
Software Architecture Exploration for High-Performance
Security Processing on a Multiprocessor Mobile SoC ∗

Divya Arora†, Anand Raghunathan‡, Srivaths Ravi‡,
Murugan Sankaradass‡, Niraj K. Jha† and Srimat T. Chakradhar‡
†Dept. of Electrical Engineering, Princeton University, Princeton, NJ 08544

‡NEC Laboratories America, Princeton, NJ 08540

divya@princeton.edu, anand@nec-labs.com, sravi@nec-labs.com,
murugs@nec-labs.com, jha@princeton.edu, chak@nec-labs.com

ABSTRACT
We present a systematic methodology for exploring the se-
curity processing software architecture for a commercial het-
erogeneous multiprocessor system-on-chip (SoC) for mobile
devices. The SoC contains multiple host processors execut-
ing applications and a dedicated programmable security pro-
cessing engine. We developed an exploration methodology
to map the code and data of security software libraries onto
the platform, with the objective of maximizing the overall
application-visible performance. The salient features of the
methodology include (i) the use of real performance measure-
ments from a prototyping board that contains the target plat-
form to drive the exploration, (ii) a new data structure access
profiling framework that allows us to accurately model the
communication overheads involved in offloading a given set of
functions to the security processor, and (iii) an exact branch-
and-bound based design space exploration algorithm that de-
termines the best mapping of security library functions and
data structures to the host and security processors.

We used the proposed framework to map a commercial se-
curity library to the target mobile application SoC. The re-
sulting optimized software architecture outperformed several
manually-designed software architectures, resulting in upto
12.5X speedup for individual cryptographic operations (en-
cryption, hashing) and 2.2X-6.2X speedup for applications
such as a Digital Rights Management (DRM) agent and Se-
cure Sockets Layer (SSL) client. We also demonstrate the
applicability of our framework to software architecture explo-
ration in other multiprocessor scenarios.

Categories and Subject Descriptors: D.2.11 [Software
Architectures]: Domain-specific architectures
General Terms: Security, performance
Keywords: Software partitioning, computation offloading

1. INTRODUCTION
Rapid advances in low-power computing, communications,

and storage technologies continue to broaden the horizons of
mobile devices, such as cell phones and personal digital as-
sistants (PDAs). As the use of these devices extends into
applications that require them to capture, store, access, or
communicate sensitive data, (e.g., mobile e-commerce, finan-
cial transactions, acquisition and playback of copyrighted con-
tent,etc.) security becomes an immediate concern. Left unad-

∗This work was supported by NSF under Grant No. CCR-
0326372.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2006, July 24–28, 2006, San Francisco, California, USA.
Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

dressed, security concerns threaten to impede the deployment
of new applications and value-added services, which is an im-
portant engine of growth for the wireless, mobile appliance,
and semiconductor industries. For example, according to a
survey of mobile appliance users [1], 52% cited security con-
cerns as the biggest impediment to their adoption of mobile
commerce.

A large body of work has addressed the design of specialized
hardware for efficient (high performance and/or low power)
security processing, through techniques that range from cus-
tom hardware accelerators to instruction set extensions for
general-purpose microprocessors, and hardware support for
security processing is starting to appear in commercial SoCs
for mobile appliances [2, 3]. While hardware enhancements
go a long way towards addressing efficient security process-
ing, they typically only address the core cryptographic algo-
rithms, leaving a substantial amount of functionality to be
implemented in software, e.g., support for various modes of
encryption/decryption, protocol processing and packet oper-
ations, key generation and management, etc. Comprehen-
sive security libraries, which provide support for all the above
functions, are quite complex. For example, the commercial
library considered in our work contains over 130K lines of
code and over 90 application programming interface (API)
functions. Moreover, different mappings of the library onto
the target platform can give vastly different speed-ups: a test
program computing a hash (based on SHA-1) of 1KB of data
took 87.8s, 43.4s, and 2.2s, for three different mappings of
the library onto the multiprocessor SoC platform used in this
work. Therefore, efficient security processing also requires op-
timized mapping of the security library to the target hardware
platform, a problem that has thus far received little attention.
Paper overview: In this paper, we focus on the problem of
domain-specific software architecture exploration for security
processing on a state-of-the-art heterogeneous multiprocessor
SoC for mobile appliances. The SoC contains multiple “host”
processors that execute applications, which can “offload” se-
curity processing operations onto a dedicated programmable
security processing engine. It has been fabricated by NEC,
and will be incorporated in mobile phones in 2006. We are
given a commercial crypto-processing software library that
contains software implementations of various cryptographic
algorithms, protocol and packet processing operations, and
key management functions. Software architecture exploration
in this context refers to the problem of mapping the code and
data of the library onto the host processor and security pro-
cessing engine, with the goal of optimizing the performance
of applications that use the library. We present a system-
atic methodology to perform this task. The methodology is
driven by accurate performance measurements from a pro-
totyping platform that give us the execution times of func-
tions in the library when executed on the host processor as
well as the security processing engine. Recognizing that inter-
processor communication overheads (for synchronization and

31.3

496

ARM0 ARM1 ARM2 DSP

monitor
Bus

Peripherals

processor chip
Mobile application

FLASH ROM

camera

(non−volatile

DATA FLASH

storage)

MOSES

keypad

MOSES
(code)

Linux
kernel

MOSES
control
block

SDRAM

ARM2

ARM1

ARM0

(data)
MOSES

memory
Shared

I/F
FLASH SDRAM

I/F

proc−
essor

Base

S
cr

at
ch

pa
d

C
o−

pr
oc

es
so

r

Cache

Bus I/F

Security Processing
Engine (SPE)

LCD
LCD
I/F

graphics
2D/3D

processor
Image

B
ri

dg
e SRAM

Figure 1: MP211 architecture

data transfer) significantly impact performance, we developed
a data structure access profiling framework that allows us to
accurately model the communication overheads involved in
offloading any given set of functions to the security processor.
We formulate software architecture exploration as a partition-
ing problem and use an exact branch-and-bound algorithm,
with suitable branching heuristics and bounding criteria, to
determine the best mapping of security library functions to
the host and security processors, as well as the best mapping
of data structures to the memories of these processors.
Related work: We briefly mention related work in the con-
text of efficient security processing and domain-specific de-
sign methodologies for security. Researchers have proposed
a wide range of hardware architectures to accelerate security
processing. Highly efficient hardwired (custom hardware) im-
plementations of symmetric encryption [4, 5], hash [6], and
public-key algorithms [7, 8] have been extensively explored.
Recognizing the evolving nature of cryptographic algorithms
and security protocols, and the wide range of algorithms that
need to be supported in some systems, application-specific
programmable processors [9,10] as well as general-purpose in-
struction set extensions [11, 12] have been proposed to accel-
erate security processing. With security emerging as an im-
portant concern in many embedded systems, domain-specific
design methodologies that address security in various stages
of the design process have also been proposed [13,14].

2. BACKGROUND
This section presents an overview of the mobile application

SoC and the crypto-processing library for which this study
was conducted.
Target platform: Fig. 1 depicts the high-level block dia-
gram of the MP211 multiprocessor SoC for mobile devices. The
SoC contains three “host” (ARM926EJ-S) processors that run
the Montavista Linux kernel and execute pre-installed and
downloaded applications, a digital signal processor (DSP) for
multimedia processing, a graphics engine, and various ac-
celerators and interfaces to peripherals and off-chip memo-
ries (FlashROM for code, SDRAM for data, and R/W Flash
for non-volatile data storage). In addition, the platform in-
cludes MOSES (MObile SEcurity processing System) – a secu-
rity processing architecture that provides for secure (tamper-
resistant) and efficient (high performance, low power) execu-
tion of security processing functions.
MOSES was developed to meet the security challenges in

emerging mobile appliances, including 3G/4G mobile phones
and PDAs. From a hardware perspective, it comprises three
key components - a Security Processing Engine (SPE), a hier-
archical secure memory sub-system, and a security-enhanced
communication architecture. The SPE is a domain-specific

programmable processor on which security computations are
performed once they are offloaded from one of the host ARM
processors onto MOSES. The SPE consists of a 32-bit, 5-stage
pipelined RISC core along with a tightly-coupled co-processor
that implements custom instructions that can be used to ac-
celerate a wide range of cryptographic algorithms, including
symmetric encryption (DES, 3DES, AES, RC4, etc.), hash-
ing (MD5, SHA-1), and public-key algorithms (RSA, Diffie-
Hellman, DSA, Elliptic Curve, etc.). Some custom instruc-
tions are dedicated (i.e., used for a specific cryptographic al-
gorithm), while others are shared across multiple algorithms.
A programmable processing engine can execute not only core
cryptographic algorithms, but also additional functions such
as protocol primitives or key management, leading to higher
offloading efficiency (lower workload for the host processors)
when compared to simple hardware accelerators.

The SPE contains a small amount of on-chip scratchpad
memory which includes a non-volatile ROM for the boot-
loader, device keys, and instruction and data RAMs for cryp-
tographic firmware and critical data, respectively. Portions of
off-chip SDRAM and FlashROM are reserved for the SPE and
guarded by a security-enhanced communication architecture,
which monitors communication traffic on the system bus and
ensures that only the SPE is allowed to access the reserved ar-
eas. Off-chip non-volatile data storage secured by encryption
and hashing is also available to the SPE.
Overview of the crypto-library: A software library, CLib
(Crypto-Library)1, is installed on the platform for applica-
tions requiring security services. Applications can perform
various cryptographic operations by invoking the appropriate
library functions via the exported interface. CLib is a com-
plex, multi-layered software library with about 90 API func-
tions, over 500 internal functions, and more than 130K lines
of C code. The layered architecture enables isolation between
data structures accessed by different layers, and also hides un-
necessary implementation details from the user program. The
topmost layer interfaces with the application while the lowest
layer performs core cryptographic operations. The interme-
diate layers provide support for different operating systems
(OSs), parse/decode application commands and pre-process
arguments before passing control onto the cryptographic ker-
nel, which then performs the requested operation and returns
the results and status of execution to the calling application.
CLib supports a wide range of cryptographic algorithms in-

cluding symmetric key algorithms (DES, 3DES, AES, RC4),
one-way hash functions (MD5, SHA-1), public key algorithms
(RSA, Diffie-Hellman, Elliptic curve), and digital signature
algorithms (DSA, RSA, Elliptic curve). In addition, the li-
brary includes a comprehensive key management infrastruc-
ture with primitives for key generation, distribution, storage,
use, and destruction. It supports packet processing routines
to enable protocols such as IPSec, and also implements rou-
tines for large integer arithmetic, modular arithmetic, etc.

3. PROBLEM STATEMENT AND MOTIVA-
TION

The objective of this work is to develop a systematic method-
ology to investigate various possible mappings of the security
library CLib onto the heterogeneous multiprocessor platform
and find a mapping that optimizes performance. A mapping
of the library specifies, for each processing unit (host processor
and MOSES 2), a subset of library functions that it executes and
data structures that reside in its memory. As described pre-
viously, the host processor is an ARM926EJ-S CPU running
at upto 200MHz (operating frequency and voltage are regu-
lated at run-time for power savings) executing the Montavista

1name changed to withhold vendor identity
2In the rest of the paper, the term MOSES is used to refer to
the MOSES SPE.

497

Linux OS, while MOSES runs at 100MHz (for lower power) and
directly executes security firmware without an OS.
Execution model: The software architecture follows a client-
server model wherein security processing functions are of-
floaded from applications running on the host ARM processor
onto MOSES. Applications (clients) link to a stub library that
exposes CLib’s API. The CLib library software is divided into
two parts – a front end that executes on the host processor
and interacts with the applications, and a back end which
comprises all the functions executing on MOSES. To facilitate
communication (synchronization and data transfer) between
the front-end and back-end, communication drivers are im-
plemented on both the host processor and MOSES. The com-
munication driver on the host processor is implemented as a
device driver kernel module that is part of the Linux OS.

The stub library is responsible for disambiguating requests
from different applications and isolating their data from one
another. Additionally, it copies the arguments of the function
to be executed into a global shared memory region. During
this process, any pointers embedded in the copied data struc-
tures need to be translated to be valid in the memory space
of MOSES (note that applications executing on the host CPUs
typically use virtual addresses since they execute under an
OS, whereas software executing on MOSES uses physical ad-
dresses). Finally, the stub library makes a call to a routine
in the front-end, which may execute some part of the CLib
library, and offloads the remainder onto MOSES. The offload-
ing process is initiated by signaling MOSES (using an interrupt)
that it needs to process a request. The call from the stub li-
brary into the MOSES front-end has blocking semantics, much
like a function call to a software cryptographic library running
on the host processor itself. The back-end reads the command
to be performed and its operands from the shared memory,
performs the appropriate computation, places the result back
in the shared memory, and interrupts the host processor to
indicate that the computation is complete. The interrupt ser-
vice routine activates the front-end, which returns control to
the application. The host ARM processor simply waits for
control to return from MOSES. It may switch to another ap-
plication in the meantime, or execute an independent thread
of the same application that does not depend on the result of
the security operation.

A few points bear elaboration at this juncture. Custom in-
structions of MOSES accelerate parts of crypto-algorithms and
are capable of giving speedup at the core cryptographic level,
i.e., they accelerate cryptographic subroutines. However, this
does not translate directly into application-level speedup be-
cause of additional factors such as disparate frequencies of
ARM and MOSES (the former runs at roughly twice the speed),
and the communication and synchronization costs involved in
offloading computations. Depending on these factors, differ-
ent mappings of CLib onto the given platform can give vastly
different speed-ups. The obvious mapping, putting all func-
tions that use custom instructions on MOSES, is not always
the best option, as it may involve excessive communication
overhead. The size of the CLib library, along with its elabo-
rate data structures and complex interactions between them,
makes manual analysis infeasible. The aforementioned fac-
tors, in conjunction with the substantial time required to
manually implement and verify a sample partition (about 6-9
man-months), present a compelling case for an automated and
efficient approach to explore the vast design space, accounting
for the platform’s characteristics accurately.

Software partitioning for hardware-software systems or mul-
tiprocessors has been studied extensively [15]. We do not at-
tempt to propose a general-purpose partitioning methodology
here. Rather, we formulate the problem of software architec-
ture exploration for security processing on the MP211 plat-
form as a partitioning problem and propose a domain-specific
methodology to solve it. Some of the constraints and trade-
offs are specific to this platform and this fact is reflected in
the methodology. For example,

Application CLib

call−graph
Generate dynamic

ARM alone
Profile on Profile data−

structure accesses

Directed graph G

Collapse cycles & convert to DAG

Prune DAG

Run branch & bound

Best cut

costsARM cycle count
Communication

Profile on
MOSES alone

MOSES cycle count

Figure 2: Design flow for mapping CLib onto the given
platform

• The target hardware platform and software library are
fixed. The number, kind, processing capabilities and in-
terfaces of various processors on the SoC are fixed. This
allows us to generate accurate execution time profiles of
the security library running on both the host processor
and MOSES, for use in partitioning.

• We propose a methodology for accurate communication
cost estimation between functions executing on different
processors. For this, we have developed a tool for de-
tailed data-structure access profiling of programs, that
records the variables and their attributes (e.g., type,
size, etc.) accessed by each function of the program.

• We develop domain-specific techniques that enable us
to use an exact branch-and-bound algorithm to solve
the partitioning problem. In contrast, using exact algo-
rithms may be infeasible in general, given the NP-Hard
nature of the partitioning problem [15].

4. EXPLORATION METHODOLOGY
This section details our methodology to map the given soft-

ware library onto a combination of one ARM processor and
MOSES. The result is in the form of a specification of functions,
and global data structures of the library that should be placed
on the instruction and data RAMs of MOSES. The main idea
underlying our technique is the use of dynamic profiling to
guide static partitioning. Three kinds of profiles are required
for the above:

• Function cycle counts: This profile contains the self cy-
cle counts for each function while running on ARM alone
and MOSES alone. It excludes any time spent in the func-
tion’s descendants.

• Dynamic function call graph: This profile captures the
caller-callee relationships between various CLib functions
and the number of times a particular call was made dur-
ing a run.

• Data structure access profile: This profile represents the
data memory accesses by each function at the granular-
ity of the data structure accessed. This information is
used to estimate data transfer costs in case the function
in question is offloaded to MOSES. We developed a tool,
DTrack (Data Tracker) to perform this profiling, which
is described in the following subsection.

We formulate the given problem as a modified graph parti-
tioning problem and feed the data extracted from the above
profiles to it. Subsequently, a highly optimized branch-and-
bound search algorithm is used to step through the search
space and determine the optimal mapping.

The design flow described above is depicted in Fig. 2. The
figure includes additional steps to detect and remove cycles in
the graph extracted from a dynamic call graph profiler and to
prune the resulting directed acyclic graph (DAG). The reasons
for these steps will become clear in the following sections.

498

4.1 Data structure access profiling
We developed a tool, DTrack, within the Valgrind [16] frame-

work to collect accurate data structure access profiles. Val-
grind is an open-source tool suite for profiling and debugging
Linux programs. It includes tools for memory error detec-
tion, and cache and heap profiling. It provides an extensible
framework with an x86 interpreter at its core that permits
developers to write their own profiling tools.

Our tool, DTrack, performs two mappings – it maps the pro-
gram counter of the executing instruction to the C subroutine
that it belongs to, and the data memory address (if any) to
the program variable that it corresponds to. For this, x86 in-
structions are instrumented to perform appropriate bookkeep-
ing operations. The source (application + CLib) is compiled
normally, with the ‘‘-gstabs’’ option, producing a binary
augmented with debugging information.

Valgrind takes control of the program before it starts, reads
in debugging information from the executable and associated
libraries, and runs it on a synthetic CPU provided by the
Valgrind core. At the heart of Valgrind is a Just-In-Time
compiler that compiles and translates each basic block of the
x86 code into an internal format, and hands over the trans-
lated code to the selected tool (DTrack, in this case) which
returns the instrumented code that is actually executed.
DTrack performs a number of instrumentations. It instru-

ments call and return instructions to map instruction ad-
dresses to source function names and maintain a copy of the
current call stack. Additionally, it intercepts calls to C library
memory management functions, such as malloc, calloc, real-
loc, free, etc., and maintains an internal list of dynamically al-
located memory chunks. For each chunk, it stores the address,
size, and name of the function that invoked the allocation sub-
routine. Next, DTrack intercepts each load/store instruction
and checks if the target address falls within the data range
(address, address+size) of a program variable. It adds the
variable along with its associated attributes to the access list
of the currently executing function. The access list is a per
function record of data structures accessed by the function
along with their access counts. First, the address is matched
against the global symbol table (read in the beginning) and
the symbol name and size are recorded in case of a match. In
case of a failure, the address is compared against addresses
in the list of dynamically allocated chunks, and the chunk’s
information added to the function’s access list. If both the
above checks fall through, the profiler walks up the program
stack to determine the function in whose stack the accessed
variable resides. Then, it maps the offset of the accessed vari-
able (address – stack start address) to the stack offsets of
variables belonging to the function. A stabs reader extracts
the above data from the debugging information present in the
binary. The profiler records the variable size and name of the
function in which it lies.

The operation of DTrack is illustrated in Fig. 3. Note that
stack and heap variables embody a notion of an “owner” –
the function that is responsible for their allocation. For stack
variables, this definition is intuitive as memory for a local
variable is allocated on function invocation and will therefore
be in the same memory space as the function stack. We apply
the same idea to dynamic memory, i.e., memory allocated by
a function f is owned by f and resides in the memory space
of the same processor as the code of f .

The results of the DTrack tool can be used to estimate
the communication overheads involved in offloading a func-

Instr. addr.
0x8049590
0x8049594

0x8048544
0x8049548

Data addr.
0xAFEF040
0x8005400

0x8989880

...

......

Global

Heap
(f2)

Stack (f1)

Figure 3: Data structure access profiling

tion from the host processor to MOSES. In order to do this, we
can consider two possible models for copying data structures –
lazy, and eager. In the lazy model, data structures are copied
from ARM to MOSES the first time they are accessed. On the
other hand, in the eager model, all data structures needed for
a function and its descendants are copied to MOSES before the
function is offloaded.

4.2 Formulation
Next, we present the problem formulation.
Execution cost graph: The dynamic function call graph is
augmented to generate the execution cost graph G(V +N ′, E+
E′ + E′′), where V is the set of functions in the graph, N ′

is the set of global variables accessed during the run, E is
the set of call graph edges, and E′ and E′′ are two different
sets of “access edges”. An edge e(p, q) ∈ E |p, q ∈ V implies
that function q is called from function p. An edge e(p, q) ∈
E′ |p, q ∈ V implies that function q is not a direct successor of
p but accesses a data structure owned by p. This can happen
in several ways – a variable is passed by reference through a
sequence of function calls, address of a local/heap variable is
stored in a global pointer that is dereferenced later, etc. Edge
e(n, q) ∈ E′′| q ∈ V, n ∈ N ′ indicates that function q accesses
global variable n.

For each v ∈ V , cyca(v) and cycm(v) denote the execu-
tion cycles of the function on ARM and MOSES, respectively,
and count(v) denotes the number of times v is called dur-
ing the run. Note that execution cycles on MOSES are scaled
appropriately to equivalent ARM cycles as the two proces-
sors run at different frequencies. Each edge in the graph is
associated with one or more parameters that represent data
transfer along the edge. The actual communication cost in
processor cycles is obtained by scaling the total number of
bytes transferred by an empirically measured parameter α.
For each e ∈ (E ∪ E′), the number of bytes transferred along

e is wt(e) =
Pi=eN

i=0 aci ∗ szi, where eN = number of parame-
ter instances copied along e, aci = access count of parameter
instance i during the run, and szi = size of parameter in-
stance i. The size of the passed parameter may vary from one
invocation of edge e to another (e.g., arrays of different sizes
may be passed for different call instances). This is accounted
for by labeling each of these as a different parameter instance
in the DTrack tool’s output. For e(n, q) ∈ E′′, the associated
data transfer is wt(e) = ace(n)∗sz(n), where sz(n) is the size
of n, and ace(n) is the access count for n along e. Fig. 4(a)
gives an example of a cost graph.
Cost function: Given the above graph, the objective of the
partitioning algorithm is to find a mapping of all nodes to
ARM or MOSES, minimizing total execution cost. A solution
to the problem is an array soli, 0 ≤ i < |V | + |N ′|. soli = 0
if i is mapped to ARM else soli = 1. Let fnA and fnM be
the sets of functions mapped to ARM and MOSES, respectively,
and let gA be the set of global variables mapped to ARM. The
execution cost of a solution is given by

Solcost = ARMcost + MOSEScost + Ecost + E′
cost + E′′

cost

1 2

3 4 5

1cut

2cut 7

1

f1

2f

f3

f4

cyca(v)
cycm(v)

wt(e)

wt(e)

v

E

E’ E’’
(a) (b)

V N’

count(v)

Figure 4: (a) Cost graph G(V + N ′, E + E′ + E′′) and
(b) E′′

cost calculation

499

where, ARMcost =
P

(cyca(v) × count(v)) ∀v ∈ fnA,
MOSEScost =

P
(cycm(v) × count(v)) ∀v ∈ fnM ,

Ecost =
P

wt(e(p, q)) ∀e ∈ E, p ∈ fnA, q ∈ fnM ,
E′

cost =
P

wt(e(q, n)) ∀e ∈ E′, q ∈ fnM , n ∈ gA, and E′′
cost is

computed as follows. G is traversed in topological order. For
each function node v ∈ fnM , the program marks off variables
associated with all edges, e(u, v) ∈ E |u ∈ fnA. Next, the
program looks at all edges e(v, u) ∈ E′′ |u ∈ fnA and traverses
the parameter list associated with them. If a parameter i is
unmarked, it is marked and its cost aci ∗szi is added to E′′

cost.
Thus, edges belonging to E′′ represent a conditional copy, i.e.,
data are copied along them only if they have not been copied
into the MOSES memory by an ascendant of the function which
also resides on MOSES. E.g., in Fig. 4(b), function f4 accesses
variable 1 owned by f1, but is not a direct descendant of f1.
In the evaluation of cost for cut1, the cost of e(f1, f4) ∈ E′

should not be included (since 1 is copied when f1 calls f2).
However, in the cost for cut2, the cost of this edge has to be
accounted for.
Mapping constraint: Any solution of the above problem
must satisfy the following constraint: If a node u ∈ V is
mapped to MOSES, all nodes v ∈ V in the subgraph rooted at
u are also mapped to MOSES. Due to the above constraint, all
function nodes lying on a cycle in the call graph have to be
collapsed to a single node. Thus, G is converted to a DAG.
This DAG is pruned to eliminate certain functions that have
to be on ARM (e.g., routines involved in setting up main())
or have to be on both processors (e.g., C library functions).

Procedure 1 Branch and bound algorithm for finding opti-
mal cut

1: Inputs: Cost graph G(V + N ′, E + E′ + E′′)
2: Output: soli, ∀i ∈ [0, |V | + |N ′| − 1], soli=0 if i is on

ARM else 1
3: best cost ← INFINITY , best solution ← soli = X ∀i
4: add to list(Lps,best solution)
5: repeat
6: PS ← select partial solution(Lps)
7: i ← select unassigned node()
8: Generate children P 0 = P 1 = PS, P 0

i = 0, P 1
i = 1

9: for all children P j do
10: LBj ← lower bound(P j)
11: if P j is complete then
12: if is feasible solution(P j) and LBj < best cost

then
13: best solution ← P j

14: best cost ← exact cost(P j)
15: return
16: if LBj < best cost then
17: add to list(Lps,P

j)
18: else
19: return
20: until (PS)

4.3 Branch-and-bound algorithm
Given the formulation described above, nodes in G are as-

signed to either ARM or MOSES using an exact branch-and-
bound search algorithm. The algorithm is described in Pro-
cedure 1. It has been optimized to match problem-specific
constraints and enables us to map large graphs (of the order
of hundreds of nodes) in reasonable time.

5. EXPERIMENTAL RESULTS
In this section, we describe the application of our methodol-

ogy and its impact on performance in the context of the Clib
cryptographic library and MP211 multiprocessor SoC. We also
show the applicability of our framework to other multiproces-
sor scenarios.

As mentioned before, the mapping algorithm requires three
profiles: function cycle counts, dynamic function call graph

main

high

fprmlow

blockencrypt

data_encrypt

d_init

k_a

s0−s7

l0−lf

h0−hf

fp0−fpe

cipher3

Cut

Figure 5: (a) Call graph fragment showing optimal
mapping for 3DES

and data structure access profile. Of these, the last profile
was generated by our tool DTrack running on Red Hat Linux.
The dynamic function call graphs were generated using IBM’s
performance profiler – Quantify [17]. Quantify reports the
exact number of calls for each caller-callee pair, function cycle
time, system call time, etc., for a simulated processor.

Function cycle count measurements were performed on an
evaluation board that includes the MP211 application SoC and
interfaces to PCs/workstations for programming and debug-
ging. The OS running on the ARM processor is Montavista
Linux. ARM’s RealView Suite running on a PC is used to
program the board, as well as to download the OS and MOSES
firmware into the FlashROM. ARM profiles were generated
with GNU gprof ported to ARM. gprof dumps out a list of
functions in decreasing order of time spent by the application
in each function. NEC’s in-house in-circuit emulator tools are
used for monitoring and profiling the execution of software on
MOSES.
Library API-level performance: We created testbenches
to use different CLib API calls and thus exercise different
parts of CLib. These testbenches were run under all the pro-
filing utilities listed above with varying data sizes and data
values. Specifically, we included symmetric encryption algo-
rithms 3DES, DES, AES, and cryptographic hash algorithms
MD5 and SHA-1 [18]. Each CLib API call was placed in a
loop of 50,000 iterations.

Fig. 5 shows a fragment of the call graph for the testbench
performing 3DES encryption that corresponds to the opti-
mal mapping (functions and global variables to be placed on
MOSES) obtained from our evaluation. There are two degener-
ate solutions for partitioning – a) running the entire library
on ARM alone and b) offloading onto MOSES only the func-
tions that use custom instructions, which also happen to be
near leaf-level functions in the dynamic function call graph.
We refer to these two solutions as SARM , and SLEAF , respec-
tively. In the case of 3DES, SLEAF includes functions low,
high, fprm and cipher3. The optimal solution SOPT is not
the same as the intuitive solution SLEAF and includes some
functions farther away from the leaf nodes. In fact, SLEAF

performs worse than SARM due to the excessive communica-
tion costs involved. This corroborates the need for systemat-
ically exploring the partition space. Another point to note is
that because of our mapping constraint, some functions, such
as d init (see Fig. 5), that actually perform worse on MOSES
are still executed on it because of the execution time savings
obtained from executing one of their parents in the call graph
on MOSES.

Table 1 summarizes the performance of mappings obtained
for the benchmarks. Column 2 lists the number of nodes in
the DAG. Column 3 refers to the number of feasible cuts in the
pruned DAG and column 4 reports the CPU time taken by the
branch-and-bound algorithm (running on Red Hat Linux on a
2.6GHz Pentium) to compute the optimal solution. Columns

500

Table 1: Evaluation of benchmarks on the target platform
Algo- # # B&B SOPT / SOPT / Mem.
rithm nodes cuts time

(s)
SARM SLEAF (Bytes)

3DES 107 2.24×106 6.45 0.14 0.08 4672
DES 112 3.58×107 62.01 0.33 0.08 4680
AES 102 5.92×105 2.12 0.48 0.09 8626
MD5 83 2.03×104 0.11 0.80 1 0
SHA-1 82 1.62×104 0.11 0.42 1 0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

8 16 32 64 128 256 512 1k 2k 4k 8k 16k
Data size (bytes)

t(
o

ff
lo

ad
)/t

(A
R

M
)

1.2x

2x

Figure 6: Performance impact of offloading computa-
tion with varying data size

5 and 6 report the execution time ratio of SOPT with respect
to SARM and SLEAF , respectively. Column 7 summarizes the
scratchpad memory requirements to store the global variables
that have been mapped to MOSES in SOPT . The performance
benefits vary from algorithm to algorithm with a maximum
improvement of 7X for 3DES and minimum of 1.25X for MD5.
In MD5 and SHA-1, SOPT is found to be the same as SLEAF .
Application-level performance: We evaluated the perfor-
mance impact of our technique on two applications – an SSL
client/server and a DRM agent. The former is based on the
OpenSSL (version 0.9.7d) implementation of the SSL proto-
col [19]. The OpenSSL library was instrumented to make calls
to CLib and client/server programs were constructed to open
an SSL connection over TCP/IP and send an encrypted file
through it. The program uses key exchange and public key
algorithms during SSL handshake and performs the bulk of
data encryption and hashing in the SSL record protocol using
3DES and SHA-1, respectively. We ran the client and server
using CLib whose functions and data were mapped to the two
processors in accordance with results of the proposed explo-
ration methodology, resulting in a 6.2X execution time reduc-
tion (i.e., 6.2X data rate improvement) for the SSL client.

The DRM agent is used to download and play back pro-
tected video content according to the OMA DRM 2.0 specifi-
cation [20]. We used a QVGA video file of size 5.31MB (320
× 240 pixels, 16 bits per pixel) in our experiments. The OMA
DRM protocol involves RSA-based signature verification and
uses AES and SHA-1 for content decryption and hashing, re-
spectively [21]. The performance improvement in this case
was found to be 2.2X.
Application to homogeneous multiprocessor systems:
Our framework can be applied to other multiprocessor scenar-
ios that involve selective offloading of computation. In this
experiment, we simulate two ARM processors running in a
master-slave mode, where the master processor offloads com-
putation onto a slave processor when it becomes overloaded.
Effectively, the slave runs at a higher speed than the master.
Unlike the case of a crypto-processor where a specific set of
functions were sped up (through hardware), here the execu-
tion time of all functions scales uniformly. Performance ben-
efits obtained from offloading depend on a number of factors
such as master processor load, communication costs between
the master and slave (which is input data size dependent),
etc. We ran 3DES on the simulated platform considering two
cases where the slave processor runs 1.2X and 2X faster than
the master. Accurate communication cost estimation makes

it possible to determine the benefit of offloading for different
input data sizes. The execution time ratio of offloaded execu-
tion to execution on the ARM itself is plotted for varying data
sizes in Fig. 6. The figure indicates that the breakeven point
for offloading security processing operations is 64B and 512B,
respectively, in the two cases. Similarly, it is possible to deter-
mine, for a fixed input size, the workload level of the master
processor at which offloading results in substantial savings in
execution time.

6. CONCLUSIONS
In this paper, we presented a design methodology to map

the code and data of a security processing library onto the
given heterogeneous multiprocessor SoC. We based it on ex-
ecution profile measurements of software running on a proto-
type board combined with accurate estimates of communica-
tion costs derived from detailed data structure access profil-
ing. Our framework is fully automated. We demonstrated its
efficiency and flexibility by using it to evaluate and optimize
a commercial security processing library, resulting in notable
performance improvements with respect to manually designed
software architectures.

7. REFERENCES
[1] ePaynews - Mobile Commerce Statistics.

http://www.epaynews.com/statistics/mcommstats.html.
[2] OMAP Platform - Overview. Texas Instruments Inc.

(http://www.ti.com/sc/omap).
[3] S. Torii et al., “A 600MIPS 120mW 70uA leakage triple-CPU

mobile application processor chip,” in Proc. IEEE Solid-State
Circuits Conf., Feb. 2005, pp. 136–138.

[4] T. Ichikawa, T. Kasuya, and M. Matsui, “Hardware evaluation of
the AES finalists,” in Proc. 3rd AES Candidate Conf., Apr.
2000, pp. 279–285.

[5] I. Verbauwhede, P. Schaumont, and H. Kuo, “Design and
performance testing of a 2.29 Gb/s Rijndael processor,” IEEE J.
Solid-State Circuits, pp. 569–572, Mar. 2003.

[6] A. Satoh and T. Inoue, “ASIC-hardware-focused comparison for
hash functions MD5, RIPEMD-160, and SHS,” in Proc. Int.
Conf. Information Technology: Coding and Computing, Apr.
2005, pp. 532–537.

[7] M. Shand and J. E. Vuillemin, “Fast implementations of RSA
cryptography,” in Proc. IEEE Symp. Computer Arithmetic,
June 1993, pp. 252–259.

[8] C. K. Koc, “RSA hardware implementation,” RSA Laboratories,
Tech. Rep., Apr. 1996.

[9] J. Goodman and A. Chandrakasan, “An energy efficient
reconfigurable public-key cryptography processor architecture,”
in Proc. Int. Wkshp. Cryptographic Hardware and Embedded
Systems, Aug. 2000, pp. 175–190.

[10] S. Ravi, A. Raghunathan, N. Potlapally, and M. Sankaradass,
“System design methodologies for a wireless security processing
platform,” in Proc. ACM/IEEE Design Automation Conf.,
June 2002, pp. 777–782.

[11] R. B. Lee, Z. Shi, and X. Yang, “Efficient permutations for fast
software cryptography,” IEEE Micro, vol. 21, no. 6, pp. 56–69,
Dec. 2001.

[12] J. Burke, J. McDonald, and T. Austin, “Architectural support
for fast symmetric-key cryptography,” in Proc. Int. Conf.
Architectural Support for Programming Languages and
Operating Systems, Nov. 2000, pp. 178–189.

[13] N. Potlapally, S. Ravi, A. Raghunathan, and
G. Lakshminarayana, “Algorithm exploration for efficient
public-key security processing on wireless handsets,” in Proc.
DATE Designers Forum, Mar. 2002, pp. 42–46.

[14] P. Schaumont and I. Verbauwhede, “Domain-specific codesign
for embedded security,” IEEE Computer, vol. 36, no. 4, pp.
68–74, Apr. 2003.

[15] G. De Micheli, R. Ernst, and W. Wolf, Eds., Readings in
Hardware/Software Co-design. Norwell, MA, USA: Kluwer
Academic Publishers, 2002.

[16] Valgrind. http://valgrind.org
[17] IBM Rational software.

http://www-306.ibm.com/software/rational/
[18] B. Schneier, Applied Cryptography: Protocols, Algorithms and

Source Code in C. John Wiley and Sons, 1996.
[19] Open SSL Project. http://www.openssl.org.
[20] DRM Specification V2.0. http://www.openmobilealliance.org.
[21] D. Thull and R. Sannino, “Performance considerations for an

embedded implementation of OMA DRM 2,” in Proc. Design
Automation & Test in Europe Conf., Mar. 2005, pp. 46–51.

501

