watcher to type GT instead of getCurrentTime.

> alias GT getCurrentTime

The C - SKILL Interface
One very important objective in implementing SKILL
was to provide the developer with a real alternative to
C when creating new applications. In order to make this
work, it has been necessary io support the execution of
SKILL code from within C programs and the binding of
C programs into the SKILL world. These interfaces are
not without technical challenges. In particular, the
management of errors (error recovery causes drastic
changes in the execution stack) and the handling of
garbage collection require special care from both the
SKILL development team and the mixed-language
programmer.

Registering C Functions to SKILL
The interpreter is implemented in C, so a single
mechanism can be used both by the SKILL development

Paper 16.1
269

team and by the application developer to bind C
functions to SKILL function names. The rule is that C
functions that are callable from SKILL take a single
argument, which is a SKILL list. They also return a
result of the same type. We provide functions to
disassemble these lists from within the C routine.

When registering a function, the programmer provides
the following information:

P SKILL function name
0 C function name
0 Function type (lambda, nlambda, lexpr, macro)
0 Minimum number of arguments
Cl Maximum number of arguments
Cl Argument types

Writing SKILL in C
C programmers within the company are able to access
SKILL data structures and to execute SKILL functiaas
directly from their C code. A library of functions is
provided to construct and access SKILL data structures
and to evaluate SKILL expressions.

There are two difficult problems to solve in the con-
struction of this kind of interface:

Cl Error handling
Cl Garbage collection

Error handling is difficult because at any time we may
have a mixture of SKILL and C calls on the execution
stack, and error recovery frequently involves a long
jump back to a known state of the evaluator. While
unwinding the stack, it is necessary to ensure that data
structures created by both the C and SKILL worlds are
properly freed. SKILL handles this with a hierarchy of
error handlers, which may be implemented in either
SKILL or in C. When an error occurs, these handlers
examine each stack frame, performing any necessary
cleanup.

Garbage collection is an equally difficult problem.
When the garbage collector is invoked, it marks all
objects known to it. In practice this means all global
symbols and their contents and variables on the SKILL
execution stack. This does not include objects that may
have been allocated by C programs and stored in C
variables, perhaps during an incomplete calculation. We
soIve this problem by a variety of protection
mechanisms that allow the C programmer to explicitly
place protect pointers on the SKILL stack to ensure that
temporary SKILL objects are properly marked before
the sweep phase of the garbage collector is invoked.
The protection discipline must currently be manually
maintained, and failure to follow the rules can lead to
subtle bugs. A number of run-time tools help isolat:e
these problems during software development.

Paper 16.1
270

Usage and Experience
SKILL is widely- used within the company.. In
particular, all commands in the Opus system are
available in SKILL. This means not only that the
interface to all CAD system functionality is available,
in a single consistent way, but also that the:
programmer has available a11 the resources of our
software system when constructing new applications.
Apphcations within Research and Development include
the following:

0
0
0

0
0
0
0
0
0

Command definition and interpretation
User interface implementation and customization
Implementation and customization of primitive
editor functionality
Parameterized cell description
Structure compiler block and topology description
Module generation [LW%]
Analog system customization
Design Flow Management
Translator customization.

SKILL is also heavily used by our Application
Engineers. Their main uses of the language have to do
with extending the existing functionality 13~ building
relatively small programs to do things like repetitive
database modifications, interfaces to new tools, custom
netlisters, and backannotation.
That any one of these functions is supported within a
CAD system is not surprising; however, we believe that
the use of a single language for all of these functions is
a major achievement. The obvious benefit to the end user
of such a unified environment is a reduction in the
cognitive load associated with learning a large number
of tools.
SKILL provides a level of flexibility, integration, and
consistency within the Opus design system that we
believe is critical to our success in a rapidly changing
marketplace.

Future Work
The success of SKILL has led to a number of requests
for enhancements. Of these, the request for a compiler
is by far the most persistent. We regard this as an
endorsement of the language design because it implies
that users would prefer to write more performance-
critical code in SKILL rather than in C. Recause the
syntax of the language is separated from the internal
representation in a clean way, it is relatively
straightforward either to implement a compiler on top
of the existing engine or to replace the engine with
either a Scheme [SS75] or Common Lisp [St841
implementation.

We would also like to improve the C-SKILL interface,
eliminating some of the tricky details of storage
management, and to provide a package system similar to

that provided by Common Lisp. Name space control is
an important issue in a system where all the
functionality of all tools is available from a single
command environment.

Conclusions
SKILL is an absolutely central component of our Design
Framework product. Providing both a command
language and a fully developed programming language
with access to all the tools and services contained in the
Opus design system, it is the primary mechanism for
system customization. Perhaps the best indication of
our confidence in the language comes from our
customers: there are an estimated 1 ,OOO,OOO lines of
SKILL code in use throughout the world.

A

Acknowledgments
SKILL was originally developed by Larry Lai, Graham Wood,
and Steve Law. Of the many people who have contributed to its
success, special thanks are due to Carl Smith, Ed Petrus, and Ken
Friedenbach.

Appendix: Code Samples
The following examples exhibit only a few of the capabilities of
SKILL. They are intended to give the reader a flavor of the lan-
guage.

Command Entry
The following expressions are all legal commands in SKILL. The
parser contains some simple heuristics to distinguish functions
from variable references.

sin 34.0
qetcurrentwindow
x = qetCurrentWindow()
(qetcurrentwindow)

printf "Hello World\n"
setSkillPath(strcat("/tmp"

getSkillPath))

Observe that the functional style of SKILL allows nesting of
command and procedural forms in a natural manner.

Database Access
The following expression generates a list of the names of all the
instances in a given cell. It works as follows: Cell is a database
identifier. It has a property called instances that returns a list of
the database identifiers of its instances. Instances have a
property name, and the automatic mapping capabilities of the ->
operator causes the name property to be accessed for all
instances in the cell.

cell-Binstances->name
Next is an example that generates a list of all the objects with a
certain property, adds them to the selected set, and returns the
list. This is a typical small SKILL application that might be
written by a CAD engineer or designer.

procedure(findProp(name)
let((shapes)

shapes =
setoft s getEditRep()->shapes

s->STREAM\ PROPERTY\ 1
== name)

if(shapes then
selectObject(shapes))

shapes))

Factorial Function
There are two definitions for the factorial function. First, the re-
cursive definition:

procedure(factorial(n)
if((n==O)

then 1
else n*factorial(n-1)))

Now the iterative definition:

procedure(factorial(n)
prog ((f)

f=l
fort i 1 n (f = f * i))
return(f]

In the second example, the “super right bracket.” This simple
device automatically enters enough right parentheses to correctly
complete the current expression (in this case the procedure
definition).

References
[BG87] Brouwers, J. and Gray, M. “Integrating the Electronic
Design Process,” VLSI Systems Design, June 1987.
[FS83] Foderaro, J. K., Sklower, K. L. and Layer, L. “The Franz
Lisp Manual,” Chapter 6, Unix Programmers Manual
Suuplementarv Documents, 1984.

[Ha861 Harrison, D., et al. “Data Management and Graphics
Editing in the Berkeley Design Environment,” Proceedinps of
the IEEE ICCAD-86, 1986, pp 20-24.

[KR78) Kemighan, B., and Ritchie, D. The C Programmine
Language, 2nd Edition, Prentice Hall, Englewood Cliffs, NJ,
1978.

[LW86] Lai, L., and Wood, G. “Skill - An Interactive Procedural
Design Environment,” Proceedings of CICC ‘86, pp 544-547.

[Sm75] Smith, C. “Calma’s GPLTM Language- A Programming
Language for Custom, Turnkey Graphic Systems,” Proceedings
of the Fall 1975 IEEE ComDcon, 1975.

[SR89] Smith, J. and Gesner, R. Inside AutoLISP, New Riders
Publishing, Thousand Oaks, CA, 1989.

[SS75] Steele, G.L. and Sussman, G.J. “Scheme: An Interpreter for
the Extended Lambda Calculus,” Memo 349, MIT Artificial
Intelligence Laboratorv, 1975.

[St841 Steele, G., Common Lisu: The Language, Digital Press,
1984.

Paper 16.1

271

