
Loop Pipelining for Scheduling Multi-Dimensional

Systems via Rotation

Nelson Luiz Passos Edwin Hsing-Mean Sha Steven C. Bass
Dept. of Computer Science & Engineering

University of Notre Dame
Notre Dame, IN 46556

Abstract� Multi-dimensional (MD) systems are

widely used in scienti�c applications such as image

processing, geophysical signal processing and uid

dynamics. Earlier scheduling methods in synthe-

sizing MD systems do not explore loop pipelining

across di�erent dimensions. This paper explores

the basic properties of MD loop pipelining and

presents an algorithm, called multi-dimensional rota-

tion scheduling, to �nd an e�cient schedule based

on the multi-dimensional retiming technique we

developed. The description and the correctness

of our algorithm are presented in the paper. The

experiments show that our algorithm can achieve

optimal results e�ciently.

I. Introduction

Computation intensive applications usually depend on
time-critical sections consisting of a loop of instructions.

To optimize the execution rate of such applications, the de-

signer needs to explore the parallelism embedded in repet-
itive patterns of a loop. However, the existence of resource

constraints makes the problem of scheduling loops an NP-

complete problem.

Previous research in loop pipelining for loops with cyclic
dependencies produced methods which are only applicable

to one-dimensional problems. Such methods appear in sev-

eral systems [1, 5, 8]. This paper studies loop pipelining
and designs an algorithm for scheduling multi-dimensional

(MD) loops while considering resources constraints. MD

retiming is used to characterize the e�ect of MD loop
pipelining. Chao and Sha introduced the concept of a

restricted MD retiming without resource constraints [2].

This concept was applicable to a speci�c class of multi-
dimensional data ow graphs (MDFGs), where any cycle

would have a strictly non-negative total MD delay. In a

previous study we extended the concept of MD retiming,
introducing the idea of schedule-based multi-dimensional

retiming without resource constraints [7]. In that method,

a feasible linear schedule allows us to restructure the loop
body represented by a general form of MDFG, while pre-

serving data dependencies, and improving the existent

parallelism. Since there are more dimensions to search

than the one-dimensional (1-D) case, the problem of �nd-
ing the optimal retiming becomes more complex. This

paper develops a method for scheduling cyclic MDFGs

with resource constraints. We call this technique multi-

dimensional rotation scheduling, generalizing the 1-D ro-

tation method [1].

In data-path design, the length of one control-step is

consequence of the clock cycle. Two operations that do

not exceed the clock cycle may be chained to �t into the
same clock cycle. Operations that are longer than one

clock cycle require the allocation of resources for multiple
control steps. Functional units that have a pipeline design

can accept a new operation before the previous one is com-

pleted. The MD rotation schedulingmethod is designed to
handle all of these types of operations. This paper intro-

duces the solution for problems with operations that �t

exactly into one clock cycle, leaving the other cases as an
extension of the concepts here presented.

Our algorithm improves a resource-constrained sched-
ule by performing MD retiming incrementally using the

multi-dimensional rotation technique. The existing sched-

ule is partially rescheduled to obtain a shorter schedule
under resource constraint. The state of a sequence of ro-

tations is recorded by a simple retiming function. In 1-D

rotation, a rotation corresponds to incrementing the retim-
ing function of a node by one. For the MD case, a rotation

of a node can be regarded as retiming the node by any

vector (even negative) as long as the resulting dependence
graph does not contain cycles. This paper builds up the

framework of the problem of multi-dimensional scheduling.

For simplicity we use a two-dimensional (2-D) problem,

shown in Fig. 1(a), as an example, where nodes A, D are

multipliers and B, C are adders. Fig. 2(a) shows an op-

timal schedule with length 4 for the directed acyclic graph

(DAG) associated to the MDFG in Fig. 1(a). Fig. 2(b)

shows a more compact schedule in which node D has been

rotated down and then pushed to a new position. This new

schedule can be associated with the retimed graph pre-

sented in Fig. 1(b), where the 2-D delay (1; 0) is pushed

through node D of the original MDFG.1 Intuitively, the

1Note that (1;0) is arbitrarily chosen here. The vector (2;1)

B (-1,1)

A D

C (1,1)

(a)

B (-2,1)

A D

C (0,1)

(1,0)

(b)

Fig. 1: (a) MDFG extracted from a Wave Digital Filter

(b) MDFG after retimed by r(D)=(1,0)

(a) (b) (c)

CS Mult. Adder

 1 D -
 2 A -
 3 - B
 4 - C

CS Mult. Adder

 1 - -
 2 A -
 3 D B
 4 - C

CS Mult. Adder

 1 - -
 2 - -
 3 D B
 4 A C

Fig. 2: (a) Initial schedule (b) Schedule after rotating D

(c) Final schedule

retimed node no longer precedes the node A within the

same iteration, resulting in an shorter schedule with length
3. An optimal schedule with length 2, seen in Fig. 2(c),

results after the rotation of node A.

The multi-dimensional rotation scheduling method uses
a DAG scheduling algorithm, such as list scheduling [3] as a

subroutine. Notice that only part of the MDFG is resched-

uled in each rotation, saving computation time. The next
section establishes some of the basic concepts to be used

in this paper. Section III de�nes down-rotation and in-

troduces the basic fundamentals of the multi-dimensional
rotation. Also, a heuristic method to solve the schedul-

ing problem using our technique is presented. An example

is discussed in section IV. A �nal section summarizes the
concepts presented.

II. Basic Principles

A multi-dimensional data ow graph G = (V; E; d; t) is a

node-weighted and edge-weighted directed graph, where

V is the set of computation nodes, E is the set of depen-

dence edges, d the MD delay between two nodes, and t the

computation time of each node. We use d(e) = (d:x;d:y)

as a general formulation of any delay shown in a two-
dimensional DFG (2DFG).

An iteration is the execution of each node in V exactly

once. Iterations are identi�ed by a vector i, equivalent to

an MD index. An iteration is associated to a static sched-

ule. The static schedule of a loop is repeatedly executed

is also possible, as are many others. This exibility introduces a
high computational complexity in multi-dimensional retiming!

0,0 1,0

0,1 1,1

(a)

A B A B

C D C D

0,0 1,0

0,1 1,1

D

(b)

D

A B A B

A B A BA B A B

C D C D C D C D

C D C D

Fig. 3: (a) DG based on the replication of an MDFG,

showing iterations starting at (0,0). (b) Retimed DG

for the loop. A static schedule must obey the precedence

relations de�ned by the subgraph of an MDFG, consisting
of edges without delays. For any iteration j, an edge e

from u to v with delay vector d(e) means that the com-

putation of node v at iteration j depends on the execu-
tion of node u at iteration j � d(e). An edge with delay

(0; 0; : : : ; 0) represents a data dependence within the same

iteration (computational cell). A legal MDFG must have
no zero-delay cycle.

An equivalent cell dependence graph Gdg of an MDFG
G is a 2-D dependence graph (2DG) showing the depen-

dencies between in�nite copies of nodes representing the
MDFG. Fig. 3(a) shows the replication of the MDFG from

Fig. 1(a). We say that an MDFG G is realizable if its cell

dependence graph does not contain any cycle.

To manipulate MDFG characteristics represented on

vector notation, such as the delay vectors, we make
use of component-wise vector operations. For the two-

dimensional vectors P and Q, represented by their coordi-

nates (P:x;P:y) and (Q:x;Q:y), an example of arithmetic
operation is P +Q = (P:x+Q:x;P:y+Q:y). The notation

P �Q indicates the inner product between P and Q, i.e.,

P �Q = P:x �Q:x+ P:y �Q:y.

A. Retiming a Multi-Dimensional Data Flow

Graph

The period during which all computation nodes in an

iteration are executed, according to existing data depen-

dencies and without resource constraints, is called a cycle

period. The cycle period C(G) of an MDFG G is the maxi-

mum computational time among paths that have no delay.

For example, the MDFG in Fig. 1(a) has C(G) = 3, which
can be measured through the paths p = D ! A ! B or

p = D ! A ! C. The cycle period for an MDFG is the

length of the static schedule for the corresponding DAG
without resource constraints.

A multi-dimensional retiming r is a function from V

to Zn that redistributes the nodes in the cell dependence

graph. A new MDFG Gr = (V;E; dr; t) is created, such

that each iteration still has one execution of each node in
G. The retiming vector r(u) of a node u 2 G represents

the o�set between the original iteration containing u, and

B (-1,0)

A D

C (1,0)
(0,1)

r(D) = (0,1)
r(A) = (0,0)
r(B) = (0,0)
r(C) = (0,0)

(a) (b)

0,1 1,1

0,0 1,0

Fig. 4: (a) Example of illegal MD retiming. (b) DG show-

ing cycles in the x-direction.

the one after retiming.

On the 1-D retiming, negative delays represent the ex-
istence of a cycle in the equivalent DG, and can not be

allowed [6]. However, on the MD case, the existence of

negative delays is to be considered natural if there exists a
schedule s that turns the DG realizable. The retimed cell

DG, for the example in Fig. 1(b), is shown in Fig. 3(b),

where the nodes originally belonging to iteration (0; 0) are
marked. A possible schedule vector for the retimed graph

is s = (1; 3). Fig. 4(a) shows an illegal retiming function

applied to the same example. By simple inspection of the
cell dependence graph in Fig. 4(b) we notice the existence

of a cycle created by the dependencies (1; 0) and (�1; 0).
A prologue is the set of instructions that are moved

on directions x and y, in a 2-D retiming, and that must

be executed to provide the initial data for the iterative

process.

B. Schedule-Based Multi-Dimensional Retiming

A legal MD retiming on an MDFG G = (V; E; d; t)

requires that the cell dependence graph of the retimed
MDFG Gr = (V; E; dr; t) does not contain any cycle, and

for a given cycle period c, if the execution time of a path

p in Gr is greater than c, then dr(p) 6= (0; 0; : : : ; 0). These

two constraints are enforced through the use of a feasible

linear schedule vector that supports the realization of the

retimed graph.

A schedule-based multi-dimensional retiming r of an
MDFG G = (V;E; d; t), resulting Gr = (V;E; dr; t), which

is realizable according to a schedule s, is characterized by:

(a) for any path u
p
�; v, dr(p) = d(p) + r(u)� r(v)

(b) for any cycle l 2 G, dr(l) = d(l)

(c) for any edge e, if dr(e) 6= (0; 0; : : : ; 0), dr(e) � s > 0.
We de�ne the functions D(s)(u; v) and T (s)(u; v) as:

D(s)(u; v) = minfd(p) � sju
p
�; v 2 Gg

T (s)(u; v) = maxft(p)ju
p
�; v 2 G^d(p) � s= D(s)(u; v)g.

The function r is a legal schedule-based MD retiming on

G, such that C(Gr) � c if and only if

(a) for every edge u
e
�! v, r(v) � s � r(u) � s < d(e) � s or

r(v) � r(u) = d(e)
(b) for every pair u; v in G, if T (s)(u; v) > c then r(v) � s�
r(u) � s � D(s)(u; v)� 1

The concepts shown above, are the basis for an ILP pro-
gram to �nd the schedule-based multi-dimensional retim-

ing function. Due to the space limit, details are omitted.
Interested readers refer to [7].

III. Multi-Dimensional Rotation

Scheduling

A. Basic Concepts

In this section we introduce the theoretical foundations

for our algorithm. The MD down-rotation operation is de-
�ned and main properties are presented. Spatial properties

involving the dependence vectors are explored to support

the multi-dimensional retiming used in the rotation oper-
ation.

De�nition III..1 Given an MDFG G = (V;E; d; t) and
X a subset of V , the MD down-rotation of set X pushes a

multi-dimensional delay vector from each of the incoming

edges of X to each of the outgoing edges of X, resulting
in a transformed MDFG GX .

The following property is obtained by the de�nition of MD

down-rotation.

Property III..1 Let G = (V; E; d; t) be a legal MDFG. If

X is a subset of V , then the set X is down-rotatable if and

only if every path (V �X)! X contains a delay di�erent

from (0; 0; : : : ; 0).

Fig. 1(a) shows the node D as a source node for the

DAG associated to the MDFG presented. Submitting D

to a down-rotation, it changes from source to a sink node
in the new MDFG, shown in Fig. 1(b). We say that X is

down-rotatable if there exists a legal retiming function that

transformsG toGX . The selection of the retiming function

has a relevant importance in the process. An arbitrary

choice of the retiming vector may induce a cycle in the

rotated graph. As an example, let's examine the problem

shown in Fig. 1(a). Assume that we arbitrarily decide to

use a retiming vector (0; 1), after the down rotation of node

D, and pushing it up to control step 3, we would apparently
reduce the length of the schedule to 3. However, we have

seen before, in Fig. 4, that such a retiming generates an

MDFG that has a cycle in the equivalent cell dependence
graph, which implies that this solution is not realizable.

We de�ne a region that contains all dependence vectors to

support the idea of a realizable MDFG.

De�nition III..2 Given an MDFG G = (V;E; d; t) and
D = fd(e) : e 2 E; d(e) 6= (0; 0; : : : ; 0)g, a dependent region
is the subspace containing all dependence (delay) vectors

in D. A normal vector nD is the vector normal to a hy-
perplane that divides the space in two regions, with the

normal vector nD pointing to the dependent region.

d d’

x

y

(0,0)

nD

r

dependent region

Fig. 5: An example of dependent region

In a two-dimensional case, the dependent region is
equivalent to a half-plane. Fig. 5 shows a two-dimensional

example of a dependent region. The normal vector has the

following property:

Property III..2 Let G = (V; E; d; t) be a realizable

MDFG. There exists a normal vector nD such that the in-

ner product of any non-zero dependence vector d and nD

is strictly positive, i.e, d � nD > 0.

Considering such properties, we introduce the method

of predicting a legal MD retiming function, which is used

in our rotation scheduling algorithm.

Theorem III..1 Let G = (V;E; d; t) be a realizable

MDFG, and nD be a normal vector for G. A legal re-

timing r(u) is any vector perpendicular to nD, where all

the incoming edges of u have non-zero delays.

Therefore, given a set of dependence vectors, after ob-

taining a dividing hyperplane, we can predict a legal re-
timing function.

B. The Rotation Algorithm

We now present a technique to compact the initial

schedule, considering the resource constraints, and using
the MD down-rotation operation.

A schedule h is the mapping from V to control steps

[a; b], where [a; b] = fi : a � i � b; i 2 Ng, such that
the resource constraints are satis�ed. The computation of

node u 2 V starts its execution at control step h(u) in the

schedule h. Considering the data dependencies within an
iteration, we derive the following property to characterize a

legal static schedule and associate it to a retiming function.

Property III..3 Let G = (V;E; d; t) be an MDFG, and

h a proposed schedule for G under resource constraints.

The schedule h is a legal static schedule of G if and only if

there exists a legal retiming function r that transformsG to

Gr = (V;E; dr; t), such that h(u) + t(u) � h(v), whenever

dr(u; v) = (0; 0; : : : ; 0), for u; v 2 V .

We say that the retiming r realizes the schedule h when it

satis�es this property.

(a) (b) (c)

Prologue

CS Mult. Adder

 1 D -
 2 A -

 3 D B
 4 A C

 5 D B
 6 A C

CS Mult. Adder

 2 A -
 3 D B
 4 - C

 5 A -
 6 D B
 7 - C

 1 D -

CS Mult. Adder

 1 D -
 2 A -
 3 - B
 4 - C

 5 D -
 6 A -
 7 - B
 8 - C

Fig. 6: Sequential iterations for: (a) initial schedule (b)

schedule after rotating D (c) �nal schedule

Our algorithm uses the technique of rotation to com-
pact an initial schedule, obtaining a legal static schedule.

Consider the example in Fig. 1(a), the initial schedule

has a length 4, see Fig. 6(a). We construct the subset
X = fDg to be rotated down. Then we try to push node

D to its earliest control step, which is control step 3, ac-

cording to the precedence and resource constraints. We
obtain the schedule in Fig. 6(b) with length 3. In another

rotation we reschedule the set X = fAg. The optimal

schedule is then obtained with a length 2, as Fig. 6(c)
shows. Intuitively, when a node is rotated, each copy of

the node is pushed up by r:x iterations in the x-direction

and r:y iterations in the y-direction, for a retiming func-
tion r = (r:x; r:y). A prologue is created to provide initial

values for the repetitive iterations. Such prologue consists

of those nodes that have been rotated.

It is easy to verify that, for unit-time operations, the
multi-dimensional rotation will never increase the length

of the initial schedule. Assume Xi to be the set of nodes

scheduled in the �rst i control steps. From property III..1,
we know that Xi is a down-rotatable set, for every i in

[1; k] where k is the length of the original schedule. After

the rotation, we obtain a new valid schedule h0 with the
same length k in the interval [i+ 1; i+ k], i.e.,

h0(u) =

�
h(u) + k; 0 < h(u) � i

h(u); i < h(u) � k

Therefore, after any down rotation of unit-time nodes,
there always exist a schedule for the retimed MDFG, which

is at least as short as the initial one. A reschedule of the

nodes in the last i control steps on the new MDFG will
push those nodes to earlier control steps, and eventually

produce a shorter schedule2 . We can summarize our algo-

rithm in the following steps:

1. Select the MD retiming function.

2. Compute an initial schedule for G and assume it is
minimum.

3. Rotate down the set of nodes X consisting of nodes

2When handlingmulti-cycle operations, the whole node is ro-
tated down, which implies that the post-rotation schedule may
be longer than the initial one. To overcome this problem, the

multi-cycle node may require the usage of some splitting tech-
nique as the wrapping discussed in [1]

found in the �rst k control steps (where k is an user
option), retiming G accordingly.

4. Reschedule the nodes in X.

5. If the new schedule is shorter than the one saved as

minimum, replace the minimum one.

6. If initial requirements were satis�ed, then outputs the
minimum schedule found until now, otherwise, re-

place the initial schedule with the retimed one and

go back to step 3.

More complex problems may require the use of the multi-

dimensional schedule-based retiming to �nd an initial re-
duced schedule.

C. The Selection of the Retiming Function

Di�erently from the 1-D rotation, where the down-

rotation operation on set X was associated with the re-

timing of X by one time unit, the MD case allows us to
retime in any legal direction. We know that larger compo-

nents in the MD retiming vector imply larger prologues, so

intuitively we must try to keep the absolute values of the
components of the retiming vector as low as possible. The

selection of the retiming function is done at the beginning

of the algorithm. Two approaches are presented below.

Arbitrary Selection

In this case, we do not consider the problem being

scheduled, but the advantages of having a speci�c retim-

ing function. Note that in the one-dimensional case, the
unit value was the most appropriate retiming for keeping

the size of the prologue as shorter as possible. For a two-

dimensional problem, the retiming vector could be chosen
to be (1; 2), (1; 1), (1; 0) or one of many other options. To

reduce the size of the prologue, we assume that the retim-

ing function is parallel to one of the Cartesian axis. For
a 2DFG, we choose (0; 1) or (1; 0). To assure the realiz-

ability of the �nal schedule, we must check if all resulting

non-zero dependence vectors are contained in a dependent
region, to avoid the occurrence of a cycle.

Predicting a Legal Retiming

Here we introduce a corollary for theorem III..1.

Corollary III..2 Given a realizable MDFG G =
(V; E; d; t), a normal vector nD for G, and a vector r per-

pendicular to nD. If a set X � V is down-rotatable then

retiming X by r never causes a cycle.

We use the idea of theorem III..1 to �nd a legal retiming

by solving the inequalities nD � d(e) > 0 for every e 2 E,

where nD is the unknown; we may choose a retiming func-

tion from the hyperplane with nD as the normal vector.

The advantage of this option is to avoid the risk of a cycle.

Also, the required additional time to select the best retim-

ing function is compensated by the fact that the algorithm

M8 A4 A6 A5

M7

M6 A3

M5

M4 A2

M3

M2 A1

M1

A7

(2,2)

(2,1)

(2,0)

(1,2)

(1,1)

(1,0)

(0,2)

(0,1)

(b)

Fig. 7: Initial MDFG representing an IIR �lter

does not need to verify the graph, looking for cycles, after

each rotation.

IV. Experiments

Due to space limits, we present a single example, which

consists of an IIR �lter (In�nite Extent Impulse Response)
[4], represented by the transfer function:

H(z1; z2) =
1�

1�
P

2

n1=0

P
2

n2=0
c(n1 ;n2)�z

�n1

1
�z
�n2

2

�
which for k1; k2 6= 0 can be translated into

y(n1; n2) = x(n1; n2)+P2

k1=0

P2

k2=0
c(k1; k2) � y(n1 � k1; n2 � k2)

Fig. 7(b) shows the MDFG. Assume both adders and mul-
tipliers take one time unit to compute. A control step

also consists of one time unit. Our list schedule algorithm

gives priority to nodes with larger number of successor
nodes. Fig. 8(a) shows an optimal schedule with length

10. Let's assume an arbitrary retiming vector (0; 1). Fig.

8(b) shows the schedule after node M8 has been rotated,
with no change in the length of the schedule, since M8 and

A7 are in the same iteration. A more compact schedule of

length 9, presented in Fig. 8(c), is obtained when node M7
is rotated down and then pushed to a new position. The

next rotation operation a�ects nodes M6 and A4. M6,

when pushed down goes to a new position, but A4 now is

in the same iteration as M8 and M7, so the length is not

reduced, as we can see in Fig. 8(d). One more rotation,

give us the optimal schedule length of 8 time units, when

node M5 is rotated down. The new schedule is shown in

Fig. 8(e), and the �nal retimed graph in Fig. 9(a). Notice,

that at every rotation, it was necessary to check the graph
for possible cycles.

Our second approach is to �nd a legal retiming func-

tion before rotating any node. After �nding the vector

nD = (1; 1), we use the vector (�1; 1), which is perpen-

dicular to nD as retiming function. Using the same orig-

(a) (b) (c)

CS Mult. Adder

 1 M8 -
 2 M7 -
 3 M6 A4
 4 M5 -
 5 M4 A3
 6 M3 A6
 7 M2 A2
 8 M1 A5
 9 - A1
 10 - A7

CS Mult. Adder

 1 - -
 2 M7 -
 3 M6 A4
 4 M5 -
 5 M4 A3
 6 M3 A6
 7 M2 A2
 8 M1 A5
 9 - A1
 10 - A7
 11 M8 -

CS Mult. Adder

 1 - -
 2 - -
 3 M6 A4
 4 M5 -
 5 M4 A3
 6 M3 A6
 7 M2 A2
 8 M1 A5
 9 M7 A1
 10 - A7
 11 M8 -

CS Mult. Adder

 1 - -
 2 - -
 3 - -
 4 M5 -
 5 M4 A3
 6 M3 A6
 7 M2 A2
 8 M1 A5
 9 M7 A1
 10 M6 A7
 11 M8 -
 12 - A4

CS Mult. Adder

 1 - -
 2 - -
 3 - -
 4 - -
 5 M4 A3
 6 M3 A6
 7 M2 A2
 8 M1 A5
 9 M7 A1
 10 M6 A7
 11 M8 -
 12 M5 A4

CS Mult. Adder

 1 - -
 2 - -
 3 M6 A4
 4 M5 -
 5 M4 A3
 6 M3 A6
 7 M2 A2
 8 M1 A5
 9 M8 A1
 10 M7 A7

(d) (e) (f)

Fig. 8: Arbitrary selection: (a) Initial schedule (b) Sched-

ule after rotating M8 (c) Schedule after rotating M7 (d)
Schedule after rotating M6 and A4 (e) Final schedule after

rotating M5. (f) Final Schedule for the Prediction method

inal schedule, after the �rst rotation, we get a schedule

where the length was reduced from 10 to 9 time units.
After rotating the node M7, we get the optimal schedule

as presented in �gures 8(f) and 9(b). In this case, it was

not necessary to verify the existence of cycles according to
corollary III..2.

Our experiments had always achieved optimal results.

Through them, we notice that the arbitrary selection of
the retiming function, generally, give us a shorter prologue.

The disadvantage of such approach, is that we may even-

tually end up with a cycle in our graph. The prediction

method does not cause cycle, increasing the chances of get-

ting an optimal schedule.

V. Conclusion

We have introduced a novel technique on scheduling
a multi-dimensional data ow graph through the use
of a multi-dimensional retiming function that we devel-
oped. This new method, named multi-dimensional rota-
tion scheduling considers an initial schedule for a multi-
dimensional data ow graph, and through an iterative pro-
cess of successive node rotations, using a pre-selected re-
timing function, it reduces the schedule length under the
resource constraints. The algorithm is presented in de-
tail, showing that the retiming function may be decided
through two di�erent approaches. One may arbitrarily
select a retiming vector, with the disadvantage of caus-
ing a possible cycle during the rotation process, before
an optimal result is reached. A second approach gener-
ates a retiming vector that guarantees no cycles through

(1,1)

(1,0)

(-1,1)

(1
,0

)
(-1

,1)

(1,1)

M8 A4 A6 A5

M6 A3

A7

(1,0)

(1,-1)

(0,1)

(0,1)(0,1)

(0,1)

(a)

M7

M5

M8 A4 A6 A5

M6 A3

A7
(b)

M7

M5

Fig. 9: Retimed subgraphs (a) using arbitrary selection (b)

using prediction approach

the whole process of rotations, allowing a more extensive
search for the optimal schedule. Our experiments have
shown that our algorithm can obtain the schedule with
the shortest possible length e�ciently, con�rming that the
multi-dimensional rotation scheduling is an e�ective tech-
nique in scheduling MD data ow graphs under resource
constraints.

References

[1] L.-F. Chao, A. LaPaugh, and E. H.-M. Sha, \ Rota-

tion Scheduling: A Loop Pipelining Algorithm," Proc.

30th ACM/IEEE Design Automation Conference , Dal-
las, TX, June, 1993, pp. 566-572.

[2] L.-F. Chao and E. H.-M. Sha, \ Static Schedulings of

Uniform Nested Loops," Proceedings of 7th International

Parallel Processing Symposium , Newport Beach, CA,

April, 1993, pp. 1421-1424.

[3] S. Davidson, D. Landskov, B. D. Shriver, and P. W. Mal-

lett,\ Some Experiments in Local Microcode Compaction
for Horizontal Machines". IEEE Transactions on Com-

puters, C-30, 7, 1981, pp. 460-477.

[4] D. E. Dudgeon and R. M. Mersereau, Multidimensional

Digital Signal Processing, Englewood Cli�s, NJ: Prentice
Hall, 1984.

[5] G. Goosens, J. Wandewalle, and H. de Man \ Loop Op-
timization in Register Transfer Scheduling for DSP Sys-
tems,"Proc. ACM/IEEE Design Automation Conference

, 1989, pp. 826-831.

[6] C. E. Leiserson and J. B. Saxe, \ Retiming Synchronous
Circuitry". Algorithmica, 6, 1991, pp. 5-35.

[7] N. L. Passos, E. H.-M. Sha, and S. C. Bass, \ Schedule-
Based Multi-Dimensional Retiming". To appear in Pro-

ceedings of 8th International Parallel Processing Sympo-

sium , April 1994.

[8] C.-Y. Wang and K. K. Parhi, \ High Level DSP Synthe-
sis Using the MARS Design System". Proc. of the Inter-

national Symposium on Circuits and Systems, 1992, pp.
164-167.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

