
GenTree: An Interactive Genetic Algorithms
System for Designing 3D Polygonal Tree Models

Clare Bates Congdon1 and Raymond H. Mazza2

1 Department of Computer Science, Colby College
5846 Mayflower Hill Drive, Waterville, ME 04901 USA

ccongdon@colby.edu
2 Entertainment Technology Center, Carnegie Mellon University

5000 Forbes Avenue, Doherty Hall 4301, Pittsburgh, PA 15213 USA
rmazza@andrew.cmu.edu

Abstract. The creation of individual 3D models to include within a
virtual world can be a time-consuming process. The standard approach
to streamline this is to use procedural modeling tools, where the user
adjusts a set of parameters that defines the tree. We have designed Gen-
Tree, an interactive system that uses a genetic algorithms (GA) approach
to evolve procedural 3D tree models. GenTree is a hybrid system, com-
bining the standard parameter adjustment and an interactive GA. The
parameters may be changed by the user directly or via the GA process,
which combines parameters from pairs of parent trees into those that
describe novel trees. The GA component enables the system to be used
by someone who is ignorant of the parameters that define the trees. Fur-
thermore, combining the standard interactive design process with GA
design decreases the time and patience required to design realistic 3D
polygonal trees by either method alone.

1 Introduction

This paper describes GenTree, an interactive system that models 3D polygonal
trees as a set of parameters for a procedural tree description and uses genetic
algorithms (GA’s) to evolve these parameters.

Realistic-looking organic objects for 3D virtual worlds are time consuming
to model. Typically, designers must become skilled in the use of a commercial
modeling program such as 3D Studio Max or Maya in order to be able to con-
struct realistic tree models to be used in simulations. Creation of a single tree by
even a skilled modeler would typically take several hours using this approach.

Procedural modeling systems, such as described in [11] (or commercial sys-
tems SpeedTree and Tree Storm) are intended to streamline the tree model
creation process. They allow users to adjust a number of parameters that con-
trol the appearance of a tree without having to focus on low-level components
of the model.

In procedural systems, many of the possible parameters interact with each
other; for example, the length of branches, the base width of branches relative to
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the parent branch, and the rate at which they taper will combine to determine
the width of the tip of each branch. Thus, it can be time consuming and difficult
to design a tree with a desired look, and it is difficult for the user to gain
an understanding of the effects and interactions of the parameters. Since the
trees are constructed one at a time, exploring variations (and creating multiple
models) is further time consuming. Furthermore, more realism and variation in
the space of possible trees is achieved in procedural tree programs by increasing
the parameter space. Increasing the size of this search space increases the burden
of using and learning to use such a system.

GenTree seeks to extend the capabilities of the procedural tree-building ap-
proach by adding a GA component to the search process. GenTree enables users,
even those with no experience in using 3D modeling tools, to quickly design trees
for use in virtual worlds. The system is interactive, allowing (but not requiring)
the user to adjust the parameters that define each tree. The system also allows
(but does not require) the user to assign a numeric rating to each tree; this in-
formation is then used by the GA to favor the more appealing trees as parents
in the evolutionary process.

This work does not focus on rendering the trees smoothly, and is instead
focused on specifying the parameters that define the general shapes of the trees.
Consequently, there is much room for improvement in the component of the
system that renders the trees, depending on the intended use for these trees.

2 Background

There are several examples of evolutionary approaches to design in recent liter-
ature, including [1][2]. These collections in particular include several examples
of aesthetic evolutionary projects, but differ in focus from the project presented
here.

Sims evolves 3D creatures [1] (and [10][9]), but his focus was on the mobility of
the creatures (for example, joints) and not a natural appearance of the creatures.
Soddu [2] evolves cityscapes, composed of individual buildings composed in turn
of architectural elements. These do not have the added constraint of intended
realism in modeling natural objects. Hancock and Frowd’s work in the generation
of faces is also relevant[2]; however, this project is aimed at altering photographs,
rather than constructing 3D models of the faces.

Bentley’s system [1] evolves solutions to a wide variety of 3D modeling prob-
lems, but focuses on problems that can be evaluated independently of aesthetic
considerations. From these collections, the work here is most similar to an ex-
tension to Bentley, reported in [2], which allowed the GADES system to interact
with a user. The system is able to evolve a wide variety of shapes in response to
the user-provided fitness feedback.

L-systems an an established approach to modeling the development of plants,
for example [5][7], and has been used directly or inspired previous work on the
evolution of plant forms, for example [6]. Finding a set of rules to achieve a
desired appearance is a search problem, not unlike the search for parameters
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Initial set of trees
  specified by parameter strings
  generated at random

User views trees one at a time and
A. May adjust parameters
B. May assign numeric ratings

GA creates new parameter strings by:
1. Selecting parents
2. Crossing over parents
3. Mutation

render

reproduce

render

Fig. 1. GenTree iterates between user input and the genetic algorithm in the creation
of new trees.

in a procedural tree-modeling program. However, since these systems are evolv-
ing rule sets or hierarchical structures, the concerns are different from those in
this paper. Also, since the underlying representations are more complex, these
approaches are much harder for users to attempt without a genetic algorithms
approach (or another form of help with the search process).

Sims [8] evolved plant shapes using parameter strings, but the system is
strictly evolutionary and does not allow for interactive parameter tuning. In [4],
we describe a GA approach to designing 3D polygonal trees that led to the work
reported here. However, this work was an initial exploration of the concept and
uses a limited parameter set, resulting in fanciful, rather than realistic, trees.
Also, like [8], the system is strictly evolutionary, so the trade-offs between a
strictly procedural approach and an evolutionary approach are not explored,
nor is the potential for a hybrid approach explored.

3 System Details

As demonstrated in [8] and [4], a GA approach is able to help navigate the search
space of a procedural tree-building program. The parameters that define the trees
are easily represented as strings, and the user-provided rating of the quality of
the solutions serves as a fitness function. Finally, new (offspring) parameter sets
can be derived from existing (parent) parameter sets using typical GA processes
of crossover and mutation.

This paper extends these ideas to combine the interactive approach of a stan-
dard procedural program (where the user adjusts parameters) with an interactive
GA.
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main
create (random) initial population
getFitness
while (maxTrials not reached)
generateNew
getFitness

generateNew
select parents
mutate
crossover
save best (elitism)

Fig. 2. High-level pseudocode for the GA system in GenTree.

getFitness
(all trees start with default fitness of 0.0)
while (not DoneWithGeneration)
renderTree -- display each tree for user
(each tree rotates to show all angles)

user may increment or decrement fitness for each tree
user may advance to next tree or backup to previous tree
user may change any of the parameters that define the tree
user may signal DoneWithGeneration

Fig. 3. High-level pseudocode for the interactive component.

3.1 System Overview

GenTree starts with an initial population of trees whose parameters are gener-
ated at random. The user may look at each tree in turn, may change any of
the parameters that define any of the trees, and may assign each tree a numeric
rating that indicates its quality. When signaled by the user, a new generation of
trees is produced from the old, using the GA process. Most notably, the parame-
ter sets from two different trees “cross over”, producing two new parameter sets.
The new set of trees is viewed by the user, and may again be altered and/or
rated, and a new set of trees produced from the old via the GA process. A
high-level view of the system is illustrated in Figure 1; pseudocode is shown in
Figures 2 and 3.

3.2 GA Component

To hasten the development of our system, we used Genesis [3] for the genetic
algorithms component of GenTree; the Genesis code has been combined with a
modest OpenGL system (developed by the authors) to display the trees for eval-
uation by the user. We named the system GenTree to reflect a genetic algorithms
approach to creating tree models.
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Table 1. A description of the values represented in the strings evolved by GenTree
and rendered as 3D polygonal trees.

Gene Name Description Range of
# Values
0 Number of The number of sub-branches that protrude from [1..8]

Branches any one branch (modified by noise)
1 Length Ratio The ratio of the length of a branch to that of the [0.2 .. 0.9]

parent branch
2 Width Ratio The ratio of the width of the base of a sub-branch [0.2 .. 0.9]

to that of the parent branch
3 Branch Taper The ratio of the end of a branch to the base of a [0.2 .. 0.9]

branch
4 Branch From the tip of the parent branch, the percent of [0.1 .. 0.8]

Proximity the parent to be used for distributing the
sub-branches along the parent.

5 Tree Depth The number of branches that can be traversed from [2 .. 9]
the trunk to the tips (excluding the trunk)

6 Branch The change in x and z direction in the vector that [0.0 .. 0.1]
Angle Delta determines the angle of a sub-branch,

relative to the parent branch
7 Vertical change Added to direction inherited from parent branch. [0.0 .. 1.0]
8 Parent influence Strength of influence of parent vector on offspring [0.0 .. 1.0]

branches.
9 Branch Noise in the x, y, and z direction of the growth of [0.0 .. 1.0]

Direction Noise a branch section (off the defined normal vector
for the branch section)

10 Branch Noise in determining the number of branches at [0.0 .. 1.0]
Number Noise each level of growth (higher noise tends to add

branches)
11 Subtree Noise in determining how deep a subtree is [0.0 .. 1.0]

Depth Noise (higher noise tends to truncate subtrees)
12 Random Seed Stored with tree parameters so that tree will [0.0 .. 1.0]

render consistently

The mechanics of the genetic algorithm (GA) component of the system are
largely unchanged from the original Genesis code, although the interactive nature
of the system changes the flow of control, since mouse clicks and keystrokes from
the user affect the GA. This will be described later in this section.

3.3 Procedural Tree Component

In designing the parameters used to define the trees, we looked to existing proce-
dural tree programs, plus a bit of trial and error, to determine what would make
good looking trees. The parameters evolved by the system and their ranges are
provided in Table 3.3.
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renderTree
drawSpan(trunk)

drawSpan
setDirection
draw conic section
flip biased coin to possibly add a branch (bias determined by gene 10)
if (subBranches)
for each branch
flip biased coin to possibly make a smaller subtree
(bias determined by gene 11)

drawSpan(branch)

setDirection
if trunk, straight up
else, combine normal vectors for:
parent direction, weighted by gene 8
random compass direction, weighted by gene 6
random y direction, weighted by gene 7

Fig. 4. High-level pseudocode for the rendering component.

3.4 Rendering a GA String into OpenGL Trees

The trees are rendered recursively from the trunk through the branches. High-
level pseudocode for the rendering process is provided in Figure 4. Each GA
string uniquely translates into a specific rendering, including a seed used for
random numbers (gene 12), so the process is deterministic for a given string.

The trunk and each branch are rendered as primitive conic sections1. The
trees are generated without leaves, but green triangles can be generated at the
tips of the branches to assess what a tree would look like if it had leaves on it.

4 Results

One is first tempted to evaluate the GenTree system by judging how good the
resulting trees look, and based on this criteria, the system is able to generate
good looking trees in a short period of runtime.

1 In OpenGL, conic sections are drawn using a specified number of faces. Because the
rendering component is not the focus of the work reported here, the number of faces
used here is four to keep the polygon counts low and the rendering fast. Thus, the
sections are rectangular.
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Fig. 5. A variety of trees from the final population.

4.1 Resulting Trees

Subjective results show that with an initial population of 20 trees2, several in-
teresting and realistic looking trees can be produced within 5-10 generations of
the GA and with less than an hour of the user’s time. Because the GA is working
with several models simultaneously, the end result of a run is a population of
trees, several of which are likely to be attractive and useful. Furthermore, similar
looking but distinct trees can be produced from a favorite tree by altering its
parameters. Therefore, it is possible to easily construct a variety of trees as the
result of one run of the system.

Figure 5 shows a variety of trees from the final population from a run of 7
generations of 20 trees, with both interactive fitness and interactive adjustment
used.

Figure 6 shows another example tree produced at the end of the same run,
and then shows this same tree with leaves added.

Recall that since the trees (and leaves) are rendered using simple cylinders
(and triangles), it is the structure of the trees that should be considered, and
not the surfaces of the trees.

2 A population size of more than 20 starts to become tedious from the usability per-
spective, as the user will typically view and interact with each tree before advancing
to the next generation.
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Fig. 6. One of the best trees from the final population, shown with and without leaves.
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Fig. 7. Five example trees from the initial population.

4.2 Initial Population

As a reference point, a sampling of trees from the initial population are shown
in Figure 7. This sample (every fourth tree) includes the two from the initial
population that most resemble trees (the third and the fifth shown), as well as
one with branches growing into the ground and two with branches growing inside
each other. The three clearly errant trees shown in this figure illustrate typical
features of the randomly generated trees.

4.3 Comparison of Interaction Styles

The primary question to be asked in the context of the work reported here is
whether the GA component assists with the development of the 3D tree models.
To assess this, the system was run four different ways:

1. Without providing fitnesses for trees and without altering them in any way.
2. Altering tree parameters for trees that can be improved upon each genera-

tion, but not rating the trees.
3. Rating the trees, but not altering them beyond the GA process.
4. Altering tree parameters for trees that can be improved upon each generation

and also rating these trees before they are used in the GA process.

In the first instance, the system starts with randomly generated trees and
recombines them, so it is not surprising that it does not produce anything inter-
esting. It has been mentioned here merely for completeness.

The second instance is not typical of the GA process in that no information
is provided to the GA about solutions that are “better” or “worse” than others,
and this information is typically used for preferential parent selection. However,
in this case, the alternative mechanism of “eugenics” (helping there be more good
solutions to be used as parents) achieves a similar role of recombining primarily
good solutions.

The third instance corresponds to the standard use of Genetic Algorithms,
and the fourth instance corresponds to the full capacity of the GenTree system
to take input from the user in two forms.
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The system was run by the authors in all four variants with the general
goal of finding good-looking trees with minimal effort. Although this remains
a subjective test and evaluation, the authors explicitly did not fine tune any
trees in the adjustment process. A population size of 20 trees was used, with a
crossover rate of 60 percent and a mutation rate of 0.1 percent (each bit has a
.1 percent chance of being set to a random 0 or 1 value). With each approach
save the first, for each variation of altering trees and supplying ratings, GA
generations were run until approximately an hour had elapsed. This resulted in
5 generations for variation 2, 20 generations for variation 3, and 7 generations
for variation 4.

An explanation for the varying numbers of generations is that with the second
variation, the most time was spent adjusting the parameters to each tree, since
all trees are equally likely to be “parents” to the next generation. In variation 4,
when the ratings were used, bad trees (those that could not easily be adjusted)
were simply given low ratings. This happens sometimes, for example, when a very
angular tree pops up. (Such a tree can be useful “grist for the mill” or might
be useful when constructing deliberately fanciful trees, but can sometimes be
difficult to smooth out without considering how parameters interact and perhaps
changing the parameter set severely. Thus, it can be expedient to simply give a
difficult tree a low rating.) With the third variation, no alterations were allowed,
so each tree was viewed and assigned a rating, allowing more generations in the
time frame.

All three approaches are capable of producing comparable trees, and the as-
sessment of “best” may have to do with the user’s background. As users familiar
with the available parameters, it is frustrating to do the third run and restrain
oneself from “touching up” a promising tree. However, the ease with which a
naive user can design trees using only ratings and without knowing the param-
eters has been witnessed several times in curious colleagues trying the software.
For more knowledgeable users, there seems to be little reason to run the system
with the second variation because the ability to weed out bad trees or favor
interesting ones can be expedient, even if used only occasionally.

The differences observed between the second and fourth variations are that
when both ratings and alterations are used, the trees in the final population tend
to show more variation than when just alterations (and no ratings) are used.
This is a somewhat counterintuitive result in that in many GA applications,
the population tends to converge, and it is impossible to discern at this point
whether this is a quirk of the author’s use of the system or a more meaningful
effect. However a possible explanation can be constructed in that when adjusting
most of the trees each generation (and not being allowed to simply indicate a
tree is undesirable and leave it behind), it appears likely that one gets into the
habit of adjusting the same parameters into similar values. Whereas when the
ratings are used, less parameter adjusting happens and therefore less bias in
adjusting particular values is introduced. (This is just one possible explanation
of observed differences in the final populations.)

The question must also be asked about the results of altering parameters only
(without advancing any generations in the GA process) for an hour, during which
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time a knowledgeable user would surely be able to produce one or more attractive
trees. Using the system this way, more skill would be required in assessing the
relative contributions of the different parameters and the interactions of the
various parameter settings with each other. The addition of the GA process
(with or without ratings) considerably lessens the need for understanding the
effects of individual parameters, or even knowing what the parameters are.

Further Observations

Overall, we are quite pleased with the wide variety of shapes that are possible
in the system and its ability to yield some trees that are approaching realism.
Not surprisingly, the noise parameters appear to be instrumental in making the
trees look more realistic and providing more variations of “similar” trees.

5 Conclusions and Future Work

The GenTree system is able to produce a variety of trees with realistic shapes.
Although it is difficult to effectively evaluate a system whose output is judged
on aesthetic criteria, the addition of the GA mechanisms to a procedural tree
modeling system simplifies the development of 3D tree models in that users do
not need to understand the effects of individual parameters or even know what
the parameters are in order to develop useful models. Rather than having to
identify why a tree is good or bad (or the ways in which a tree is good or bad),
the user can assign a subjective rating.

Future Work

The introduction of more parameters into the procedural definition of the tree
would be useful in that it would allow for a greater variety of trees, including
pine trees and palm trees. However, this would also make the space of possible
trees more difficult for users to navigate. Thus, as the parameter space increases,
the GA mechanisms are expected to be even more useful for helping the user
discover appealing trees.

The trees would be significantly more realistic by improving the rendering
engine, even if the GA and interactive facets of the system were left unchanged.
This would include adding textures to the surfaces and smoother transitions from
branches to sub-branches. Furthermore, it may be desirable to parameterize the
rendering component, for example, to allow favoring low-polygon-count trees (for
some applications) or favoring realism.

Additional benefits could be seen from parameterizing leaf characteristics
and improving the rendering of the leaves. Root structure would also make trees
more realistic. In addition, different colors and textures could be specified for
bark and for leaves, and the colors and textures could be subject to evolution.
The ability to add flowers and fruit, and variations on these, could also be added
as parameters.
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In a few years, we will no longer be constrained by polygonal limits in virtual
worlds; some applications will call for trees of high intricacy, which will be too
time consuming even to attempt to model through regular methods. There is an
obvious advantage to using GenTree in this situation.
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