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Abstract

This paper presents a systematic technique for generat-
ing new instruction sets which are optimized for a given mi-
croarchitecture and set of benchmark programs. This pro-
cess consists of the following steps: generation of execution
traces, formation of code segments, optimal recompilation
of the code segments to produce candidate instructions, and
covering of the instructions from the code segments to yield
the final instruction set. To illustrate the use of the new
technique, an instruction set is generated for the execution
of compiled Prolog programs.

1 Introduction

Even though some may say that the current instruction set
architectures are sufficient for almost all application needs
(both general and special purpose), there has been no lack
of recent introduction of new instruction sets or revisions to
current instruction sets.

This paper presents a tool for assisting the design of in-
struction sets of instruction set processors. The tool takes as
input a data path and a set of benchmarks (representing the
application domain) and produces as output an instruction
set which optimizes a metric. The metric includes terms
for cycle count, code size, and instruction set size. This
process partially automates the process that is currently
done manually: (1) performance simulation, (2) determi-
nation of common code sequences, (3) finding the proper
encoding of these sequences (instructions), and (4) remov-
ing instructions that do not contribute enough to the metric
being optimized. The process presented is useful for either
instruction set based processors or for vertical microcode
machines. In both cases, limited instruction bits prevent the
full use of the possible parallelism in the data path. The
proper choice of instruction set minimizes any loss in the
potential performance.

Designing a programmable computer involves the itera-
tive refinement of the instruction set and data path imple-
mentation. A change in the instruction set prompts a mod-
ification to the data path and changes in the data path may
require changes to the instruction set. The basic concept be-

hind the method of instructionset synthesis described here is
to cast the process as a variation on microcode compaction.
Primitive operations supported by the data path are com-
bined together into instructions given constraints on data
dependencies, number of bits available to the instruction,
and the number of distinct instruction opcodes available.

Although a large part of the design effort for a new pro-
cessor is the data path, it is assumed in this paper that this
is done by hand or by a high-level synthesis system. It is
assumed that the data path is held fixed, and the best instruc-
tion set for that data path and benchmark set is derived. The
tool can be incorporated into a manual or automated cycle
of data path modification and instruction set derivation.

There have been several previous attempts at automati-
cally or systematically generating instruction sets [4, 5, 8].
None has become a commonly used technique. Most likely
this is because the metric being optimized is not closely
related to actual performance, and performance is very im-
portant for most applications.

Perhaps the technique most closely related to the one
presented in this paper is vertical migration [1, 3, 16]. The
basic idea of vertical migration is to move often used func-
tions, program loops, or instruction sequences to writable
microcode memory. Higher performance is obtained by
eliminating instruction fetch and decode, by moving heav-
ily used operands into fast registers, and by greater use of
data path parallelism. Many of these benefits, however, can
be obtained by using a data path which eliminates instruc-
tion fetch and decode overhead and operand fetch delays
through effective use of pipelining and large register files.

Vertical migration identifies possible additions to exist-
ing instruction sets which can be added using writable mi-
crocode or implemented with a coprocessor. The technique
presented in this paper is different because it can generate
a new instruction set as a whole. Furthermore, it forms
instructions by rearranging microoperations into one or two
cycle “packages”. Vertical migration, however, builds “big”
instructions by combining a sequence of instructions already
present in the instruction set.

Recent CAD research has also considered instruction set
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design [2, 13, 15, 17]. The work in this paper offers another
alternative method for finding good instruction sets, and it
emphasizes the trade off between instruction set size and
performance.

A detailed description of the new method is given in
Section 2. In Section 3 the technique is applied to the design
of an instruction set specialized for Prolog. Conclusions and
future research are outlined in the final section.

2 Automatic generation of instruction sets

The new technique for instruction set design is composed
of three major steps. First, the benchmarks are transformed
into a set of code segments weighted by dynamic execution
frequency. Second, the code segments are recompiled us-
ing the microoperations of the specified data path. A cycle’s
worth of microoperations becomes an instruction. (If mul-
ticycle instructions are allowed, then the microoperations
of two, three, or more cycles may make up the instruc-
tion.) Lastly, the instructions from one recompilation for
each code segment are combined together to form the final
instruction set. Because each code segment has many possi-
ble recompilations, search is performed to find the selection
of recompilations which minimizes the optimization metric.

Besides a model for the data path and control, a model for
the compiler is also assumed. The compiler uses a simple
code generator with a sophisticated peephole optimizer [6].
Recompilation of code segments is essentially just finding
peephole optimization rules where one is allowed to create
one’s own instructions!

Decomposing the benchmarks into small segments of
code allows search to be used to find all of the near optimal
compilations for the code segment. This process of compil-
ing the code segment (at the microoperation level) creates
the instructions that will go to make up the final instruction
set. Trying alternative instruction sets is now reduced to
trying different ways of covering the recompilations of the
code segments. Because many of the important recompila-
tions are computed before covering, alternative instruction
sets and their performance can be quickly examined.

The complete process is illustrated in Figure 1. The
following subsections will cover each of the steps in this
process: compilation of the benchmarks, execution trace
generation, formation of code segments, optimization of
code segments, and instruction set formation. Before dis-
cussing these steps, however, the metric used to judge be-
tween alternative instruction sets is presented.

2.1 Metrics for instruction set generation

The success of automatically deriving instruction sets
depends on finding a good metric for measuring the quality
of one instruction set against another.

In this paper the bias is toward execution time, but the
metric could also incorporate code size (important for em-

Benchmark

Register Transfers

Execution Trace

Code Segments

Symbolic
State Transitions

Candidate Instructions

Instruction Set

Live Register DataData Path
Control

compilation

simulation

segmenting

 symbolic
evaluation

iterative deepening
         search

instruction
 covering

live register
      analysis

Figure 1: Overview of Instruction Set Derivation

bedded applications). Because the instruction set generation
is done for a fixed data path, cycle time can be factored out
of the performance equation. This allows cycle count to be
used as an estimate of the performance. The pipeline con-
trol model allows modifications to the instruction set to be
implemented as changes in the content of the control PLAs.
No significant change in the delay through the PLAs will
be caused by changes to the instruction set. For more detail
about the control model used see [9].

Besides minimizing cycle count, it is important to make
sure that each instruction is contributingto the performance.
Each instruction represents additional commitment of de-
sign and verification time and use of precious opcode space.
The measure of an instruction’s contribution to the perfor-
mance is the percent performance loss if the instruction is
removed from the instruction set.

The metric proposed here requires that each instruction
contributes at leastN% to the total performance. By varying
the value of N one can achieve the desired instruction set
size. The MIPS R2000 instruction set was designed with a
1% metric in mind [12, page 1.18]. Use of the 1% metric for
a Prolog processor gives rise to a relatively small instruction
set (see Section 3).

The “N% metric” should satisfy the relationships

f(I; C) < f(I + 1; C);

f(I; C) < f(I; C + 1); (1)

f(I; C) = f(I � 1; (1 +N=100)C);



;; branch has one delay slot
;; branch annuls when not taken
8e9c: bne,a 4,r2,8f28
8ea0: ld 8(r1),r3
....
8f28: mov r2,r4

if (r2 == 4)
pc: 8ea4

else
pc: 8f2c
r3: mem(r1+8)
r4: r2

Figure 2: Transformation of Code Segment

where I is the number of instructions in the instruction set
and C is the cycle count of the benchmarks. The metric is
an increasing function of both instruction set size and cycle
count and balances a decrease in I of one with an increase
in C of N%.

These properties imply the functional form

f(I; C) = I + � lnC: (2)

Substituting this functional form into the equality in Equa-
tion 2 and solving for � yields

� = 1= ln(1 +N=100) � 100=N: (3)

Code size can be included into the metric

f(I; C; S) = I + � lnC + � lnS; (4)

whereS is the code size and � determines the percent change
in the code size required before adding a new instruction
(assuming no change in the cycle count). By changing the
values of � and � one can obtain instruction sets which are
optimized for performance, code size, or some combination
of the two. Also, the final instructionset size can be adjusted
by increasing or decreasing � and �.

2.2 Formation of code segments
The benchmark programs are compiled and simulated

to produce an execution trace which contains information
about the operation types, instruction addresses, register ac-
cesses, and memory accesses. Each trace is stored and later
used for live register analysis and code segment selection.

Even though Figure 1 shows the data path register trans-
fers as the target of compilation and as the building block of
the code segments, actually any convenient instruction set
can be used. Preferably the instruction set is one for which a
simulator or trace generation tool exists. Once the symbolic
state expressions are formed for each code segment, then
very little of the instruction set originally used remains.

The goal of code segment generation is to sample typical
code sequences and to weight them by their dynamic exe-
cution frequency. The benchmark programs are broken into
segments of code by randomly selecting points in the exe-
cution trace which are used as starting points for the code
segments. Random selection is used to eliminate any sys-
tematic bias that may be introduced by boundaries selected
by non-random methods. The end of the code segment is

selected so that each code segment will require three or four
execution cycles on the target data path.

Code segments are not restricted to be within a basic
block. They often contain branches and jumps. In these
cases, only the instructions along the execution pathway are
included in the code segment. The segment does contain
stubs for the conditional branches exiting it. This is some-
what analogous to how trace scheduling goes beyond basic
blocks [7].

There are alternatives to segmenting the program into
code segments. For example, simulated annealing can be
used on the flow graph of the benchmarks to do both op-
eration scheduling and instruction formation [11]. More
experiments are necessary to decide which is the best
alternative—each has its advantages. For example, seg-
menting’s main disadvantage is its limitation on the distance
of operation movement (an operation is stuck in the segment
that it is in), but in a sense this limitation on code movement
is just what is required to allow the peephole optimizer to
effectively use a manageable peephole window size. An ad-
vantage of code segments is that the recompilation of each
code segment is independent from the others and hence is
trivially and highly parallelizable.

2.3 Optimization of code segments

Each code segment is converted into declarative form
by symbolic execution. This declarative form is a list of
symbolic values for the program state at the end of the code
segment expressed in terms of the state at the beginning
of the segment. When conditional operations or branches
are present, then a separate symbolic state is given for each
of the execution pathways through the code segment. Live
register information derived from the execution trace can be
used to identify dead registers in the code segment. Elimi-
nating dead registers can simplify the symbolic representa-
tion of the code segment.

Figure 2 illustrates the transformation of a code segment
into symbolic form. The original code segment can be ex-
pressed using register transfers or instructions from a known
instruction set. The example contains a conditional branch,
so the code segment follows one of the possible execution
pathways. The conditional branch also introduces a condi-
tional in the symbolic expression. In the example, when r2
is not equal to 4, the final value of r3 is the value in memory
at address (r1+8) where r1 is the value of register 1 at



the beginning of the code segment.
For each symbolic state transition, heuristic search is

used to find the sequence of microoperations requiring the
fewest cycles that will take the initial state of registers and
memory to the final state. This search is done using iterative
deepening—first a single cycle solution is attempted, then
if that does not work, a two cycle solution, and so on until a
solution is found. The search is constrained by data path re-
source limitations, the control model, and the number of bits
available for the instruction. If single-cycle instructions are
desired, then each cycle’s set of microoperations becomes
an instruction.

The search for optimal recompilations of the code seg-
ment is done by symbolically executing the register transfers
supported by the data path. Whenever a register is refer-
enced or a constant is used, then space is allocated in the
instruction word. The search backtracks whenever the op-
erations require more bits than the instruction word contains
or more resources than the data path supports.

In this paper it is assumed that an instruction is fixed-
length and made up of a selection of field types which in-
clude the opcode, immediate data, register specifiers, and
displacements. These fields are fit into the instruction word
or take implicit values determined by the opcode.

After the code segment is successfully recompiled, a pat-
tern matching is performed on the register transfer specifi-
cation of the instructions to generalize each instruction field
value. For example, if an instruction references register 1
and register 2, these references are generalized to register i
and register j.

Immediate and opcode field sizes can vary and their sizes
are determined during the final instruction set formation.
The actual value of the immediate needed by the instruction
is used to determine the minimum number of bits needed
to represent this value. The data path description specifies
what kinds of encoding are supported for immediates (for
example, zero extension or sign extension).

2.4 Final instruction set formation

The goal now is to combine the code segment recompi-
lations to form the final instruction set. The final instruction
set is the union (or cover) of instructions using one recom-
pilation for each code segment. Each code segment recom-
pilation consists of a cycle count and a list of instructions
formed by the microoperation sequence. Depending on
which recompilations are included in the cover, one trades
off instruction set size and total cycle count. The combina-
tion of code segment recompilations which minimizes the
N% metric is the desired cover.

To illustrate, Figure 3 shows three code segments, each
of which has two solutions (recompilations). Each solution
is represented by a row and each instruction by a column.
A dot indicates that the instruction is required by the so-
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Figure 3: Example of Instruction Set Formation

lution. The three rows outlined can be combined to form
the instruction set containing instructions 1, 3, 5, and 6
and requiring 13 execution cycles. If the other solution
is used for code segment 1, then the number of instruc-
tions in the instruction set increases by one, but the cycle
count decreases to 12. The 1% metric favors the larger in-
struction set because the performance gain is more than 1%
(4 + 100 ln 13 > 5 + 100 ln 12).

There is another important consideration that must be
dealt with during the instruction covering, and that is
subsumption—when one instruction is a more general ver-
sion of another. An instruction is subsumed by another
when its immediate field is smaller than the other or
when register specifiers are less general. For example,
addi Ri,Imm,Ri is subsumed by addi Ri,Imm,Rj.

Instruction subsumption is important because the final
instruction set should not contain both an instruction and
an instruction which it subsumes. To prevent this from
happening, when an instruction is added to the cover, a
check is made for subsumption. Any instructions in the
cover that are subsumed by the instruction being added are
removed.

The application domain may require that the instruction
set be complete. That is, the instruction set must have
the ability to compute any function. This property can be
ensured by picking a set of operations known to be com-
plete and creating special “completeness” code segments
that each contain a single operation from the complete set.
These completeness segments are included with the code
segments derived from the benchmarks. Because the final
instruction set must by definition cover every code segment,
the final instruction set supports the completeness segments
and therefore is itself complete.

Note that the covering process can be modified so that
the new instruction set is a strict superset of some given
instruction set. This would allow one to search for the best
additions to an established instruction set.



Adding and deleting instructions from an established in-
struction set is a common occurrence in the evolution of
general purpose instruction sets (for example, the PowerPC
deletes some instructions, and recently the Sparc and MIPS
have added instructions). Allowing a limited number of
both additions and deletions to an established instruction
set can easily be incorporated into the optimization metric.
The instruction set size, I, in this case would be redefined to
be the number of differences between the reference instruc-
tion set and the generated instruction set (that is, the number
of deleted instructions plus the number of new instructions).

3 An instruction set for Prolog

In this section the techniques described in Section 2 are
used to generate an instruction set specifically optimized for
the execution of Prolog benchmarks. The goal is to compare
an automatically generated instruction set with the hand-
crafted instruction set for the VLSI-BAM processor [10].
This instruction set is chosen because it has been imple-
mented as a VLSI chip, and details of the implementation
are available allowing the automatically generated instruc-
tion set to be based on the same data path.

The pipeline consists of five stages, each with a pair
of transparent latches activated on opposite phases of the
cycle. The register file contains 32 word-sized registers and
has two read and two write ports. One of the two read ports
is double-word width allowing the read of two consecutive
registers. There are separate busses to the instruction and
data caches, and the write-back data cache design requires a
one cycle pipeline stall when a store is followed immediately
by either a load or store. A load followed by immediate use
of the data also requires a one cycle pipeline stall. Branches
and jumps are delayed and have a single delay slot.

The data path supports four immediate types: a four-bit
tag, a zero-extended immediate, a sign-extended immediate,
and a sign-extended immediate with a four-bit tag. The
size of the immediates is determined by the instruction set
generation process.

The data path is controlled using a variation on data
stationary control [14]. This model allows the opcode pass-
ing through the pipeline to be dynamically changed, which
can be used to easily implement instruction annulling (can-
celling the next instruction in the pipe) and conditional ex-
ecution (changing the instruction’s operation based on the
condition code or a comparison earlier in the pipeline).

For more detail about the data path and control models
used by the VLSI-BAM and this instruction set study see [9].

Four medium-sized Prolog benchmarks were used as in-
put to the design technique. These benchmarks were used
in the instruction set studies for the VLSI-BAM [10].

Using the VLSI-BAM data path and benchmarks as in-
put, 34 instructions were automatically generated. This in-
struction set is the result of minimizing the 1% metric while

covering the compilations for 1029 code segments. The
1029 segments include the 29 completeness code segments
and the 1000 segments sampled from the four benchmarks.
The code segment compilations produced 2372 different in-
structions from which the 34 in the final instruction set are
chosen.

For the results in this paper, the covering of the code
segment solutions was done using a greedy algorithm. The
initial step finds an instruction set which covers all of the
code segments. For the instruction set described here, this
initial instruction set contains 99 instructions. The next
phase attempts to remove instructions one at a time. This
change in the instruction set is acceptable if the value of the
1% metric improves. Deletion of an instruction can cause
some of the code segments to no longer be covered. These
code segments are recompiled using the trial instruction set,
and the new recompilation results are included as additional
input to the covering process.

Space limitations prevent the inclusion of a complete
description of the generated instruction set here. The most
important differences of the instruction set with a more
traditional hand-generated instruction set are listed here.

� The generated instruction set has no immediate forms
for any arithmetic instructions (except add immediate).

� Because compiled Prolog code tends to consist of many
short basic blocks which often end with a short jump
instruction, the generated instruction set chose to com-
bine short forward unconditional jumps with common
operations such as compares, loads, and stores.

� The compiled code also performs a sizable number of
register-to-register moves. This is done to set up the
arguments for the next subroutine call (the subroutine
arguments are passed in the register file). The result-
ing instruction set combines register-to-register moves
with jump, compare, and memory instructions.

� Even the subroutine call instruction does not escape
the 1% metric. By itself, removing call from the in-
struction set causes about a 2% degradation in the per-
formance (due to now needing two instructions: jump
followed by load immediate or jump followed by a
read PC instruction). The instruction generation found
that this loss can be compensated by now being able to
combine the jump with an adjacent register-to-register
move to form a single instruction. This compound
jump and move instruction is also very useful for other
coding situations.

� The VLSI-BAM uses an unsigned maximum operation
to find the top of a stack which interleaves two separate
stacks. When an allocate is done for either stack, the
true top of stack is the maximum of the two separate
top of stack values. The derived instruction set chose a
different approach. Using two instructions, a compare



followed by a conditional move, the same performance
can be achieved.

Another instruction set was generated using a different
sample of code segments taken from the four benchmarks.
The vast majority of instructions in the resulting instruction
set are identical to those in the first instruction set generated.
The differences are mainly due to instructions right on the
border of 1% performance benefit being included in one
instruction set but not the other.

Using the 1% metric results in an instruction set with 34
instructions (compared to nearly 60 for the VLSI-BAM).
Performance estimates show that the derived instruction
set is about 3 to 4% slower than the VLSI-BAM, but this
performance could be regained by simply using a smaller
percent cutoff (for example, a 1/2% metric). The instruction
set would become larger but the performance would improve
and match that of the hand design.

4 Conclusions

In this paper a novel technique for automating the in-
struction set design process has been presented. It is based
on performance measures for benchmarks using defined in-
formation about the data path (resource limitations, instruc-
tion word size, and control model). The technique can be
used for both the generation of new instruction sets and
for finding the most important modifications to an existing
instruction set.

When the design technique is applied to a pipelined data
path supporting compiled Prolog execution, non-trivial sug-
gestions for both instruction inclusion and deletion are ob-
tained. Compound instructions which combine an arith-
metic or memory operation with a short jump or register-to-
register move are common. For Prolog, immediate forms
for arithmetic instructions are not important enough to in-
clude in the instruction set. And the call instruction (jump
and link) can possibly be replaced (suffering no loss in per-
formance) with a compound jump/register-to-registermove.

The technique for instruction set design presented here
can potentially be a valuable aid for designers of specialized
processors. The technique searches for common combina-
tions of microoperations without any preconceived opinions
of what “good” instructions should look like. The process
can suggest instruction possibilities that may not have been
thought of before, and it will rigorously remove instructions
of marginal benefit.
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