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Abstract. Finless rockets are more efficient than finned designs, but
are too unstable to fly unassisted. These rockets require an active guid-
ance system to control their orientation during flight and maintain sta-
bility. Because rocket dynamics are highly non-linear, developing such
a guidance system can be prohibitively costly, especially for relatively
small-scale rockets such as sounding rockets. In this paper, we propose
a method for evolving a neural network guidance system using the En-
forced SubPopulations (ESP) algorithm. Based on a detailed simulation
model, a controller is evolved for a finless version of the Interorbital Sys-
tems RSX-2 sounding rocket. The resulting performance is compared to
that of an unguided standard full-finned version. Our results show that
the evolved active guidance controller can greatly increase the final alti-
tude of the rocket, and that ESP can be an effective method for solving
real-world, non-linear control tasks.

1 Introduction

Sounding rockets carry a payload for making scientific measurements to the
Earth’s upper atmosphere, and then return the payload to the ground by para-
chute. These rockets serve an invaluable role in many areas of scientific re-
search including high-G-force testing, meteorology, radio-astronomy, environ-
mental sampling, and micro-gravity experimentation [1,2]. They have been used
for more than 40 years; they were instrumental e.g., in discovering the first ev-
idence of X-ray sources outside the solar system in 1962 [3]. Today, sounding
rockets are much in demand as the most cost-effective platform for conducting
experiments in the upper atmosphere.

Like most rockets, sounding rockets are usually equipped with fins to keep
them on a relatively straight path and maintain stability. While fins are an
effective “passive” guidance system, they increase both mass and drag on the
rocket which lowers the final altitude or apogee that can be reached with a given
amount of fuel. A rocket with smaller fins or no fins at all can potentially fly
much higher than a full-finned version. Unfortunately, such a design is unstable,
requiring some kind of active attitude control or guidance to keep the rocket
from tumbling.

Finless rockets have been used for decades in expensive, large-scale launch
vehicles such as the USAF Titan family, the Russian Proton, and the Japanese
H-IIA. The guidance systems on these rockets are based on classical feedback
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Fig. 1. The Interorbital Systems RSX-2 Rocket.
The RSX-2 is capable of lifting a 5 pound pay-
load into the upper atmosphere using a clus-
ter of four liquid-fueled thrusters. It is currently
the only liquid-fueled sounding rocket in pro-
duction. Such rockets are desirable because of
their low acceleration rates and non-corrosive
exhaust products.

control such as Proportional-
Integral-Differential (PID)
methods to adjust the thrust
angle (i.e. thrust vectoring)
of the engines. Because rocket
flight dynamics are highly
non-linear, engineers must
make simplifying assumptions
in order to apply these lin-
ear methods, and take great
care to ensure that these
assumptions are not violated
during operation. Such an
undertaking requires detailed
knowledge of the rocket’s
dynamics that can be very
costly to acquire. Recently,
non-linear approaches such
as neural networks have been
explored primarily for use in
guided missiles (see [4] for an
overview of neural network
control architectures). Neural
networks can implement arbi-
trary non-linear mappings that
can make control greatly more
accurate and robust, but,
unfortunately, still require
significant domain knowledge
to train.

In this paper, we propose
a method for making the de-
velopment of finless sounding
rockets more economical by using Enforced SubPopulations (ESP; [5,6]) to evolve
a neural network guidance system. As a test case, we will focus on a finless ver-
sion of the Interorbital Systems RSX-2 rocket (figure 1). The RSX-2 is a liquid-
fueled sounding rocket that uses the differential thrust of its four engines to
control attitude. By evolving a neural network controller that maps the state of
the rocket to thrust commands, the guidance problem can be solved without the
need for analytical modeling of the rocket’s dynamics or prior knowledge of the
appropriate kind of control strategy to employ. Using ESP, all that is required
is a sufficiently accurate simulator and a quantitative measure of the guidance
system’s performance, i.e. a fitness function.

In the next three sections we describe the Enforced SubPopulations method
used to evolve the guidance system, the controller evolution simulations, and
experimental results on controlling the RSX-2 rocket.
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Fig. 2. The Enforced Subpopulations Method (ESP; color figure). The population of
neurons is segregated into subpopulations shown here in different colors. Networks are
formed by randomly selecting one neuron from each subpopulation. A neuron accumu-
lates a fitness score by adding the fitness of each network in which it participated. This
score is then normalized and the best neurons within each subpopulation are mated
to form new neurons. By evolving neurons in separate subpopulations, the specialized
sub-functions needed for good networks are evolved more efficiently.

2 Enforced Subpopulations (ESP)

Enforced Subpopulations1 [5,6] is a neuroevolution method that extends the
Symbiotic, Adaptive Neuroevolution algorithm (SANE; [7]). ESP and SANE
differ from other NE methods in that they evolve partial solutions or neurons
instead of complete networks, and a subset of these neurons are put together to
form a complete network. In SANE, neurons are selected from a single population
to form networks. In contrast, ESP makes use of explicit subtasks; a separate
subpopulation is allocated for each of the h units in the network, and a neuron
can only be recombined with members of its own subpopulation (figure 1). This
way the neurons in each subpopulation can evolve independently and specialize
rapidly into good network sub-functions.

Evolution in ESP proceeds as follows:

1. Initialization. The number of hidden units h in the networks that will be
formed is specified and a subpopulation of neuron chromosomes is created.
Each chromosome encodes the input and output connection weights of a
neuron with a random string of real numbers.

2. Evaluation. A set of h neurons is selected randomly, one neuron from each
subpopulation, to form the hidden layer of a complete network. The network
is submitted to a trial in which it is evaluated on the task and awarded a
fitness score. The score is added to the cumulative fitness of each neuron

1 The ESP software package is available at:
http://www.cs.utexas.edu/users/nn/pages/software/abstracts.html#esp-cpp
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that participated in the network. This process is repeated until each neuron
has participated in an average of e.g. 10 trials.

3. Recombination. The average fitness of each neuron is calculated by divid-
ing its cumulative fitness by the number of trials in which it participated.
Neurons are then ranked by average fitness within each subpopulation. Each
neuron in the top quartile is recombined with a higher-ranking neuron using
1-point crossover and mutation at low levels to create the offspring to replace
the lowest-ranking half of the subpopulation.

4. The Evaluation–Recombination cycle is repeated until a network that per-
forms sufficiently well in the task is found.

Evolving networks at the neuron level has proven to be a very efficient method
for solving reinforcement learning tasks such as pole-balancing [6], robot arm
control [8], and game playing [7]. ESP is more efficient that SANE because the
subpopulation architecture makes the evaluations more consistent in two ways:
first, the subpopulations that gradually form in SANE are already present by
design in ESP. The species do not have to organize themselves out of a single
large population, and their progressive specialization is not hindered by recom-
bination across specializations that usually fulfill relatively orthogonal roles in
the network. Second, because the networks formed by ESP always consist of a
representative from each evolving specialization, a neuron is always evaluated
on how well it performs its role in the context of all the other players.

The accelerated specialization in ESP makes it more efficient than SANE,
but it also causes diversity decline over the course of evolution like that of a
normal GA. This can be a problem because a converged population cannot easily
adapt to a new task. To deal with premature convergence, ESP is combined with
burst mutation. The idea is to search for optimal modifications of the current
best solution. When performance has stagnated for a predetermined number
of generations, new subpopulations are created by adding noise to each of the
neurons in the best solution. Each new subpopulation contains neurons that
represent differences from the best solution. Evolution then resumes, but now
searching the space in a “neighborhood” around the best previous solution. Burst
mutation can be applied multiple times, with successive invocations representing
differences to the previous best solution. Assuming the best solution already has
some competence in the task, most of its weights will not need to be changed
radically. To ensure that most changes are small while allowing for larger changes
to some weights, ESP uses the Cauchy distribution to generate noise:

f(x) =
α

π(α2 + x2)
(1)

With this distribution 50% of the values will fall within the interval ±α and
99.9% within the interval ±318.3α. This technique of “recharging” the subpop-
ulations keeps diversity in the population so that ESP can continue to make
progress toward a solution even in prolonged evolution.

Burst mutation is similar to the Delta-Coding technique of [9] which was de-
veloped to improve the precision of genetic algorithms for numerical optimization
problems. Because our goal is to maintain diversity, we do not reduce the range
of the noise on successive applications of burst mutation and we use Cauchy
rather that uniformly distributed noise.
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Fig. 3. Rocket Dynamics. The rocket (a) is stable because the fins increase drag in
the rear of the rocket moving the center of pressure (CP) behind the center of gravity
(CG). As a result, any small angles α and β are automatically corrected. In contrast,
the finless rocket (b) is unstable because the CP stays well ahead of the CG. To keep α
and β from increasing, i.e to keep the rocket from tumbling, active guidance is needed
to counteract the destabilizing torque produced by drag.

3 The Finless Rocket Guidance Task

In previous work, ESP was shown to outperform a wide range of reinforcement
learning algorithms including Q-learning, SARSA(λ), Evolutionary Program-
ming, and SANE on several difficult versions of the pole-balancing or inverted
pendulum task [6]. The rocket guidance domain is similar to pole-balancing in
that both involve stabilizing an inherently unstable system. Figure 1 gives a basic
overview of rocket dynamics. The motion of a rocket is defined by the translation
of its center of gravity (CG), and the rotation of the body about the CG in the
pitch, yaw, and roll axes. Four forces act upon a rocket in flight: (1) the thrust
of the engines which propel the rocket, (2) the drag of the atmosphere exerted
at the center of pressure (CP) in roughly the opposite direction to the thrust,
(3) the lift force generated by the fins along the yaw axis, and (4) the side force
generated by the fins along the pitch axis. The angle between the direction the
rocket is flying and the longitudinal axis of the rocket in the yaw-roll plane is
known as the angle of attack or α, the corresponding angle in the pitch-roll plane
is known as the sideslip angle or β. When either α or β is greater than 0 degrees
the drag exerts a torque on the rocket that can cause the rocket to tumble if it
is not stable. The arm through which this torque acts is the distance between
the CP and the CG.

In figure 1a, the finned rocket is stable because the CP is behind the rocket’s
CG. When α (β) is non-zero, a torque is generated by the lift (side) force of
the fins that counteracts the drag torque, and tends to minimize α (β). This
situation corresponds to a pendulum hanging down from its hinge; the pendulum
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Fig. 4. The time-varying difficulty of the guidance task. Plot (a) shows the amount of
drag force acting on the finless rocket as it ascends through the atmosphere. More drag
means that it takes more differential thrust to control the rocket. Plot (b) shows the
position of the center of pressure in terms of how many feet ahead it is of the center
of gravity. From 0 to about 22,000ft the control task becomes more difficult due to the
rapid increase in drag and the movement of the CG away from the nose of the rocket.
At approximately 22,000ft, drag peaks and begins a decline as the air gets thinner, and
the CP starts a steady migration towards the CG. As it ascends further, the rocket
becomes progressively easier to control as the density of the atmosphere decreases.

will return to this stable equilibrium point if it is disturbed. When the rocket
does not have fins, as in figure 1b, the CP is ahead of the CG causing the
rocket to be unstable. A non-zero α or β will tend to grow causing the rocket
to eventually tumble. This situation corresponds to a pendulum at its unstable
upright equilibrium point where any disturbance will cause it to diverge away
from this state.

Although the rocket domain is similar to the inverted pendulum, the rocket
guidance problem is significantly more difficult for two reasons: the interactions
between the rocket and the atmosphere are highly non-linear and complex, and
the rocket’s behavior continuously changes throughout the course of a flight due
to system variables that are either not under control or not directly observable
(e.g. air density, fuel load, drag, etc.).

Figure 3 shows how the difficulty of stabilization varies over the course of
a successful flight for the finless rocket. In figure 3a, drag is plotted against
altitude. From 0ft to about 22,000ft, the rocket approaches the sound barrier
(Mach 1) and drag rises sharply. This drag increases the torque exerted on the
rocket in the yaw and pitch axes for a given α and β, making it more difficult to
control its attitude. In figure 3b, we see that also during this period the distance
between the CG and CP increases because the consumption of fuel causes the
CG to move back, making the rocket increasingly unstable. After 22,000ft, drag
starts to decrease as the air becomes less dense, and the CP steadily migrates
back towards the CG, so that the rocket becomes easier to control.
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Fig. 5. RSX-2 Rocket Simulator. The picture
shows a 3D visualization of the JSBSim rocket
simulation used to evolve the RSX-2 guidance con-
trollers. The simulator provides a realistic environ-
ment for designing and verifying aircraft dynamics
and guidance systems.

For ESP, this means that
the fitness function auto-
matically scales the diffi-
culty of the task in response
to the performance of the
population. At the begin-
ning of evolution the task is
relatively easy. As the popu-
lation improves and individ-
uals are able to control the
rocket to higher altitudes,
the task becomes progres-
sively harder. Although fig-
ure 3 indicates that above
22,000ft the task again be-
comes easier, progress in
evolution continues to be
difficult because the con-
troller is constantly enter-
ing an unfamiliar part of the
state space. A fitness func-
tion that gradually increases
in difficulty is usually de-
sirable because it allows for
sufficient selective pressure
at the beginning of evolution to direct the search into a favorable region of
the solution space. However, the rocket control task is already too hard in the
beginning—all members of the initial population perform so poorly that the evo-
lution stalls and converges to a local maxima. In other words, direct evolution
does not even get started on this very challenging task. One way to overcome
this problem is to make the initial task easier and then increase the difficulty
as the performance of the population improves. In the experiments below we
employ such an incremental evolution approach [5]. Instead of trying to evolve
a controller for the finless rocket directly, a more stable version of the rocket is
used initially to make the ultimate task more accessible.

The following section describes the simulation environment used to evolve the
controller, the details of how a guidance controller interacts with the simulator,
and the experimental setup for evolving a neural network controller for this task.

4 Rocket Control Experiments

4.1 The RSX2 Rocket Simulator

As an evolution environment we used the JSBSim Flight Dynamics Model2
adapted for the RSX-2 rocket by Eric Gullichsen of Interorbital Systems. JSB-
2 More information about the free JSBSim software package is available at:
http://jsbsim.sourceforge.net/
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Sim is an open source, object-oriented flight dynamics simulator with the ability
to specify a flight control system of any complexity. JSBSim provides a realistic
simulation of the complex dynamic interaction between the airframe, propulsion
system, fuel tanks, atmosphere, and flight controls. The aerodynamic forces and
moments on the rocket were calculated using a detailed geometric model of the
RSX-2. Four versions of the rocket with different fin configurations were used: full
fins, half fins (smaller fins), quarter fins (smaller still), and no fins, i.e. the actual
finless rocket. This set of rockets allowed us to observe the behavior of the RSX2
at different levels of instability, and provided a sequence of increasingly difficult
tasks with which to evolve incrementally. All simulations used Adams-Bashforth
4th-order integration with a time step of 0.0025 seconds.

4.2 Neural Guidance Control Architecture
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Fig. 6. Neural Network Guidance. The control
network receives the state of the rocket every
time step through its input layer. The input con-
sists of the rocket’s orientation, the rate of change
in orientation, α, β, the current throttle position
of each engine, the altitude, and the velocity of
the rocket in the direction of flight. These values
are propagated through the network to produce
a new throttle command (the amount of thrust)
for each engine.

The rocket controller is repre-
sented by a feedforward neural
network with one hidden layer
(figure 6). Every 0.05 seconds
(i.e. the control time-step) the
controller receives a vector of
readings from the rocket’s on-
board sensors that provide in-
formation about the current
orientation (pitch, yaw, roll),
rate of orientation change, an-
gle of attack α, sideslip angle
β, the current throttle posi-
tion of the four thrusters, alti-
tude, and velocity in the direc-
tion of flight. This input vec-
tor is propagated through the
sigmoidal hidden and output
units of the network to pro-
duce a new throttle position
for each engine determined by:

ui = 1.0 − oi/δ, i = 1..4 (2)

where ui is the throttle po-
sition of thruster i, oi is the
value of network output unit
i, 0 ≤ ui, oi ≤ 1, and δ ≥ 1.0.
A value of ω for ui means that
the controller wants thruster i
to generate ω × 100% of max-
imum thrust. The parameter δ controls how far the controller is permitted to
“throttle back” an engine from 100% thrust.
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4.3 Experimental Setup

The objective of the experiments was to determine whether ESP could evolve
a controller to stabilize the finless version of the RSX-2 rocket. To do so, the
neural guidance system has to control the thrust of each of the four engines
in order to maintain the rocket’s angle of attack α and sideslip angle β within
±5 degrees from the time of ignition to burnout when all of the fuel has been
expended. Exceeding the ±5 degree boundary indicates that the rocket is about
to tumble and is therefore considered a catastrophic failure. Each ESP network
was evaluated in a single trial that consisted of the following four phases:

1. At time t0, the rocket is attached to a launch rail that will guide it on a
straight path for the first 50 feet of flight. The fuel tanks are full and the
engines are ignited.

2. At time t1 > t0, the rocket begins its ascent as the engines are powered to
full thrust.

3. At time t2 > t1, the rocket leaves the launch rail and the controller begins
to modulate the thrust as described in section 4.2 according to equation 2.

4. While controlling the rocket one of two events occurs at time tf > t2:
a) α or β exceeds ±5 degrees, in which case the controller has failed.
b) the rocket reaches burnout, in which case the controller has succeeded.
In either case, the trial is over and the altitude of the rocket at tf becomes
the fitness score for the network.

In a real launch, the rocket would continue after burnout and coast to apogee.
Since we are only concerned with the control phase, for efficiency the trials
were limited to reaching burnout. This fitness measure is all that is needed to
encourage evolutionary progress. However, there is a large locally maximal region
in the network weight space corresponding to the policy oi = 1.0, i = 1..4; the
policy of keeping all four engines at full throttle. Since it is very easy to randomly
generate networks that saturate their outputs, this policy will be present in the
first generations. Such a policy clearly does not solve the task, but because
the rocket is so unstable, no better policy is likely to be present in the initial
population. Therefore, it will quickly dominate the population and halt progress
toward a solution. To avoid this problem, all controllers that exhibited this policy
were penalized by setting their fitness to zero. This procedure ensured that the
controller was not rewarded for doing nothing.

The simulations used 10 subpopulations of 200 neurons (i.e. the networks
were composed of 10 hidden units), and δ was set to 10 so the network could
only control the thrust in the range between 90% and 100% for each engine. It
was determined in early testing that this range produced sufficient differential
thrust to counteract side forces, and solve the task.

As was discussed in section 3, evolving a controller directly for the finless
rocket was too difficult and an incremental evolution method was used instead.
We first evolved a controller for the quarter-finned rocket. Once a solution to
this easier task was found, the evolution was transitioned to the more difficult
finless rocket.



Active Guidance for a Finless Rocket Using Neuroevolution 2093

Time: seconds

A
lti

tu
de

: f
t. 

x 
10

00

full fins no guidance

1/4 fins w/ guidance

finless w/ guidance

finless 
no guidance

no guidance
1/4 fins

no guidance
1/2 fins 

0
0 10 20 30 40 50 60

10

20

30

40

50

60

70

80

90

Fig. 7. Comparison of burnout altitudes for different fin-size rockets with and without
guidance. The crosses indicate the altitude at which a particular rocket becomes un-
stable (i.e. either α or β > ±5 degrees). The circles indicate the altitude of a successful
rocket that remained stable all the way to burnout. The guided quarter-finned and
finless rockets fly significantly higher than the unguided full-finned rocket.

5 Results

ESP solved the task of controlling the quarter-finned rocket in approximately
600,000 evaluations. Another 50,000 evaluations were required to successfully
transition to the finless rocket. Figure 4.3 compares the altitudes that the various
rockets reach in simulation. Without guidance, the full-finned rocket reaches
burnout at approximately 70,000ft, whereas the finless, quarter-finned, and half-
finned rockets all fail before reaching burnout. However, with neural network
guidance the quarter-finned and finless rockets do reach burnout and exceed the
full-finned rocket’s altitude by 10,000ft and 15,000ft, respectively. After burnout,
the rocket will begin to coast at a higher velocity in a less dense part of the
atmosphere; the higher burnout altitude for the finless rocket translates into an
apogee that is about 20 miles higher than that of the finned rocket.

Figure 5a shows the behavior of the four engines during a guided flight for
the finless rocket. The controller makes smooth changes to the thrust of the
engines throughout the flight. This very fine control is required because any
abrupt changes in thrust at speeds of up to Mach 4 can quickly cause failure.
Figure 5b shows α and β for the various rockets with and without guidance.
Without guidance, the quarter-finned and even the half-finned rocket start to
tumble as soon as α or β start to diverge from 0 degrees. Using guidance, both
the quarter-finned and finless rockets keep α and β at very small values up
to burnout. Note that although the finless controller was produced by further
evolving the quarter-finned controller, the finless controller not only solves a
more difficult task, but does so with more optimal performance.
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Fig. 8. Controller performance for the finless rocket. Plot (a) shows the policy im-
plemented by the controller. Each curve corresponds to the percent thrust of one of
the four rocket engines over the course of a successful flight. After some initial oscil-
lation the control becomes very fine, changing less than 2% of total thrust for any
given engine. Plot (b) compares the values α and β for various rocket configurations
and illustrates how well the neural guidance system is able to minimize α and β. The
unguided quarter-finned and half-finned rockets maintain low α and β for a while, but
as soon as either starts to grow the rocket tumbles. In contrast, the guidance systems
for the quarter-finned and finless rockets are able to contain α and β all the way up to
burnout. The finless controller, although evolved from the quarter-finned controller, is
more optimal.

6 Discussion and Future Work

The rocket control task is representative of many real world problems such as
manufacturing, financial prediction, and robotics that are characterized by a
complex non-linear interaction between system components. The critical advan-
tage of using ESP over traditional engineering approaches is that it can produce
a controller for these systems without requiring formal knowledge of system be-
havior or prior knowledge of correct control behavior. The experiments in this
paper demonstrate this ability by solving a high-precision, high-dimensional,
non-linear control task.

Of equal importance is the result that the differential thrust approach for the
finless version of the current RSX-2 rocket is feasible. Also, having a controller
that can complete the sounding rocket mission in simulation has provided valu-
able information about the behavior of the rocket that would not otherwise be
available.

In the future, we plan on making the task more realistic in two ways: (1)
the controller will no longer receive α and β values as input, and (2) instead of
a generating continuous control signal, the network will output a binary vector
indicating whether or not each engine should “throttle back” to a preset low
throttle position. This scheme will greatly simplify the control hardware on the
real rocket. Once a controller for this new task is evolved, work will focus on
varying environmental parameters and incorporating noise and wind so that the
controller will be forced to utilize a robust and general strategy to stabilize
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the rocket. This phase will be critical to our ultimate goal of transferring the
controller to the RSX-2 and testing it in an actual rocket launch.

7 Conclusion

In this paper, we propose a method for learning an active guidance system for a
dynamically unstable, finless rocket by using the Enforced Subpopulation neu-
roevolution algorithm. Our experiments show that the evolved guidance system
is able to stabilize the finless rocket and greatly improve its final altitude com-
pared to the full-finned, stable version of the rocket. The results suggest that
neuroevolution is a promising approach for difficult nonlinear control tasks in
the real world.
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