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Abstract. Many multi-robot systems are heterogeneous cooperative
systems, systems consisting of different species of robots cooperating
with each other to achieve a common goal. This paper presents the emer-
gence of cooperative behaviors of heterogeneous robots by means of GP.
Since directly using GP to generate a controller for complex behaviors is
inefficient and intractable, especially in the domain of multi-robot sys-
tems, we propose an approach called Evolutionary Subsumption, which
applies GP to subsumption architecture. We test our approach in an
“eye”-“hand” cooperation problem. By comparing our approach with
direct GP and artificial neural network (ANN) approaches, our experi-
mental results show that ours is more efficient in emergence of complex
behaviors.

1 Introduction

Genetic Programming (GP) has proven successful in designing robots capable
of performing a variety of non-trivial tasks [7,11]. However, the fields’ focus
is almost exclusively on single-robot systems. Many tasks can be solved more
efficiently when a multi-robot system is used; while some tasks cannot be solved
at all with single-robot systems. Therefore, recently more and more researchers
have applied evolutionary computation techniques to the design of various types
of multi-robot/agent systems [3,4,5,6,8,9].

In a multi-robot system several robots simultaneously work to achieve a com-
mon goal via interaction; their behaviors can only emerge as a result of evolution
and interaction. How to learn such behaviors is a central issue of Distributed
Artificial Intelligence, which has recently attracted much attention. It is very
important and interesting to study the emergence of robots’ behaviors in multi-
robot systems by means of artificial evolution.

Most of the aforementioned researches are on homogeneous systems. Al-
though D. Floreano et al. [3] presented a heterogeneous system, the relationship
between the two robots is competitive. In this paper we address the issue in the
context of a heterogeneous multi-robot system, in which two real robots, i.e.,
Khepera, are evolved using GP to solve a cooperative task.

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 1715–1728, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 594.962 841.96 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 3600 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Ja
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue true
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice



1716 H. Liu and H. Iba

Since directly using GP to generate a program of complex behaviors is dif-
ficult, a number of extensions to basic GP have been proposed to solve these
control problems of the robot. For instance, J. Koza employed GP to generate a
subsumption architecture control program [7]. W.F. Punch et al. proposed an ap-
proach to solve robot navigation problems, it incorporated subsumption princi-
ples into the Echo Augmented Genetic Programming approach [12]. H. Iba et al.
studied the emergence of the cooperative behavior in multiple robots/agents by
means of GP and proposed three types of strategies, i.e., homogeneous breeding,
heterogeneous breeding, and co-evolutionary breeding, for the purpose of evolv-
ing the cooperative behavior [4]. They used a heterogeneous breeding approach
of GP, evolving a multi-agent learning system, to solve robot navigation and
Tile World problems [5]. They also applied the proposed GP system to a homo-
geneous cooperative multi-robot system and tested their approach in an “escape
problem” [8]. These researches showed that GP is efficient in multi-robot/agent
learning.

We report an improvement of GP, called Evolutionary Subsumption–which
combines the GP with Brooks’ subsumption architecture [1] and compare our
approach with direct GP and ANN approaches. Our experiments show that this
method is effective in solving such complex problems of robot control.

The rest of this paper is organized as follows: in Sect. 2 we will analyse the
target system and its complexity, our approaches will be presented in Sect. 3,
and in Sect. 4 the experimental result with comparison of evolutionary sub-
sumption and direct GP will be reported. Finally, discussion and some empirical
conclusions are presented.

2 Task Domain and Complexity

The approaches are evaluated in an “eye”-“hand” cooperation task. In this task
two heterogeneous robots learn complex robotic behaviors by cooperation. One
of them, which is mounted with a digital camera, acts as the “eye” and the other,
which is mounted with a gripper, acts as the “hand” (Fig. 1). Their task is: the
“eye” tries to find a cylindrical object1, and then navigates the “hand” to pick
it up and then navigates it to carry the cylinder to the goal. The two robots are
heterogeneous–they have different sensors and actuators, and have different roles
in the system. Their behaviors are complex: including tracking, path planning,
and communication, etc.

We classify the similar problems into three difficulty levels, according to the
relationship of the observer–“eye” and actor–“hand”:

1 There are two cylinders in our system, one is the object that the “hand” needs to
grip in the first stage and the other is the goal, which the “hand” needs to put
the first object near in the second stage. In the following text, in order to ease the
depiction, we use the word ’cylinder’ to indicate the object or the goal according to
the stage, except where we distinguish them explicitly.
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Fig. 1. “Eye”-“hand” cooperation
problem

Fig. 2. Evolutionary subsumption approach’s lay-
ered architecture

Difficulty 1 Fixed “Eye”: the “eye” is fixed and usually acts as a bird’s eye
view; that is, it can see the whole environment from its fixed position. The nav-
igation method is the most simple; but if there are obstacles in the environment
it involves route selection problems.

Difficulty 2 Semi-fixed “Eye”: although the “eye” can move, the relative
position of “eye”–“hand” is fixed or restricted.

Difficulty 3 Unfixed “Eye”: the “eye” and the “hand” can move freely, and
the relative position of “eye”–“hand” is variable. Usually the “eye” can only see
part of the environment.

Our target system belongs to difficulty 3. There are rather simple strategies
in difficulty 1 and 2. For instance, in the “escape problem” the navigation of
robots belongs to difficulty 2, the strategy is to keep the image of the button in
the centre of its view field and to enlarge the image though movement, by getting
closer to the object, and finally, touching it [8]. In difficulty 3 the situation is
much more complicated. Since the relative position between “eye” and “hand”
is variable, the “eye” must track two objects simultaneously. The search space
of difficulty 3 has one more dimension than difficulty 2. Specifically, in difficulty
2, the only object that the “eye” needs to observe is fixed; but, in difficulty
3 one of the two objects, the hand, is movable. Therefore, the search space of
a system which belongs to difficulty 3 is large and the emergence of robots’
rational strategies is very difficult. The “eye” must select suitable viewpoints,
observe the environment, and send correct instructions to “hand”. Along with
the moving of the “hand”, the “eye” must be able to adjust its position and send
new instructions according to the new situation.
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3 Methodology

3.1 Design of Architecture

In our target system, the two robots need to coordinate their behaviors to achieve
the goal. They have explicit division of roles and need to be synchronized by com-
munication. This paper is concerned with how such cooperative behaviors can
be established efficiently; that is, what kind of architecture should be employed
and how to synthesize such an architecture. We employ the evolutionary sub-
sumption approach and compare it with other approaches, such as the direct GP
approach.

According to analysis in Sect. 2, this problem belongs to difficulty 3 and
its search space is very large, it is intractable to search for a direct solution
using Genetic Programming. The divide-and-conquer approach is an intuitive
and efficient method when we encounter complex problems. Being a divide-
and-conquer approach, the subsumption architecture decomposes the problem
into a set of levels [1] and each level implements a task-achieving behavior.
We employed the subsumption architecture, dividing the whole behavior into
several simple behaviors. Then each level is automatically generated by Genetic
Programming respectively; the lower level is formed by Genetic Programming
at first, and then uses lower levels’ output as nodes of the next level of Genetic
Programming.

3.2 Evolutionary Subsumption

The control system is divided into 4 levels: level0 image processing, level1 dis-
tance assessing, level2 path planning, and level3, scheduling. See Fig. 2. The rest
of this section will introduce each level of the architecture.

Level0 Image Processing. This level gets an input image, detects whether
the “hand” and cylinders appear in the view or not, and calculates the width
of their image. In order to fix our attention on the task of coordination and
not immerse ourselves in the field of machine vision, we use particular colors to
identify the “hand” and cylinder. See Fig. 3, input at this level is one scan line
of the image and outputs are Whand, Dhand, Wobj , Dobj (i.e., the offset from
center of image and the width), and two Boolean variables Bhand and Bobj , they
indicate whether the“hand” and the cylinder are within the image.

Level1 Distance Assessing. Level1 takes level0’s output as its input and
assesses the distance of “eye”–“hand” and “eye”–cylinder. Therefore the task of
level1 is a symbolic regression problem:

f(Whand, Dhand, Wobj , Dobj , Bhand, Bobj) = {Dishand, Vhand, Disobj , Vobj} (1)

Where Dishand and Disobj are the assessed distances, and Vhand and Vobj indi-
cate whether the assessed distance is valid or not. These values will be used by
the higher levels. If the objects, i.e., the “hand” and cylinder, do not appear in
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Fig. 3. Image processing approach of
level0
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viewfield of “eye” or are too far from the “eye” then Vhand and Vobj will be set
to “False”, otherwise they will be set to “True”.

This level is trained separately. For each generation, before training we gen-
erate 10 maps, which randomly specify the position and orientation of the “eye”,
the “hand”, and the cylinder. These 10 maps will be kept constant within one
generation; in the next generation they will be reformed, i.e., will be different
from the prior generations. The fitness is defined as the average error between
the assessed value and the real value in the 10 maps.

The function set consists of F={IFLTE, PROGN2, Data req, IFhand, IFobj},
the terminal set consists of T={Whand, Dhand, Wobj , Dobj , Scan, Const}. The
IFLTE and PROGN2 have the same functionality as in LISP and Data req
calls the level0 to refresh its output. IFhand and IFobj are based on the Bhand

and Bobj defined by level0, they take two arguments and evaluate their first
argument if Bhand/Bobj is true otherwise they evaluate their second argument.
The Scan in the terminal set makes the “eye” rotate to scan the environment,
Const means constant number. The result of evolution is shown in Fig. 4. After
100 generations’ evolution the error is less than 0.05, this means that the average
error of assessed distance in 10 maps is less than 5cm.

Level2 Path Planning. The task of this level is to generate rational motor
instructions. In our approach we used central-control architecture. It generates
motor instructions for both “eye” and “hand”. The rational instructions for the
“eye” are to get a better viewpoint and the rational instructions for the “hand”
are to drive it closer to the cylinder. As we will observe in our experimental
results in Sect. 4 the two robots will learn to coordinate with each other gradually
and the rational strategy will emerge along with the evolutionary procedure.

Level3 Scheduling. This level determines when the “hand” should pick up the
cylinder and when it should put the cylinder down. Since the procedure of this
level is fixed, we can write the program for this level manually.
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4 Experiments with Evolutionary Subsumption

4.1 Environment and Experimental Setting

We used Webots of Cyberbotics for the experiments. Although in simulation
the robots can obtain extra information, for example the absolute coordinates
etc., in order to ease the transition from simulator to real robots we did not use
such information. In our experiments we only used the information which a real
khepera robot could acquire through its sensor or turret.

The size of the environment is 100 × 100 cm with high 10 cm white walls, so
that the “eye” can recognize “hand” and cylinder easily. There are no obstacles in
the environment. In order to keep things simple we used special colors to identify
the cylinder and the goal. The “eye” robot was equipped with a k6300 digital
camera turret and the “hand” robot was equipped with a Gripper turret. There
is a wireless channel through which the “eye” and the “hand” can exchange
messages (Fig. 1). The initial positions of “eye”, “hand”, cylinder, and goal
are placed randomly. The limit of steps is 2 times the linear distance between
“hand” and cylinder. The actions of a robot are simplified to 4 actions: MF move
forward, MB move backward, MR turn right about 30 degree and move forward,
and ML turn left about 30 degree and move forward.

We used a layered training method to train each level of the subsumption
architecture sequentially. As described in Sect. 3.2 we first evolve the lower levels
then the higher levels. When evolving, the higher levels “subsume” the lower
levels. Thus the performance of level2 is the performance of the whole system.

At the beginning of each generation we generate maps by randomly placing
the “eye”, “hand”, and cylinders. These maps are kept constant only within one
generation. They will be regenerated before evolution to the next generation.
The number of maps, i.e., the fitness cases, increase with the generations from
1 to 10. That is, along with evolution the difficulty of the task is increased,
finally each individual must be evaluated on 10 maps. This method is able to
prevent the robots from accomplishing their task by fluke. Fitness is defined as
the maximum distance in all fitness cases and the distance is between the “hand”
and the cylinder after the “hand” runs out of its steps.

We used function set F={IFLTE, PROGN2, Data req, IFVhand, IFVobj}
and terminal set T={Dhand, Dobj , Scan, MFe, MBe, MLe, MRe, MFh, MBh,
MLh, MRh}, where the function set is very similar to level1; in the terminal
set Dhand and Dobj are the output of level1, the MFe, MBe, MLe, MRe are the
motor instructions of “eye”, the others are the motor instructions of “hand”.
The other parameters are shown in Table 1.

4.2 Result

Figure 5 shows result of level2, which plots the averaged fitness values over gen-
erations for 10 runs. Note that the horizontal line at 0.1 indicates whether the
“hand” can accomplish task or not. Since the fitness function is defined as the
final distance between the “hand” and the cylinder, if the fitness is below that
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Table 1. Parameters of Genetic Programming

Population size 2000
Crossover rate 0.85
Mutation rate 0.1

Elite rate 0.1
Maximum depth 15
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Fig. 5. Average fitness (10 runs) of the best individuals of the system

line it means finally the “hand” approached within 10 cm of the cylinder and
the “hand” can detect the position of cylinder or goal, with its infrared sensors,
and pick up the cylinder with its gripper, or put the cylinder down on the goal.
Along with the increasing of generations the fitness cases increased from 1 to 10.
This means that finally the fitness is the maximum value of 10 fitness cases. If
we take this into account we can find that in this system the cooperative behav-
iors have been established by GP. See Fig. 8 for the emergence of cooperative
behavior.

Although the concrete behaviors are various, they always display a clear
strategy. The robots usually demonstrate a limited set of strategies, by analyzing
the emerging behaviors we roughly classify the strategies into 3 types:
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ObjectObject

startstart

endend startstart

endend

Fig. 6. At the beginning of evolution the
two robots show poor coordination. Usu-
ally they move separately and aimlessly

ObjectObject
startstart

startstart

Fig. 7. They learned cooperation along
with the evolution and the “observation”–
“action” rhythm emerged

1. The “eye” tries to find the “hand” and then maintains its position to it;
meanwhile, searching for the cylinder and finally directing the “hand” to
close to the cylinder.

2. The “eye” finds the cylinder at first, moves close to it, stays near it, and
then navigates the “hand” close to the cylinder.

3. The “eye” finds a suitable position neither near to the “hand” nor near to
the cylinder, then it navigates the “hand” to move. After the “hand” has
moved several steps the “eye” adjusts its position in response to the new
situation.
All of these strategies have the same effect, namely reduce the level of dif-
ficulty. By using such strategies the relative position of the “eye” and the
“hand” becomes roughly fixed; therefore, the difficulty level is reduced from
3 to 2 (refer to Sect. 2).

Figures 6, 7, and 8 show the course of emergence of the rational strategy.
At the beginning of evolution the two robots show poor coordination. Usually
the “eye” and the “hand” move separately; the “hand” moves aimlessly before
the “eye” surveys the environment and soon it runs out of its steps unnecessar-
ily. Even in generation 0, there are some individuals better than others, they
approach the cylinder more closely (Fig. 6).

Along with the evolution the two robots gain more skill in cooperation,
they show clear rhythm of “observation”–“action”–“observation”. . . The “hand”
never moves before the “eye” because it must save its limited steps (Fig. 7).

Finally, the two robots are more skillful. They have averaged more than 60%
probability to accomplish the task. Figure 8 shows their trajectory. As shown in
Fig. 8, the two robots show favorable coordination. At first the “eye” observes
the environment and directs the “hand” to move and then the “eye” observes
again adjusting its position and directing the “hand” to move again. . . We can
also observe that the trajectory of “hand” is getting more and more smooth along
with their interaction. These phenomena indicate that the rational strategy has
emerged.
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Fig. 8. Finally the skillful cooperative behaviors emerged

In our target task, due to the complexity, the two robots could not ensure
accomplishment of the task in all cases. Although, along with the evolution the
success rate increased. We test the success rate by the following method: for
each generation we select out the best individual to test its success rate as the
success rate of the generation. In the test stage we generate n maps in advance,
giving the position of the “eye”, “hand”, cylinder, and goal as different from the
training environment; but, keeping them constant to provide a fair condition to
all the individuals, which are taken to test the success rate. If the “hand” can
approach the cylinder within 10cm and then approach the goal also within 10
cm, then we mark the individual as able to accomplish the task on this map.
The success rate is defined as the ratio of the number of accomplished maps to
total maps n. In Fig. 9 the upper curve shows the trend of the average success
rate along with the evolutionary process.

4.3 Comparison with Direct GP and ANN

For comparison, we also employed direct GP approaches to solve the problem.
In the direct GP approach, in order to keep things simple, we did not use the in-
put image directly; instead, we kept the level0 fixed and just used GP to generate
programs for level1 and level2. The definition of fitness and the other param-
eters are the same as in the evolutionary subsumption approach. In direct GP
approach, although the “eye” and the “hand” can find the rational strategies
and produce cooperative behaviors, they take almost 3 times the number of gen-
erations of the evolutionary subsumption approach and often failed to converge
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Fig. 9. Comparison of averaged success
rates (10 runs) of evolutionary subsump-
tion and direct GP

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  500  1000  1500  2000  2500

Average fitness

Generations

Average fitness of best individual
Evolutionary subsumption

Direct GP

Fig. 10. Comparison of the best individ-
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due to premature convergence. Furthermore, the final fitness of the evolution-
ary subsumption approach is much better than that of the direct GP. Figure 10
shows the comparison of the best individual’s fitness over the generations and in
Fig. 9, we can find the success rate of the evolutionary subsumption approach
superior to the direct GP approach. This seems due to the reasonable subsump-
tion architecture, we have designed the suitable framework for the whole system
and the GP need only search the optimal solution for each layer in a relatively
small search space. On the other hand, the direct GP approach has to search
in a large search space and often times it can not, or it must take a number
of generations’ evolution to decompose the problem into rational components.
Therefore, the final results are inferior to the subsumption architecture.
In the ANN approach we used a 3 layer feed-forward neural network and used
a generic BP algorithm to train the neural network. Since the BP algorithm
is a supervised approach, when using the BP algorithm we have to provide a
set of correct input-output pairs as training samples. However for ”eye” there
are too many possible strategies. It is impossible to foresee the action of ”eye”;
therefore, we can not provide standard input and output and use an error value
to train the ”eye”. In other words, the reasonable strategies can not emerge
automatically, they must be specified by the designer. So as an alternative we
restricted the movement of the “eye”: fixed the position of the ”eye” and ensured
that the ”hand” and the cylinder both appear in its view-field. We used “batch
training mode”, i.e., weights are changed only after the “hand” ran out of its
steps and stopped. We used the distance of this moment as the error to train
the weight. Still the cooperative behaviors could not emerge within reasonable
training times. Occasionally they succeeded in one fitness case, but it could not
be generalized to other cases. For this approach the success rate approximates
to 0%.
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Fig. 11. The preliminary environment of the real robots

4.4 From Simulation to Real Robots

Usually the simulators are too ideal and abstract compared to the real world
and gaps exist when moving from the simulator to real robots. In our ongoing
experiment (Fig. 11) we employ two Khepera robots, they are connected to a
desktop workstation though aerial cable. The aerial cable provides the robots
with data communication from the desktop.
Since our approach employed subsumption architecture, in which the layers can
be redesigned and added incrementally, when moving from the simulator to real
robots we just need to redesign level0 and part of level1. Moreover, we did not
use any extra information that only can be obtained via the simulator. This
alleviates the complexity of moving to real robots.

5 Discussion

When designing an intelligent robot it is impossible to foresee all the potential
situations a robot will encounter and specify all behaviors in advance. Especially
in multi-robot systems, the situations that each robot encounters are much more
complex and unpredictable. Therefore, the basic issue is how to design a control
program for such systems. In this paper we studied such an issue and evalu-
ated our evolutionary approach in an “eye”-“hand” cooperative problem. The
experimental result shows that by applying GP to subsumption, our approach,
efficient emergence of a rational strategy for multi-robot systems is possible.

Subsumption architecture decomposes the control system into a set of layers,
each layer implements an asynchronous task achieving behavior [1]. Though
it can produce a robust and flexible robot control system, the design of each
layer is still a burdensome task, especially the high level layers, for instance
path planning and reasoning etc. Furthermore, the robot’s behavior is specified
manually by adding corresponding layers, namely the reasonable behaviors can
not emerge automatically just like in neural network architecture (see Sect. 4.3).
In a multi-robot system it is impossible to specify the strategy of each robot
in advance, the rational strategy of a multi-robot system can only emerge as a
result of interaction of robots in the system.
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Artificial evolutionary approaches can establish rational strategy automat-
ically, especially in multi-robot systems. Dario Floreano et al. applied a co-
evolutionary neural network in a predator-prey problem and proposed that the
chase and evasion strategy would emerge automatically by the interaction of the
two robots [3]. H. Iba et al. discussed the emergence of cooperative behavior
for a multi-robot/agent system [4,8]. Their research showed that sophisticated
strategies can be produced efficiently by the GP approach.

However, it is also intractable to search for a direct solution using evolution-
ary approaches for complex multistage behaviors, such as our target system. In
this paper we proposed an Evolutionary Subsumption method, which combines
the above two approaches. Compared with direct GP and classical subsumption
architecture, our experimental result shows that it has been endowed with the
advantages of the two approaches. By generating task achieving behaviors au-
tomatically, it alleviates the burden of design of subsumption. Furthermore, by
employing an evolutionary approach, rational behaviors can emerge along with
the evolution. On the other hand, when the search space is too large, subsump-
tion architecture can restrict the search space and make evolutionary approaches
converge within a practicable time.

In summary, comparing subsumption architecture, direct GP and ANN ap-
proaches:

1. It is difficult for subsumption architecture to search for a rational strategy,
the behaviors should be specified in advance. Also subsumption architecture
claimed that complex behaviors are simply the reflection of a complex en-
vironment, but the behaviors are specified by the designer, manually with
corresponding layers.

2. Direct GP converges several times slower than the evolutionary subsumption
approach.

3. BP algorithm ANN approach, due to its supervised nature, has the same
problem as the subsumption architecture; that is, the cooperative behaviors
can not emerge automatically.

The other essential issue for a multi-robot system is what kind of architec-
tures should be employed, i.e., central control or distributed control. Chern H.Y.
et al. employed GA to evolve a team of neural networks in a cooperative multi-
robot system and studied the tradeoff between central and distributed controllers
[2]. They found that co-evolutionary architecture can accelerate the conver-
gence. Since our target system is different from the systems in literature [2,
3,8], that is the “hand” is not completely autonomous, the convergent speed of
co-evolutionary architecture is slower than central-control architecture. We will
report the comparison of distributed control and central control architecture in
another paper.

6 Conclusion

We examined the emergence of cooperative behavior and proposed that the two
robots can find several quite reasonable strategies. According to the results in
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Sect. 4 these strategies are different, but have the same effect; that is by inter-
acting with each other, the “eye” and the “hand” determine their relationship,
thereby reducing the difficulty level efficiently from 3 to 2, and finally accomplish-
ing the task. Our results lead us to deduce the following empirical conclusions:

1. Evolutionary Subsumption is efficient in emergence of a heterogeneous multi-
robot system. It shows superiority to both classical subsumption architecture
and GP approach. As a divide-and-conquer method this approach can be
applied to a number of other robot control problems.

2. The direct GP approach can also be used to deal with some complex systems;
but compared with the evolutionary subsumption approach the efficiency is
much lower and easily falls into local optimum.

3. Since a standard feed-forward neural network with BP training algorithm
needs samples to train the network, it is awkward in emergence of novel
behavior.

However, the path of the “hand” to approach the cylinder is not optimal and
the success rate is much lower for some high-reliability applications. For future
research we want to extend this approach to co-evolutionary architecture and
hope to improve the robustness and efficiency of our target system.
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