A New Technique for Exploiting Regularity in Data Path Synthesis

Mohammed Alogeely and C.Y. Roger Chen

Department of Electrical and Computer Engineering
Syracuse University, Syracuse, NY 13244-1240

Abstract In this paper we propose the use of what we refer seqsenc-

Exploiting Regularity has been the key to the success of many te€rsas an alternative to register files. Sequencers [10,11], which are
niques for digital systems design. This paper presents a novel abest exemplified by queues and stacks, depend on the sequence in
proach for exploiting the regularity in memory access that exists iwhich variables are written and read to guarantee correct data re-
many DSP and matrix computations, in order to reduce the accedrieval operations. Furthermore, sequencers do not include decod-
delay of memory and to cut down hardware cost. In this approacters and hence do not suffer from the disadvantages of random
data (variables) that have regular access patterns are not stored iaccess memories. What motivates the use of sequencers is that af-
a random access memory element; instead they are kept floatingter scheduling and FUs allocation, all operands to all FUs and all
special storage structures called sequencers, thus avoiding the bof the sequencing information about these operands (e.g., the con-
tleneck of accessing random access memories and register files atrol step at which an operand becomes available and the control
saving the overhead of memory address generation and decodingstep at which it is needed by an FU, etc.) are already specified.
theoretical foundation for modeling the allocation of two types ofTherefore it is possible to arrange that the operands stay floating in
sequencers, namely queues and stacks, is established. In additithe data path and move in a pipeline-like fashion between func-
algorithms are developed to map variables to queues and stactional units and sequencers without the need for storing them in a
and to integrate them into conventional high-level synthesis procerandom access memory element. Moreover, we have found that
dures. Experimental results show an encouraging improvement imost algorithms of ASIC applications in signal processing and ma-
the performance of designs as well as a significant reduction itrix computations contain a very high degree of regularity in the

hardware cost. way variables are created and needed. Thus when, how and in what
sequence the variables will be needed are usually very much pre-
dictable.

1: Introduction Most previous approaches for storage allocation completely ig-

The high-level synthesis of digital systems from behavioral denore regularity and always store variables in memory or register
scriptions has gained a lot of attention from researchers in tHfiles. Furthermore, very few techniques have been proposed to de-
CAD community during the last few years [1-4]. The two mainsSign special storage structures in order to avoid accessing memory,
steps in the synthesis process are the scheduling of operationsbut nevertheless such attempts were mainly problem specific [8].
the graphical representation (e.g., DFG or SFG) to control steps (Unlike the work presented herein, none of the previous approach-
steps) and the allocation of hardware that implements the schedi€S, gives a formal description of such a class of special storage
[1]. structures and provides a theoretical foundation and effective pro-

The allocation task is usually divided into three subtasks, nameedures for the mapping of variables to these structures.
ly, functional units (FUs) allocation, interconnection allocation anc In this paper we will restrict our discussion of sequencers to
storage allocation [1,2]. The problem of allocation has been acdueues and stacks. We present formal definitions and solutions to
dressed by many researchers including [3,4]. Most of these rthe problem of allocating variables to queues and the problem of
searchers have assumed a hardware model that includes a seallocating variables to stacks. We also give a general strategy for
FUs, a set of interconnection buses, and a set of registers or rec@Pplying the proposed allocation procedures to integrate with any
ter files. Based on this model storage allocation maps variables conventional storage allocation scheme. The rest of the paper is or-
registers or register files [2-4]. The assignment of variables tganized as follows. In the next section the basic hardware concepts
memory locations in register files offers the designer the randoi@and model are presented. The allocation procedure is given in Sec-
access advantage that allows the sharing of a memory location tion 3. Examples and experimental results are given in Section 4
more than one variable if their lifetimes do not overlap. Unfortu-and conclusions are presented in the last section.
nately, to enj_oy the_ flexibility of randqm access capability, one hap. Target Architecture
to pay the price of its undesirable attributes. If the behavior incude
a repetitive and regular processing of large streams of data thent We start by giving definitions of some of the terms that we used
size of register files can become relatively large, which not onlhin this paper.
adds more address generation and decoding hardware, but a Definition1: A sequenceis a collection of registers grouped to-
leads to longer access delay due to decoding circuitry and lorgether in a near neighbor connection manner that enables data to
data driving lines. These problems motivate the search for new emove through the registers in a pipeline fashion. In addition, indi-
ternative methods for storage allocation. vidual registers are not randomly accessible, yet instead, data can

Permission to copy without fee all or part of this material is granted, provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

enter and exit the sequencer through one or more of the “end” re Definition 2: A control sequencef a sequencer is the sequence

isters. of values assigned to its control lines during all the c-steps of the
By virtue of their simple and regular structure, sequencers hawschedule. A control sequenCSof a sequencesatisfieghe write/
the following interesting properties: read requirements of a variabléf applying CSon the sequencer

a. The data transfer time (i.e., access delay) of the sequencer is guarantees thatis written in the sequenceras write step and is
most the same as that of its individual registers and is indepefetched from the sequencent read step.
dent of the size (i.e., the number of registers) of the sequencer. In general, two types of constraints have to be dealt with in allo-
b. The number of control lines of the sequencer (e.g., push and pcating variables to sequencers. First, we have to make sure that
signals in Fig. 1 (b)) is relatively small and is independent of ththere is no access conflict between variables allocated to the same
size of the sequencer. sequencer. Second, we have to make sure that there is no control
Several examples of sequencers are shown in Fig. 1. Figuressequence conflict between variables allocated to the same sequenc-
(a) and 1 (b) show a queue and a stack respectively. Fig. 1 (er (i.e., there is a control sequence that satisfies the write/read re-
shows a bidirectional queue which can enter and output data froquirements of all variables allocated to a sequencer).
both ends, and thus can function as a queue or as a stack. Fig. 1 In what follows, we will address the problem of allocating vari-
shows a bidirectional ring that enters and outputs data through oiables to queues and the problem of allocating variables to stacks.
of the registers. The ring can be designed to perform multiplThe primary objective in both cases is to minimize the number of
shifts in both directions to facilitate accessing data at differenqueues and stacks, which also helps to reduce the total number of
times. The designer can modify the designs of these sequencersregisters and interconnect required. Detailed descriptions of algo-
even come up with other types of sequencers that are tailored trithms are omitted due to space limitations.
wards _the ngture of the gpplication(s) to be implemen_ted. 3.1: Allocating variables to queues
Basically if a variable is allocated to a que@gthenv is stored
in Q (i.e., is added at the head @f atv's write step and is de- In allocating variables to queues, a variabis added to the
queued (i.e., removed form the tail@f at the read step of Ifa head of a queu® by shifting it intoQ, and is dequeued fro@ by
variablev is allocated to a stacRTK then it is pushed on top of shifting it out ofQ. Based on this scheme, the allocation procedure
STKatV's write step and is popped up from the to[BBK atV's is somewhat complicated because the shift-register-like structure
read step. imposes some constraints on the mapping procedure. If a variable
The proposed hardware model is organized as follows: A set dS Mapped to a queue of sizéhen the number of c-steps between
FUs execute the operations. Inputs and outputs to functional unilts Write step and read step (i.e. litstime interval length= (read
can be stored in sequencers or in register files. The FUs and menStep - write step)) must be greater than or equalliecause at
ry elements communicate through buses. If more than one pleastn c-steps are needed to shift the variable through the registers
needs to be connected to the input of an FU then they are conneof the queue. It should be stressed that the lengths of the lifetime
ed through multiplexers. Outputs of FUs are connected to pusdntervals of variables allocated to a queue need not be equal. For
through tri-state drivers. The system uses a two phase clock. O€xamplev; andv; in Fig. 2 can be mapped to the same queue of
objective is to eliminate register files or at least make them a-

small in size as possible, by attempting to assign as many variables data out data outata in
as possible to sequencers so that the whole data path will have an 1

and the sequencers. It should be emphasized that our approach can

be applied to more sophisticated hardware models (e.g., models

architecture that resembles a large pipeline consisting of the FUs ‘_—le 4 E;;l
: [
! b

that support pipelined functional units, or functional pipelining, shift_ Sh(i ul.s%f} —
etc.). This simple model has been chosen for the purpose of illus- Shift Right—» Shift Right __
trating the proposed approach in a clear and abstract manner. (Pop Shift Left —
3: Problem Formulation = v] =
data in datain data out data in data out

Given a set of variable§ whereS={vy,.., v,}}, the objective is
to find a mapping fror$to a number of sequencers (i.e., queues or
stacks) that optimizes a cost function (e.g., number of sequencers
or total number of registers). We assume that scheduling and FU
allocation have already been done. Therefore every vandbi
belongs toS is described by the following information: (Label,
Write Step, Read Step, Source, Destination).|&bel is basically
an integer identifier, therite step(denoted a8vVgv)) is the c-step
at whichv is defined (i.e., written by a source), tead step(de-
noted asR{V)) is the c-step at which is read by a destination.
The sourceanddestinationare integer values to represent the FU (d
or 1/O port that produces and uses variabltespectively. If a vari-
ablev is written/read more than once then variable splitting [4] is Fig. 1: Examples of sequencers. (a) A queue implemented as a unidirectional

used to convert it to a single write, single read variable. shift register (b) A stack implemented as a bidirectional shift registe
(c) A bidirectional queue. (d) A bidirectional ring.

(a) (b) ()

data in
data out

size 3 because the control sequence shown in the figure satisfies C-step v1 v2 Control Sequence
the write and read timing requirements of both of them. 1 shift g (vl []

To get a clear vievy gf how variab.les can be grouped in the same Shift e [v2] v |
gqueue, we start by giving the following definitions.)
Shift

Definition3: A valid queue allocation £ = [I,CS] (wherel is
1 Shift > Vi

an integer value that is less than or equal to the lengfraofiCS
denotes a control sequence) is defined for each vaviahieh that No Shift
shit [T [Jwv2

if the control sequende§ is applied on a sidequeue, it will satis-
fy the read and write requirements\wpf In other words, it repre-
sents one valid control sequence for allocating a sizd queue.
The set of valid queue allocationt¥(v;) is defined as the set that
includes alP; ; |'s of v; (i.e., the set of all possible control sequenc- Fig. 2: vl andv2 allocated to a queue of size 3.
es for allocating; to queues of any size).

Using the above definitions, grouping a set of variables into a
gueue, such that no access or control sequence conflict exists be-
tween variables is formalized by the following theorem.

Theorem1: A set of variable¥ ={v4,v,,..v,} can be allocated
to the same queue iff:

1. RYy) #RYy)) andWv)) #WSy)) U v;,v; U V; and

2.9 (v) n W) n ... nW(v) #{}

Proof:

SufficiencyObviously, if condition 1 holds then no read or write

o O~ WN

have the same lifetime interval length, but have distinct write
steps. In this way, all variables in a cluster need to stay floating (or
to be “delayed”) for an equal number of clock cycles. Moreover,
since they have distinct read and write steps, they can share a
queue that delays them the required number of clock cycles. Then,
in the second phase, clusters of variables that do not have conflict-

. . L . ing control sequences are merged and allocated to queues. We have
conflicts exists. If. condition 2 hoIQs then there must exist at Ieasadopted a simple sufficient condition for merging a group of clus-
one common valid queue allocation for all variable¥ifi.e., a ters into a queue of sixewhich is as follows:

queue of sizé an_d a con_trol sequence for this queue _that Sat'Sf'el. No two variables at two different clusters have lifetime overlaps.

the re_ad anql_wrlte requirements of all the_vanab_lée!)mThere- 2. kis greater than or equal to the maximifietime density(i.e.,

fore, if conditions 1 and 2 hold then all variable&/inan be allo- the maximum number of live variables at any c-step) of all clus-

cated to the same gueue ters and is less than or equal to the minimum lifetime interval of
Necessitylf condition 1 does not hold then there must be a rea all variables in all clusters.

or write conflict between two or more variables and hence the i .5 he seen easily that the first condition guarantees that there
cannot be allocated to the same queue. If condition 2 does not NGy pe no conflict in control sequences. The second condition
then there must be at least one variably/ efhose read or write g 3 rantees that the size of the queue is large enough to hold all the
timing requirements are not satisfied and thus the set of variably,i-pjas assigned to the queue and small enough to flush all vari-
cannot be allocated to the same queue. b ables out at the required time. In this way a queue can be viewed as
Considenvy andv; in Fig. 2 as a simple example. ak-cycle delay element (or more precisely, at léasycle delay
P1,1,3 = [3, (shift shift shift shift no shift shift)]] W(vy). element).
P2,1,3 = [3, (shift shift shift shift no shift shift)l] ¥(vy). Finally, the size of a queue can often be further redusest (
Since [3, (shift shift shift shift no shift shift)] is in bot¥(vy) 4 htimizeq after performing the initial allocation. The idea is to de-
andW(vp) thenW(vy) N W(vy) # {} and thereforevy andv, can ot if there is a number of c-steps during which, no variable is
be allocated to the same queue of size 3 as shown in the figure. \spieaq in or out of a queue. Then, an equivalent number of regis-
chose not o it all elements &(vy) and'W(v;) because of space o5 are removed from the queue. The control sequence compen-
limitations. sates for the missing registers (delays) by freezing (i.e., not
The above theoretical discussion illustrates that the grouping shifting) the new queue an equivalent number of c-steps.
variables into queues involves searching a huge search space e - Allocating variables to stacks
cially if the number of variables is large. Therefore, it is crucial to)))
find a way to reduce the size of the search space in order to finc 1€ stack allocation approach is based on the notion of stack
practical allocation method. The remedy of this problem comes pcompatibility. A compatibility relation is establlsheq between vari-
taking into consideration that we are dealing mostly with applica@P!es that can share the same stack. In the following paragraphs we
tions that exhibit a certain degree of computational regularity. 1Mill introduce this concept and show how it is used in the alloca-
such applications variables are clustered into classes of variablion approach. o .) o
or “clusters” where the variables of each cluster have the same lif _Definition 5: The lifetime of a variable, includesthe lifetime
time interval length and have distinct yet consecutive write an©f another variables iff:
read steps. In our approach, we take advantage of this observati (&) W3va) <WSv,); and
to reduce the search space and simplify the allocation process () RRvy) >Rvy).
dealing with clusters of variables instead of dealing with individua Theorem2: A set of variable¥ can be allocated to the same
variables. The allocation procedure is divided into two phases. Istack iff for any two variables; and Y in V, one of the following
the first phase, variables are grouped into clusters according conditions holds:
their lifetime interval lengths, such that all variables in a clustel 1. The lifetime intervals of; andy; do not intersect.

2. The lifetime ofy; includes the lifetime oiJ or vice versa. Proof:
The proof is omitted due to space limitations. U It is sufficient to show that this problem is isomorphic to the col-

Definition 6: Two variables/; andv, are stack compatiblgff ~ 0ring problem inoverlapgraphs which has been shown to be NP-
their lifetime intervals do not intersect or the lifetime of one ofcomplete [12]. Obviously the stack mapping problem herein which
them includes the other's. is modeled as a clique partitioning of the stack compatibility graph,

Therefore, the problem can be represented graphically as illucan be modeled as a coloring problem for the conflict graph (which
trated in Fig. 3 (d). Every vertex {8 represents a variablein S 1S the complement of the compatibility graph). It turns out that the
There is an edge betweenandy; in G iff either condition 1 or 2 resulting conflict graph is identical to the classical overlap graph
holds (i.e.v; andv; are stack compatible). Hence the stack alloca-With the exception that the latter deals with continuous intervals
tion problem reduces to the graph clique partitioning problemWhile the former deals with discrete intervals. Therefore, the stack
which is NP-complete for general graphs [5]. Similar to the wel@@llocation problem is NP-Complete. 0
knowninterval graphs for which the coloring problem is tractable I & previous paper, we have proposed solutions for this prob-
(i.e., computable in polynomial time) [19], the resulting compati-lém using integer linear programming and interconnection guided
bility graph originates from relations between intervals, whichheuristic search [11]. In this paper, we present a new greedy heu-
makes it deceivingly appealing that the clique partitioning for suclistic that takes advantage of the special properties of stack com-
a graph or equivalently, the coloring of its complement (i.e., theatibility graphs. . '
conflict graph) could be computed in polynomial time. Nonethe- Heuristic for allocating variables to stacks Once the
less, the truth of the matter is that the clique partitioning of stackProblem has been identified as a clique partitioning problem, any
compatibility graphs is NP-complete. To verify this claim we will of the effective techniques (e.g., Tseng and Siewiorek [3]) can be
introduce some of the basic relationships between intervals onapplied to solve the problem. However, we have used a new meth-

line and their induced graphs. od that exploits the special properties of stack compatibility
Given a collection of intervals on a line, each pair of intervalsgraphs. As mentioned earlier, the stable set problem and the clique

will satisfy exactly one of the following properties. probl_em are tractable faverlap graphs. Gavril [12] designed an

- Overlap The two intervals intersect but neither properly contains@lgorithm that computes the maximum stable set of an overlap

the other. graph (which correspgnds to a maximum clique in our stack-com-

- ContainmentOne of the two intervals properly contains the other.Patibility graph) inO(n”) time, wheren is the number of vertices.

- Disjointness The two intervals have empty intersection. His technique is adopted in our allocation heuristic. The heuristic

A graphG is called aroverlapgraph if its vertices may be put finds tile maximum clique in the stack compatibility graph, assigns
into one-to-one correspondence with the collections of intervals oltS Variables to a stack, removes the variables form the graph and

a line such that two vertices are adjacer®iff their correspond- e Process is repeated until the graph is empty. While this method
ing intervals overlap (not just intersect) [19]. of course does not guarantee the minimality of the total number of

To be more formal, lef= {1, |x 0 V} be a collection of inter- stacks, it however attempts to create at least a number of reason-
[l X . .
vals on a line. The pairs of distinct indices (which represent edge@Ply large stacks that can capture a large portion of the variables.

are partitioned into three mutually disjoint sAtsB andC as fol- The variables that belong to the. remaining §mail size stgcks (a; we
lows: For distinck, y(V, will see later) can be grgupeq in register fileslinstead in .th(.e final
xyYOA iff O% Ixn |y £ 1y, |y design. The rational behind this gready policy is to try to limit the
(i.e., the intervals overlap
(x,yUB iff either 1, O 1y orly O Iy Csteps 5 3 4 5 6 7 8 0 o1 1w
(i.e., one interval properly contains the other; a
x,y gcC iff Iynly = 0O :
(i.e,. the intervals are disjoint). d
Thus we have thaw/(A) is the overlap graph represented’hy e
(V, A+B) is the interval graph representedibgand ¥, B+C) is the f
stack compatibility graph represented Ibyas depicted in Fig. 3. 9 | |
Unlike the case in interval graphs, the coloring problem for overla| (@)
graphs is NP-Complete although the problem of finding the maxi
mal clique and the problem of finding the maxirsiable sefi.e., Q@

maximal size subset of vertices no two of which are adjacent) fc
them are tractable [12].

Now, our claim about the time complexity of the clique parti-
tioning of stack-compatibility graphs is verified by the following

theorem.
Theorem3: The problem of mapping a set of variables to a min-
imum number of stacks is NP-Complete. (b) © (d)
Figure 3: (a) Lifetime intervals. (b) The overlap grapW,#.
1. In the special case wheyp coincides withl, it is assumed thai{(y) (c) The interval graph ¥ A+B). (d) The stack comp. grafh=(V, B+C).

belongs toA rather tharB.

C-Step|1....2....3 4....5‘....6....7....8....9..10...11

1

32 (S= set of input variables)

v3

ySl ‘ I divide variables into clusters I

(a) I merger clusters into queues I
erform post optimizations
c-step Control sequence
1 Sh?ﬂ R?ght - Lvi] [] A reject queues that do not
2 Shift Right (v vl | meet rejection criteria
3 Shift Right
4 Shift Right CTw2l » w1 Queue
5 Shift Right - V§ Y
e o Y
6 Sh!ﬁ Right D:D - (S= set of rejected variables)
7 Shift Left (Push) [_T__Tv8 A
8 No Shift [[V Stack | |
9 Shift Left (Push) [T vE val - allocate S to stacks
10 Shift Right (Pop)][v5 » v4 Y
11 Shift Right (Pop)[_[__[] = V5 v reJectré?&Ii(gntréﬁgfgﬁanot meet
(b)

Figure 4: The merge of a stack and a queue into a bidirectional queue.

(a) Lifetimes of variables. (b) Status of the bidirectional queue in all c-steps. (SZ set of rejected variables)

I allocate S to register files I

total number of memory elements (i.e., sequencers and regist

files) from becoming too large; a situation which not only would

increase the interconnection hardware, but also would introduc

more delay due to multiplexers, increase of capacitive loads o

buses [7] and so fourth. The reader may refer to [10] for the de

tailed description of the algorithm. Fig. 5. The main steps in the general allocation procedure

3.3: Putting it all together

Since the adequacy of sequencers allocation procedures is pr¢

» of the proposed approach, various examples were used in the ex-
lem dependent because they actually try to detect and utilize acce prop op P

\ari h d i . periment. Benchmark examples of the 1988 workshop on high-lev-
patterns regularity, we have suggested a general interactive prog synthesis [9] were not included because they are mostly

dure that can be used in order to assist the designer in applying 1irregular or in an irregular form, and thus do not suit our approach

most suitable aIIocatio_n scheme. Our global allocation strqtegy h‘that exploits regularity. Nevertheless we found a large number of
three stages. In the first stage we try to allocate all variables applications that give excellent results under our approach. Two of

queues since they are th.e Ieast_l_cos_tly ch0|_ce. Tfhen basei% On ayyhich are presented in this paper. The CPU execution time for all
jection criterion (e.qg., register utilization or size of queue [10]), WEqt them is less than one second.

rejgct some of the queues tha? do not meet the minimum aI_Iowe The first example is an FIR filter used in [6] and [7]. The de-
utlllzatlon.. Those varlaples which have been gllocgted to rejectescription of the FIR filter is given by:

queues will be used as input to the next stage in which we try to ¢

locate variables to stacks. Similarly stacks that do not meet tt N

minimum allowed utilization will be rejected. Next, compatible Yn = Z g D(n-i

stacks and queues are merged into bidirectional queues as illustr 1=0
ed in Fig. 4 [10]. The remaining variables can then be used as inp
to any conventional allocator to be allocated to register files. Thkn
main steps of the procedure are shown in Fig. 5.

A special case of the FIR filter (the 16-point FIR) is a well

own example in the high-level synthesis literature [2]. To show

how well our approach scales, we applied our method on the FIR

example with several values bif and we used the more regular

. . FIR representation given in [6]. The graphical representation of the

4: Experimental results FIR filter withN=4 is shown in Fig. 6 (a). Fig. 6 (b) shows the life-
The proposed algorithms have been implemented on a gytime intervals of variables when scheduled with a multiplier and an

SPARCstation | running SUN OS. To demonstrate the advantag@dder. The results of this example for the case Wvhand for

)) speedup
Cyclel Cyclel+1 28 ;

c-step1 23451234512
vl 26 L 4
v2
v3 oa I |
v4
r1 | |
2 i |
3 1
r4 — zr]
(b) 18 B
. N e I 20 0 20 0 0 70 N
Fig. 6 : Example 2: FIR filter given by : Yo = 3 a D(n—j
. . oo J=0)
(@) The graphical representation. (b) Lifetime intervals of variables. Fig. 7: Speedup of memory elements access delay Wérsus

the general case whéirk are shown in Table 1 and are compared[3] C. Tseng and D. Siewiorek, “Automated Synthesis of Data Paths in Digital Sys-
with those obtained by another allocation scheme that allocates _ t€ms:"IEEE Trans. on Computer-Aided Desiguly 1986, pp. 379-395.

ister fil | . iti d that th d [4] F. S. Tsai and Y. C. Hsu, “STAR: An Automatic Data Path Allocat&ffE Trans.
register files. In our comparison, it Is assume at the access de on Computer-Aided DesigSept. 1992, pp. 1053-1064.

of a register file equals the decoding delay plus the delay associjs) M. Garey and D. Johnsof;omputers and Intractabilitysreeman, San Fran-

ed with a register transfer operation which is denotexl\ehereas cisco, California, 1979.

the access delay ofa queue equak decoder witm outputs can [6] C.Y. Roger Chen, and Michael Moricz, “A Delay Distribution Methodology for the

be realized byrt1) 1-to-2 decoders. The delay of a 1-to-2 decodel Optimal Systolic Synthesis of Linear Recurrence AlgorithifiSEE Trans. on

i Y . T y Computer Aided Designpl. 10, No. 6, June 1991, pp. 685-697.

is denoted ad. The first two entries in the table represent addres(7] c. Mead and L. Conwajntroduction to VLSI systemé&ddison Wesley1980.

generation and decoding cost and the last entry represents accig] K. Parhi, “Systematic Synthesis of DSP Data Format Converters Using Life-Time

delay of memory elements. It is clear that our approach eliminate Analysis and FonNard—Backwgrq Register AIIocatipIEEE Trans. on Circuits

address generation and decoding cost and reduces access de . 2nd Systems-l: Analog and Digital Signal Processiug|. 39 No. 7, July 1992.
X . R K . [9] G. Borriello and E. Detjens, “High-Level Synthesis: Current Status and Future Di-

Fig. 7 shows the improvement in access delay obtained by USir ~ (octions in Proc. of the 25th DAQNew York, NY, June 1988, pp. 477-482.

sequencers over using register files, velsu@ssuming that the ra- [10] M. Alogeely, “Sequencers: a New Alternative for Data Path SynthdisD.

tio c/d=4. The figure shows that our approach gives a significar ~ Dissertation in progress at Syracuse University.

speedup that increasesmiand hence the total number of regis- [11] M. Alogeely gnd C.Y._Roger Chen, “Sequencer-Based Data Path Synthesis of
Regular Iterative Algorithms[h Proc. of the 3§t DAC, June, 1994, pp. 156-61.
ters) gets larger.

. . o . [12] M. C. ColumbicAlgorithmic Graph Theory and Perfect GrapAgademic Press,
The second example is a matrix vector multiplication algorithr 19s0.

that compute®AX=Y whereA is anM x N matrix andX andY are
vectors of lengtiN andM respectively. The results of this example
for the case wheN=400 and\=160, implemented using different TABLE 1 : RESULTS OF THEFIR FILTER EXAMPLE

numbers of FUs are shown in Table 2. ' Design using register
. Proposed desigr .

5: Conclusions Approach files

A novel approach for exploiting regularity in data path synthesij N=4 N=k N=4 N=k
is presented. The concept of using a more sophisticated hardwj # @ddress lines to memoty 0 0 5| =2.[logK
model that contains what we termsegjuencerdias been applied || # 1-to-2 decoders 0 0 7| =2.k-1
to the synthesis process, and is aimed to achieve two main obj¢ # registers 9 |=2k+1 9 =2 k+1
tives. First, to improve the data transfer delay of storage elemep # register files 0 0 2 2
since sequencers, which are best exemplified by queues and sta{ # sequencers 2queues 2qugues 0
are mainly implemented as unidirectional or bidirectional shift regi max. memory access delay = ¢ =c |=c+3d| =c+d[logK
isters, and hence they do not suffer from decoding delays that grc C: Delay associated with accessing an individual register.
proportionally with the size of a register file. Second, to eliminate d: Propagation delay of a single 1-to-2 decoder.

the cost of memory address generation and decoding. Furthermo

algorithms and procedures have been developed for allocatir TABLE 2 : RESuLTS OF THEMATRIX VECTORMULTIPLICATION EXAMPLE
variables to stacks and queues and to integrate the proposed te
nigues into conventional high-level synthesis procedures. Expel files

mental results for a number of DSP applications show ver g 107 ypn 107+
encouraging improvement in performance as well as significant r n 10 * 4+ 10 *
duction in hardware cost. We believe that this approach opens uj

Approach Proposed design Design using regi§ter

. .) # address linesto | O 0 24 50
new unexplored fro_ntler for the synthegls of high performanc memory
Isaacs that have a high degree of regularity and require short clg 7 1-0-2 decoders 0 0 153 a1
cycles. # registers 157 151 157 151
References # register files 0 0 4 10
sequencers 4 queuep 10 quepes O 0

[1] M. C. McFarland, A.C. Parker and R. Composano, “The High Level Synthesis g
Digital Systems,Proc. of IEEEvol. 78, no. 2, pp. 301-318, Febh. 1990. max. memory accegs= c =c =c+6d | =c+5d
[2] D. Gajski, N. Dutt, A. Wu, and S. LitJIGH-LEVEL SYNTHESIS: Introduction to delay
Chip and System DesigKluwer Academic Pub., 1992.

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

