
Heterogeneous MP-SoC –
The Solution to Energy-Efficient Signal Processing

Tim Kogel
CoWare Inc.

tim.kogel@CoWare.com

Heinrich Meyr
CoWare Inc. and

Institute for Integrated Signal Processing Systems
Aachen University of Technology, Germany

heinrich.meyr@iss.rwth-aachen.de

ABSTRACT
To meet conflicting flexibility, performance and cost constraints of
demanding signal processing applications, future designs in this
domain will contain an increasing number of application specific
programmable units combined with complex communication and
memory infrastructures. Novel architecture trends like Application
Specific Instruction-set Processors (ASIPs) as well as customized
buses and Network-on-Chip based communication promise enor-
mous potential for optimization.
However, state-of-the-art tooling and design practice is not in a
shape to take advantage of this advances in computer architecture
and silicon technology. Currently, EDA industry develops two di-
verging strategies to cope with the design complexity of such ap-
plication specific, heterogeneous MP-SoC platforms. First, the IP-
drivenapproach emphasizes the composition of MP-SoC platforms
from configurable off-the-shelf Intellectual Property blocks. On the
other hand, the design-drivenapproach strives to take design effi-
ciency to the required level by use of system level design method-
ologies and IP generation tools.
In this paper, we discuss technical and economical aspects of both
strategies. Based on the analysis of recent trends in computer ar-
chitecture and system level design, we envision a hand-in-hand ap-
proach of signal processing platform architectures and design me-
tholodgy to conquer the complexity crisis in emerging MP-SoC de-
velopments.

Categories and Subject Descriptors
C [Computer Systems Organization];
I.6 [Simulation And Modelling]

General Terms
Design, Performance, Measurement, Economics

Keywords
MP-SoC, Design Space Exploration, Signal Processing, Energy Ef-
ficiency, Network-on-Chip

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

Currently, there is a fundamental argument about whether or not
EDA industry will continue to exist in its traditional shape or in-
stead refocus and merge with the IP business. This discussion is
triggered by the excessive design complexity and financial risk of
leading-edge System-on-Chip design, which becomes manifest in
the transformation of the ASIC market into an Software centric
programmable SoC platform market. As less ASIC design starts
translate into less sells of ’RTL-and-below’ tools, this trend threat-
ens traditional EDA profitability. In the following, we briefly re-
view technological and economical implications of IP-driven ver-
sus design-driven SoC development in the context of signal pro-
cessing applications.

Technical Considerations
As further elaborated in the following sections, signal processing is
characterized by computationally intensive algorithms, demanding
bandwidth requirements and stringent cost and power dissipation
constraints. Together with high flexibility requirements, the major
metric for the implementation of signal processing applications is
the computational efficiency, i.e. the ratio of performance and cost.

In this context, coarse Common-Of-The-Shelf (COTS) IP blocks
are obviously disadvantageous from a technical point of view: Any
COTS processor architecture is either fixed or offers limited con-
figurability based on given architecture template, e.g. [37]. The
resulting overhead leads to suboptimal computational efficiency.

On the other hand, application specific dedicated logic blocks
and application specific instruction-set processors represent opti-
mal solutions in the efficiency/flexibility space. However, current
RT-level design efficiency and RT-level reusability prevents from
handcrafting SoC platform.

We argue, that this mismatch between design efficiency and ef-
ficiency of the design can be resolved by novel architecture gener-
ation tools. The design entry for this kind of tools is raised in ab-
straction to C-level Architecture Description Languages (ADLs).
Due to the restriction to a certain class of architectures (like e.g.
’processors’ [3] or ’buses’), ADL based architecture generators
achieve quality of results in the region of handcrafted RT-level im-
plementations, while preserving the full expressiveness of RTL.

Apart from increasing design efficiency by an order of magni-
tude, the ADL based approach also fosters design reuse: repre-
senting in-house IP blocks by means of a C-level ADL greatly re-
duces the effort for maintenance and integration into future design
projects. So from a technical point of view, this reconciles the dis-
crepancy of IP-driven and design-driven SoC development.

Economical Considerations
Today, signal processing based products like multimedia or wire-
less communications fiercely compete in consumer mass markets.

41.2

686

The resulting small profit margins in the order of only a few percent
make SoC design a highly cost sensitive endeavor.

Despite increasing mask production cost, the design effort still
dominates the Non Recurrent Engineering (NRE) cost by at least
one order of magnitude. Employing COTS IP offloads the block
implementation and often low-level SW development from the over-
all design effort. However, many other cost factors, like e.g. appli-
cation development, system integration, or physical design, are not
affected by the employment of COTS IP. Hence the significance of
IP-driven design cost savings highly depends on the actual project.

On the other hand, today’s royalty based business model associ-
ated with COTS IP further reduces already narrow profit margins of
system houses. Additionally, fixed or template based IP excludes
the ’design’ factor to achieve product differentiationand optimal
solutions. As a separate consideration, system houses feel the ne-
cessity to own and protect their IP, and hence become increasingly
reluctant to out-source design competence.

We argue that — apart from the individual profile of the com-
pany — the decisive factor for whether the IP-driven or the design-
driven approach prevails is the availability of right tooling. In the
remainder of this paper we further elaborate on architectural and
methodical trends to support this thesis.

2. SIGNAL PROCESSING PROPERTIES
We briefly highlight trends in multimedia and wireless commu-

nications as two major signal processing application domains.
In the multimedia domain, advances in processing capabilities

and multimedia algorithms together with increased user expecta-
tions fuels a constant proliferation of new multimedia standards
like digital audio decoding (AC3, OGG, MP3), video decoding
(MPEG2, MEPEG4, H.263, H.264, DivX, quicktime), and 3D gra-
phic processing (DirectX 9).

Apart from the multitude and dynamics of multimedia standards,
a flexible implementation platform is also mandatory to meet de-
manding cost constraints of converging consumer electronics de-
vices such as the Advanced Set-Top Box (ASTB). Here the pro-
cessing and communication fabrics have to be shared among the
multitude of supported multimedia applications to limit implemen-
tation cost.

The wireless communication application domain is characterized
by an aggressive use of digital signal processing to maximize band-
width efficiency. Again, a multitude of ever evolving standards
exists, each marking a local optimum in the multi dimensional pa-
rameter space spanned by implementation cost, mobility, energy
efficiency, performance bandwidth efficiency.

The above considerations of the different embedded application
domains with respect to SoC implementation can be summarized
into the following set of common trends:

• New features and value added services, together with the
heuristic logarithmic law of usefulness [36], lead to expo-
nentially increasing processing performance and communi-
cation requirements.

• The standards become more dynamic and sophisticated and
are introduced more rapidly. This calls for high flexibilityof
the SoC implementation to increase the time-in-market.

• For mobile applications as well as for cost sensitive con-
sumer electronic devices, energy efficiency becomes the pre-
vailing cost factor.

As discussed in the following section, heterogeneous Multi-Pro-
cessor SoC (MP-SoC) platforms are generally believed to optimize
the above mentioned conflicting performance, flexibility and en-
ergy efficiency requirements of demanding embedded applications.
The heterogeneity of future SoC implementations is driven by the
heterogeneity of the embedded applications itself, where each part

of the application has an inherent optimal implementation fabric.
Hence, in the course of an MP-SoC platform design the partition-
ing of a specific application is a task of major importance.

A first order partitioning into a control dominated domain and
a data dominated domain can be applied to any signal processing
application. This first order partitioning has major influence on
both the target processing and communication elements as well as
on the appropriate design methodology.

Control-Plane Processing
Control-Plane Processing is characterized by moderate performance
requirements, but on the other hand comprises huge amounts of
functionality calling for maximum flexibility. Example control-
plane processing tasks in the signal processing domain are, e.g.
configuration management, or user applications.

The control plane functionality is usually developed using an
architecture agnostic, software centric Integrated Design Environ-
ment (IDE) and state-of-the-art software engineering techniques
like Object Oriented Programming (OOP) in UML, C++ or Java.
To increase the reuse of the control plane Software across multiple
MP-SoC platform generations, the Hardware dependant Software
(HdS) portions are wrapped into a stack of middleware, RTOS, and
driver layers [20, 24].

The huge amount of functionality and little inherent parallelism
of control plane processing tasks usually prohibits the explicit spec-
ification of Task Level Parallelism (TLP). Thus, in order to gain
performance the designer relys on fine grain Instruction Level Par-
allelism (ILP) to be extracted by a VLIW compiler or by a super-
scalar processor architecture.

Data-Plane Processing
Data-Plane Processing is characterized by computationally inten-
sive data manipulations, calling for highest processing and com-
munication performance. Additionally, rapidly evolving standards
in all application domains impose increasing flexibility constraints.
Example data-plane processing tasks in the signal processing do-
main are, e.g. audio/video de-/encoding, or UMTS/WLAN base-
band processing.

The performance requirements of today’s and emerging multi-
media and wireless communications applications can only be
reached by aggressively exploiting the abundant inherent paralle-
lism available in the data-plane processing tasks.

• The functionality can be straight forward partitioned into a
set of loosely coupled tasks with well predictable or even
cyclo-stationary execution timing.

• A well confined data set is associated with a single activation
of an individual task. Additionally, the data sets associated
with successive activations of an individual tasks are mostly
independent.

These spatial and temporal properties with respect to second or-
der task partitioning and data dependency can already be identified
during the algorithm development stage and lead to an identifica-
tion of coarse grain TLP. This application inherent TLP enables the
concurrent and parallel execution on MP-SoC platforms.

3. ARCHITECTURE ELEMENTS
Traditionally, signal processing systems have been largely im-

plemented on dedicated Application Specific Integrated Circuits
(ASICs) due to the immense performance requirements. Triggered
by the multitude of standards and features in signal processing
application domains like wireless communications and multime-
dia devices, a clear trend towards Software enabled implementa-
tions can be observed to provide the required flexibility. However,
the demanding energy efficiency constraints of mobile applications
prohibit the use of general purpose processors. Instead, the tight

687

efficiency requirements of versatile signal processing systems lead
to application specific heterogeneous multiprocessor architectures
[29].

Especially recent architectural advances with respect to both com-
munication and computation offer a huge design space with enor-
mous potential for optimization.

Processing Element Trends
Known as the Energy-Flexibility tradeoff, programmable process-
ing elements achieve significant gains with respect to performance
and energy efficiency by tailoring instruction set and micro archi-
tecture to the respective set of tasks [16, 32]. Examples are innova-
tive architectures based on the VLIW paradigm to exploit Instruc-
tion Level Parallelism (ILP) without sacrificing energy efficiency
[15] as well as SIMD based extraction of Data Level Parallelism
(DLP).

Despite the increased computational performance, the effective
performance is often confined by the communication architecture,
since memory accesses latency does not keep pace with the pro-
cessing power. General purpose processors resolve the memory
access bottleneck by using sophisticated cache and memory hier-
archies. Unfortunately this approach is often not applicable for
embedded applications due to the poor memory locality of stream
driven and packet based data processing.

Instead, processer architectures are increasingly equipped with
hardware supported Multi-Threading (HW-MT) [38] to perform
task switches with virtually no performance overhead. By that, the
application inherent TLP is exploited with the purpose of hiding
memory latency, which effectively leads to a significant increase
in the processor utilization. This technique is already widely em-
ployed in the network processor domain [30] but recently finds its
way into advanced multimedia [25] and signal processing platforms
[9].

Besides the immediate benefit of increased utilization, HW-MT
can be considered as a lean operating system implemented in hard-
ware to efficiently share the processing resources among multiple
concurrent tasks. In analogy with today’s software operating sys-
tems (SW-OS), the HW-MT concept bears the potential to bring a
disciplined management of processing resources to the data pro-
cessing domain. From the perspective of the functional tasks, this
’processing management’ introduces a virtualization of the compu-
tational resources.

Communication Architecture Trends
Today’s predominant shared bus paradigm as inherited from the
PCB era constitutes the major power and performance bottleneck.
In response to this problem, the global communication is envi-
sioned to be handled by full-scale Network-on-Chip (NoC) archi-
tectures [21]. Dedicated on-chip networks enable the use of physi-
cally optimized transmission channels to address power, reliability
and performance issues [19, 1].

Apart from resolving the physical issues, Network-on-Chip ar-
chitectures also address the functionalaspects of on-chip commu-
nication. So far, the dynamic priority based arbitration scheme of
shared busses creates a mutual dependency between all components
connected to the bus. Due to this lack of traffic management capa-
bilities every change in the traffic requirements of the application
requires a re-design of the bus architecture. Instead, NoC archi-
tectures take advantage of sophisticated networking algorithms to
provide elaborated traffic-management capabilities. By that, the
ad-hoc communication mapping is replaced with a disciplined al-
location of the required communication services and the on-chip
network takes care to provide the required resources.

The system architecture perspective, this virtualization of the
communication resources into a set of offered communication ser-
vices decouples the mapping problem for communication and com-

putation. The price for the physical and functional benefits of NoC
based communication is a significant penalty in terms of chip area
as well as transfer latency. In the light of the latency issue caused
by NoC architectures, the importance of memory hiding in the pro-
cessing elements described above is likely to increase in the future.

Taking the above considerations together, future SoCs can be
considered as NoC enabled multi-processor architectures. The on-
chip communication backbone connects a large number of hetero-
geneous processing clusters and storage elements. Individual pro-
cessing clusters consist of one or few application specific program-
mable kernels together with tightly coupled instruction and data
memories as well as local peripherals.

4. MP-SOC DESIGN STRATEGIES
According to the multi-level SoC designapproach proposed by

Magarshak and Paulin [28], the overall MP-SoC design process
can be separated into four (largely) orthogonal phases. Except
for the low-level semiconductor technology phase, we examine the
methodology and tooling related aspects of the individual phases.

Functional Phase
The functional phase is performed by application specialists and is
completely agnostic to architectural considerations. This phase in-
cludes the embedded SW development of the control-plane portion
of the application as well as data-plane algorithm development.

The functional phase employs a multitude of different ’vertical’
Models of Computation, each of which address the abstract mod-
eling of a particular application domain. In particular the signal
processing domain relies on Data-Flow models, which allow for
efficient capture and analysis of signal processing algorithms. Cor-
responding tools exploit the formal properties data-flow models for
the purpose of highly efficient simulation engines as well as auto-
matic model sanity checks.

High-Level IP Creation Phase
The IP creation phase deals with the design of processing elements
(RISC, DSP, MCU, ASIPs), on-chip interconnect technologies (bu-
ses, NoC), domain specific standard I/O (PCI-variants, SPIx vari-
ants, HyperTransport, I2C, FireWire, QDR, etc.), as well as the
creation of well defined ASIC IP blocks e.g. an MPEG4 video
codec).

In the signal processing domain, high level IP creation is not or-
thogonal to the considered application, but requires to tailor the IP
block towards the respective portion of application. Especially the
development of an Application Specific Instruction-set Processor
(ASIP) requires a joint consideration of the computer architecture
and the corresponding task.

As already discussed in the introduction, the high-level IP cre-
ation phase bears an enormous potential to significantly increase
design productivity by using ADL driven architecture generators.
This also demonstrates, that there is no one-to-one correspondence
between ’design phase’ and ’abstraction level’. For example, the IP
creation phases covers both ADL-level as well as RT-level abstrac-
tion layers.

MP-SoC Platform Phase
The MP-SoC platform phase covers the system-architecture speci-
fication by integration of high level IP blocks, but also the spatial
and temporal mapping of the application to the MP-SoC platform.
Hence, this phase is concerned with the full functional and archi-
tectural complexity of MP-SoC platforms.

The MP-SoC platform phase is concerned with the system archi-
tecture specification as well as the application mapping. Therefore,
abstraction concepts on this level have to support the joint consid-
eration of the application and architecture. On the other hand, the

688

high level of detail inherent to Register Transfer Level (RTL) im-
plementation models prohibits the investigation and optimization
across heterogeneous communication and processing elements.

Transaction Level Modeling (TLM) [33, 12] is generally con-
sidered as the emerging abstraction level to cope with the require-
ments of the MP-SoC platform phase. The characteristic property
of TLM is that the pin-level communication interface of RTL mod-
els is replaced by a set interface methods. In theory, this commu-
nication mechanism is provided by all actor-oriented specification
languages like SystemC [31], SpecC [13] or the Metropolis Meta
Model [14].

The well established cycle-level TLM based design methodol-
ogy promotes the early creation of an executable prototype of the
MP-SoC platform for hardware dependant software development as
well as tuning the communication and memory architecture to the
application requirements. The underlaying HW/SW Co-simulation
technology combines flexible just-in-time compiled processor sim-
ulation [4] with cycle accurate TLM bus and HW models [5]. This
approach finds great demand in the SoC design community and is
well supported by SystemC based standardized IP models [2, 10],
and ESL tools like CoWare ConvergenSC [11]. This kind of tools
also provide capabilities for hybrid simulation of cycle accurate
TLM models together with RTL implementation models executed
by an HDL simulator.

Despite the undisputed success of cycle-level TLM based co-
simulation technology for early platform prototyping [26], this ap-
proach does not solve all the challenges of the MP-SoC design
phase: first, the effort to create a cycle-accurate prototype of the
complete platform is still too high to allow for the investigation
of a large number of architecture and application mapping alterna-
tives. Second, the simulation speed in the order of 100k cycles per
second is neither sufficient for embedded SW development nor for
sensitivity analysis of large sets of design parameters.

Evolution of HW/SW Co-Design
In the context of heterogeneous signal processing platforms, the
classical vertical partitioning approach to HW/SW Co-design, where
the performance critical parts are implemented as dedicated HW
blocks and the rest is executed in SW, is no longer applicable. In-
stead HW/SW Co-design can be seen as a multi-dimensional hor-
izontal mapping problem of an application running on a heteroge-
neous multiprocessor platform. The partitioning of the application
into a set of loosely coupled functional blocks and the extraction
of task level parallelism (TLP) is mostly straight forward for typi-
cal signal processing applications and can be immediately derived
from the algorithmic block diagram.

However, the spatial and temporal mapping of the functional
tasks to processing elements as well as the mapping of the inter-
task data exchange to a communication architecture while meeting
performance and cost requirements is an unresolved challenge.

As described in section 3, the key concept to cope with the re-
sulting design complexity is to achieve a virtualization of the ar-
chitectural elements, such that they can be allocatedby the system
architect in a deterministic way [7]. As discussed above, this vir-
tualization is provided by the novel NoC approach for the commu-
nication part as well as by SW and HW operating systems for the
control and data processing respectively. This divide-and-conquer
oriented design paradigm enables individual optimization of the ar-
chitectural elements to take full advantage of recent developments
in computer architecture and NoC enabled communication. The
price for this benefits with respect to both design efficiency and
architectural efficiency is merely a penalty in terms of chip area,
which is generally considered to be of constantly decreasing im-
portance.

In this context HW/SW-Co-design of a given embedded appli-
cation is defined to a) architect a heterogeneous MP-SoC platform
and b) allocate the architectural resources for the execution of the

application. Note, that architecture virtualization resolves the mu-
tual dependencies in the mapping process, but the trade-offsin the
design space still require a joint consideration of application and
architecture as well as communication and communication. For
example the latency of a more complex on-chip network can be
compensated by either introducing memory hierarchy or employ-
ing hardware multi-threaded processor kernels. Obviously, the re-
sulting design space is virtually infinite and the architecting and the
mapping phase cannot be considered independently without sacri-
ficing quality of results.

5. MP-SOC EXPLORATION FRAMEWORK
We argue, that the virtualization of architectural resources for the

first time really enables architectural considerations on top of cycle-
level accuracy. Application mapping and architecture exploration
can be reduced to the allocation of timing budgets on processing
and communication resources.

We envision a new Intermediate Representation (IR) in the de-
sign of application specific MP-SoC platforms to perform ’large-
scale’ design space exploration and to reason about the application
partitioning. This MPSoC-IR enables a virtual mappingof the con-
sidered application onto the anticipated platform architecture.

After a classification of the selected abstraction level, we will
highlight major aspects of the underlying timing model, which en-
ables an abstract and yet sufficiently accurate modeling of the antic-
ipated architecture. This timing model is implemented by a mod-
ular simulation framework for rapid design space exploration of
Network-on-Chip enabled heterogeneous MP-SoC platforms.

Packet Level TLM
For the conceptualization of heterogeneous signal processing sys-
tems, cycle-level TLM is still too detailed to explore large design
spaces. Instead, our modeling framework is based on a packet-
level TLM paradigm, where the considered data granularity are sets
of functionally associated data, which are combined into Abstract
Data Types (ADTs).

This higher level of abstraction is much closer to the initial appli-
cation model, so the modeling efficiency as well as the simulation
speed are again significantly improved compared to cycle-accurate
TLM. The key aspect of our approach is that the underlying timing
model outlined below is sufficiently accurate to investigate the per-
formance impact of the anticipated MP-SoC architecture executing
the application.

Unified Timing Model
The conceived timing model can be coarsely separated into the fol-
lowing aspects:

• A generic synchronization interface defines a concise set of
communication primitives, which in principle follow the Open
Core Protocol (OCP) semantics [27] and are not biased to-
wards any specific communication architecture. Addition-
ally the primitives are shaped to achieve reasonable timing
accuracy at the highly abstract packet-level TLM layer.

• The communication timing model captures the impact on
performance of the interconnection architecture. The com-
munication timing model supports the full spectrum of avail-
able and proposed communication architectures ranging from
today’s shared buses to the emerging NoC paradigm [23, 35].

• The processing delay annotation virtually maps individual
application tasks to the intended processing engines [34].
The resulting impact on performance is captured by calcu-
lating the timing of the external events, which are exposed
by the generic communication interface.

689

• The concept of virtual processing units models the notion of
shared computational resources. This covers both software
operating systems as well as hardware multi-threading.

Exploration Framework
We have implemented the timing model outlined above by means
of a versatile exploration framework as depicted in figure 1 below.
One key aspect for efficient design space exploration is a declara-
tive specification mechanism, i.e. the following aspects of the MP-
SoC architecture are defined by a set of configuration files:

• configuration of the timing model

• number of available processors and number of supported par-
allel HW threads per processor

• mapping of the application task to processors and HW threads

• instantiation, parameterization and interconnection of the com-
munication nodes

• instantiation and address mapping of the memory architec-
ture

Application Model

meet
requirements

Configuration files

MPSoC Mapping

yes

no

Exploration
Framework

evaluation
0.2

0.90.40.5

Figure 1: MP-SoC Exploration Framework

The simulation results like latency, delay and utilization of pro-
cessing elements and communication links are stored in a data base
and compiled into a set aggregated histograms and performance
graphs. Based on this results, the system architect can detect bot-
tlenecks or poor utilization in the system and decide on further opti-
mizations of the architecture model and/or the application mapping
respectively.

Verification Aspects
Besides the systematic refinement flow, the value of the proposed
MPSoC-IR also reaches into the verification of subsequent imple-
mentation steps. The information contained in the MPSoC-IR serves
as a predictor for the verification flow[8] to verify the functional
correctness of error-prone implementation models as well as to re-
view the estimated timing properties.

In that our approach takes the synchronous design principle, which
enabled the RTL based modeling, to the next level: transistor-level
timing is neglected during the specification at the register transfer
level. After the physical design, the clock synchronization points

enable the verification of the assumed timing budgets and physical
gate- and wire-delays.

In close analogy, the packet-level events serve as synchronization
points, which can be recovered at the cycle-accurate implementa-
tion level. By that, the timing annotations in the MPSoC-IR can be
automatically translated into assertions.

Related Work
Multiple aspects in system-level methodologies and tooling are sub-
ject to ongoing research, e.g.

• formalized specification enabling links to synthesis and for-
mal verification [14],

• component based design through automated instantiation and
integration of predefined IP blocks [22],

• mapping of algorithmic data-flow models to abstract archi-
tecture models [6]

• abstract RTOS modeling [18, 17]

The acid test for research on system level design has always been
the incorporation into actual design practice. In any case companies
are now forced to evaluate and adopt new design methodologies
and tooling to cope with MP-SoC complexity crisis.

6. CONCLUSION
This paper analyzes the convergence of EDA companies and IP

providers in the context of trends in the signal processing domain
and recent architectural developments. We argue, that neither tradi-
tional ’RTL-and-below’ EDA nor traditional IP products and busi-
ness models are fit for the emerging MP-SoC design era: EDA
suffers from declining design starts, increasing embedded software
content, and a complexity beyond the capabilities of the RTL de-
sign entry. On the other hand, platform architectures entirely based
on fixed or configurable commodity IP fail to meet conflicting per-
formance, flexibility and energy efficiency constraints of versatile
signal processing products. Additionally, system houses more and
more refuse to pay royalties for COTS IP.

We envision a convergence of EDA and IP products on the basis
of a two-phase system level design flow.

First, new architectural concepts like hardware operating sys-
tems and on-chip networks achieve a separation of processing and
communication services from the architectural resources. This vir-
tualizationenables the investigation of application partitioning and
resource allocation at an abstraction level on top of cycle accuracy.

Subsequent to the definition of the MP-SoC platform architec-
ture, a new generation of ADL based IP generation toolsprovides
the required design productivity and implementation quality to de-
velop application specific processing elements and communication
fabrics.

We argue, that semiconductor and system companies will en-
dorse this convergence of EDA and IP, which provides ’MP-So-
level’ design productivity on the basis on an EDA-like subscription
business model. By that they are back in the state to develop highly
differentiated products on the basis of in-house IP.

7. ACKNOWLEDGEMENTS
This paper is based on many discussions with numerous peo-

ple at the ISS institute and CoWare. In particular, we like to ac-
knowledge contributions from Gerd Ascheid, Malte Doerper, Serge
Goossens, Eshel Haritan, Andreas Hoffmann, Torsten Kempf, An-
drea Kroll, Rainer Leupers, Oliver Schliebusch, Karl Van Rompaey,
Bart Vanthournout, and Andreas Wieferink.

690

8. REFERENCES
[1] Arteris Unveils Strategy, Technology for enabling Network

on Chip (NoC) Design. Press Release, March 2003.
[2] A. Cochrane, C. Lennard, K. Topping, S. Klostermann, N.

Weyrich, K. Ahluwalia. AMBA AHB Cycle Level Interface
(AHB CLI) Specification, 2003.

[3] A. Hofmann, H. Meyr, R. Leupers. Architecture Exploration
for Embedded Processors with LISA. Kluwer Academic
Publishers, 2002. ISBN 1-4020-7338-0.

[4] A. Nohl, G. Braun, A. Hoffmann, O. Schliebusch, R.
Leupers, H. Meyr. A Universal Technique for Fast and
Flexible Instruction-Set Architecture Simulation. In
Proceedings of the Design Automation Conference (DAC),
2002.

[5] A. Wieferink, T. Kogel, R. Leupers, G. Ascheid, H. Meyr, G.
Braun, A. Nohl. A System Level Processor/Communication
Co-Exploration Methodology for Multi-Processor
System-on-Chip Platforms. In ”Proc. Int. Conf. on Design,
Automation and Test in Europe(DATE)”, Februry 2004.

[6] A.D. Pimentel, C. Erbas. An IDF based Trace
Transformation Method for Communication Refinement. In
Proceedings of the Design Automation Conference (DAC),
June 2003.

[7] T. Agerwala. Systems Trends and their Impact on Future
Microprocessor Design. Keynote of 35th Annual
International Symposium on Microarchitecture, November
2002.

[8] B. Bailey. Property Based Verification for SoC. Int. Symp.
on System-on-Chip (SoC), November 2003. Invited Talk.

[9] C. J. Glossner, T. Raja, E. Hokenek, M. Moudgill. A
Multithreaded Processor Architecture for SDR. Proceedings
of the Korean Institute of Communication Sciences,
19(11):70–85, November 2002.

[10] J. Connel and B. Johnson. Early hardware/software
integration using systemc 2.0, 2002.

[11] ConvergenSC. CoWare, http://www.coware.com.
[12] D. Gajski. Transaction Level Modeling. In ”Proc. of the

IEEE/ACM/IFIP Int. Conference on Hardware/Software
Codesign and System Synthesis”, 2003.

[13] D. Gajski, J. Zhu, R. Dömer, A.Gerstlauer, S. Zhao. SpecC:
Specification Language and Methodology. Kluwer Academic
Publishers, 2000.

[14] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone,
A. Sangiovanni-Vincentelli. Metropolis: An integrated
electronic system design environment. IEEE Computer,
36(4):45–52, April 2003.

[15] G. Fettweis. Embedded vector signal processor design. In
”Proc. Int. Workshop on Systems, Architecturs, Modeling
and Simulation(SAMOS)”, July 2003.

[16] H. Blume, H. Hübert, H. T. Feldkämper, T. G. Noll.
Model-Based Exploration of the Design Space for
Heterogeneous Systems on Chip. In Proceedings of the IEEE
Conference on Application Specific Architectures and
Processors, 2002.

[17] H. Yu, A. Gerstlauer, D. Gajski. RTOS Scheduling in
Transaction Level Models. In ”Proc. of the IEEE/ACM/IFIP
Int. Conference on Hardware/Software Codesign and System
Synthesis”, 2003.

[18] M. G. J. Madsen, K. Virk. Abstract RTOS modelling for
multiprocessor system-on-chip. In International Symposium
on System-on-Chip, pages 147–150. IEEE, nov 2003.

[19] K. Goossens, J. van Meerbergen, A. Peters, P. Wielage.
Networks on Silicon: Combining Best-Effort and
Guaranteed Services. In ”Proc. Int. Conf. on Design,
Automation and Test in Europe(DATE)”, 2002.

[20] K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey, A.

Sangiovanni-Vincentelli. System-level design:
Orthogonalization of concerns and platform-based design.
IEEE Transactions on Computer-Aided Desig of Integrated
Circuits and Systems, 19(12):1523–1543, December 2000.

[21] L. Benini, G. De Micheli. Networks on Chips: A New SoC
Paradigm. IEEE Computer, pages 70–78, January 2002.

[22] M.-A. Dziri, W. Cesrio, F.R. Wagner, A.A. Jerraya. Unified
Component Integration Flow for Multi-Processor SoC
Design and Validation. In ”Proc. Int. Conf. on Design,
Automation and Test in Europe(DATE)”, 2004.

[23] M, Ariyamparambath, D. Bussaglia, B. Reinkemeier, T.
Kogel, T. Kempf. A Highly Efficient Modeling Style for
Heterogeneous Bus Architectures. In ”Proc. IEEE Int. Symp.
on System-on-Chip (SoC)”, November 2003.

[24] M. Grammatikakis, M. Coppola, F. Sensini. Software for
Multiprocessor Networks on Chip, chapter 14, pages
281–303. Kluwer Academic Publishers, 2003.

[25] M.J. Rutten, J.T.J. van Eijndhoven, E.G.T. Jaspers, P. van der
Wolf, O.P. Gangwal, A. Timmer, E.-J.D. Pol. A
Heterogeneous Multiprocessor Architecture for Flexible
Media Processing. IEEE Design & Test of Computers,
19(5):39–50, July-August 2002.

[26] O. Ogawa, K. Shinohara, Y. Watanabe, H. Niizuma, T.
Sasaki, Y. Takai, S. Bayon de Noyer and P. Chauvet. A
Practical Approach for Bus Architecture Optimization at
Transaction Level. In ”Proc. Designers’ Forum, Int. Conf. on
Design, Automation and Test in Europe(DATE)”, 2003.

[27] Open Core Protocol International Partnership (OCP-IP).
OCP datasheet, http://www.ocpip.org.

[28] P. Magarshack, P. Paulin. System-on-chip Beyond the
Nanometer Wall. In Proceedings of the Design Automation
Conference (DAC), 2003.

[29] R. Subramanian, U. Jha, J. Medlock, C. Woodthorpe, K.
Rieken. Novel Application-Specific Signal Processing
Architectures for Wideband CDMA and TDMA
Applications. In Proc. of the IEEE Vehicular Technology
Conference (VTC), 2000.

[30] S. Lakshmanamurthy, K.-Y. Liu, Y. Pun, L. Huston, U. Naik.
Network Processor Performance Analysis Methodology.
Intel Technology Journal, 6(3), Aug. 2002.

[31] SystemC initiative. http://www.systemc.org.
[32] T. Gloekler, H. Meyr. Design of Energy-Efficient

Application-Specific Instruction Set Processors. Kluwer
Academic Publishers, 2004. ISBN 1-4020-7730-0.

[33] T. Grötker, S. Liao, G. Martin, S. Swan. System Design with
SystemC. Kluwer Academic Publishers, 2002.

[34] T. Kogel, A. Wieferink, R. Leupers, Gerd Ascheid, H. Meyr,
D. Bussaglia, M. Ariyamparambath. Virtual Architecture
Mapping: A SystemC based Methodology for Architectural
Exploration of System-on-Chip Designs. In ”Proc. Int.
Workshop on Systems, Architecturs, Modeling and
Simulation(SAMOS)”, July 2003.

[35] T. Kogel, M. Doerper, A. Wieferink, R. Leupers, G. Ascheid,
H. Meyr, and S. Goossens. A Modular Simulation
Framework for Architectural Exploration of On-Chip
Interconnection Networks. In CODES+ISSS, October 2003.

[36] T.A.C.M. Claasen. High Speed: Not the Only Way to
Exploit the Intrinsic Computational Power of Silicon. In In
Proceedings of the International Solid-State Circuits
Conference, 1999.

[37] Tensilica. http://www.tensilica.com.
[38] D. M. Tullsen, S. Eggers, and H. M. Levy. Simultaneous

multithreading: Maximizing on-chip parallelism. In
Proceedings of the22th Annual International Symposium on
Computer Architecture, 1995.

691

