
A New Technique for Exploiting Regularity in Data Path Synthesis

 Mohammed Aloqeely and C.Y. Roger Chen

Department of Electrical and Computer Engineering
Syracuse University, Syracuse, NY 13244-1240

Abstract
Exploiting Regularity has been the key to the success of many tech-
niques for digital systems design. This paper presents a novel ap-
proach for exploiting the regularity in memory access that exists in
many DSP and matrix computations, in order to reduce the access
delay of memory and to cut down hardware cost. In this approach,
data (variables) that have regular access patterns are not stored in
a random access memory element; instead they are kept floating in
special storage structures called sequencers, thus avoiding the bot-
tleneck of accessing random access memories and register files and
saving the overhead of memory address generation and decoding. A
theoretical foundation for modeling the allocation of two types of
sequencers, namely queues and stacks, is established. In addition,
algorithms are developed to map variables to queues and stacks
and to integrate them into conventional high-level synthesis proce-
dures. Experimental results show an encouraging improvement in
the performance of designs as well as a significant reduction in
hardware cost.

1: Introduction

The high-level synthesis of digital systems from behavioral de-
scriptions has gained a lot of attention from researchers in the
CAD community during the last few years [1-4]. The two main
steps in the synthesis process are the scheduling of operations in
the graphical representation (e.g., DFG or SFG) to control steps (c-
steps) and the allocation of hardware that implements the schedule
[1].

The allocation task is usually divided into three subtasks, name-
ly, functional units (FUs) allocation, interconnection allocation and
storage allocation [1,2]. The problem of allocation has been ad-
dressed by many researchers including [3,4]. Most of these re-
searchers have assumed a hardware model that includes a set of
FUs, a set of interconnection buses, and a set of registers or regis-
ter files. Based on this model storage allocation maps variables to
registers or register files [2-4]. The assignment of variables to
memory locations in register files offers the designer the random
access advantage that allows the sharing of a memory location by
more than one variable if their lifetimes do not overlap. Unfortu-
nately, to enjoy the flexibility of random access capability, one has
to pay the price of its undesirable attributes. If the behavior incudes
a repetitive and regular processing of large streams of data then the
size of register files can become relatively large, which not only
adds more address generation and decoding hardware, but also
leads to longer access delay due to decoding circuitry and long
data driving lines. These problems motivate the search for new al-
ternative methods for storage allocation.

In this paper we propose the use of what we refer to assequenc-
ersas an alternative to register files. Sequencers [10,11], which are
best exemplified by queues and stacks, depend on the sequence in
which variables are written and read to guarantee correct data re-
trieval operations. Furthermore, sequencers do not include decod-
ers and hence do not suffer from the disadvantages of random
access memories. What motivates the use of sequencers is that af-
ter scheduling and FUs allocation, all operands to all FUs and all
of the sequencing information about these operands (e.g., the con-
trol step at which an operand becomes available and the control
step at which it is needed by an FU, etc.) are already specified.
Therefore it is possible to arrange that the operands stay floating in
the data path and move in a pipeline-like fashion between func-
tional units and sequencers without the need for storing them in a
random access memory element. Moreover, we have found that
most algorithms of ASIC applications in signal processing and ma-
trix computations contain a very high degree of regularity in the
way variables are created and needed. Thus when, how and in what
sequence the variables will be needed are usually very much pre-
dictable.

Most previous approaches for storage allocation completely ig-
nore regularity and always store variables in memory or register
files. Furthermore, very few techniques have been proposed to de-
sign special storage structures in order to avoid accessing memory,
but nevertheless such attempts were mainly problem specific [8].
Unlike the work presented herein, none of the previous approach-
es, gives a formal description of such a class of special storage
structures and provides a theoretical foundation and effective pro-
cedures for the mapping of variables to these structures.

In this paper we will restrict our discussion of sequencers to
queues and stacks. We present formal definitions and solutions to
the problem of allocating variables to queues and the problem of
allocating variables to stacks. We also give a general strategy for
applying the proposed allocation procedures to integrate with any
conventional storage allocation scheme. The rest of the paper is or-
ganized as follows. In the next section the basic hardware concepts
and model are presented. The allocation procedure is given in Sec-
tion 3. Examples and experimental results are given in Section 4
and conclusions are presented in the last section.

2: Target Architecture

We start by giving definitions of some of the terms that we used
in this paper.

Definition1: A sequenceris a collection of registers grouped to-
gether in a near neighbor connection manner that enables data to
move through the registers in a pipeline fashion. In addition, indi-
vidual registers are not randomly accessible, yet instead, data can

Permission to copy without fee all or part of this material is granted, provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

enter and exit the sequencer through one or more of the “end” reg-
isters.

By virtue of their simple and regular structure, sequencers have
the following interesting properties:
a. The data transfer time (i.e., access delay) of the sequencer is al-

most the same as that of its individual registers and is indepen-
dent of the size (i.e., the number of registers) of the sequencer.

b. The number of control lines of the sequencer (e.g., push and pop
signals in Fig. 1 (b)) is relatively small and is independent of the
size of the sequencer.
Several examples of sequencers are shown in Fig. 1. Figures 1

(a) and 1 (b) show a queue and a stack respectively. Fig. 1 (c)
shows a bidirectional queue which can enter and output data from
both ends, and thus can function as a queue or as a stack. Fig. 1 (d)
shows a bidirectional ring that enters and outputs data through one
of the registers. The ring can be designed to perform multiple
shifts in both directions to facilitate accessing data at different
times. The designer can modify the designs of these sequencers or
even come up with other types of sequencers that are tailored to-
wards the nature of the application(s) to be implemented.

Basically if a variablev is allocated to a queueQ thenv is stored
in Q (i.e., is added at the head ofQ) at v's write step and is de-
queued (i.e., removed form the tail ofQ) at the read step ofv. If a
variablev is allocated to a stackSTK then it is pushed on top of
STK at v's write step and is popped up from the top ofSTK at v's
read step.

The proposed hardware model is organized as follows: A set of
FUs execute the operations. Inputs and outputs to functional units
can be stored in sequencers or in register files. The FUs and memo-
ry elements communicate through buses. If more than one bus
needs to be connected to the input of an FU then they are connect-
ed through multiplexers. Outputs of FUs are connected to buses
through tri-state drivers. The system uses a two phase clock. Our
objective is to eliminate register files or at least make them as
small in size as possible, by attempting to assign as many variables
as possible to sequencers so that the whole data path will have an
architecture that resembles a large pipeline consisting of the FUs
and the sequencers. It should be emphasized that our approach can
be applied to more sophisticated hardware models (e.g., models
that support pipelined functional units, or functional pipelining,
etc.). This simple model has been chosen for the purpose of illus-
trating the proposed approach in a clear and abstract manner.

3: Problem Formulation

 Given a set of variablesS, whereS={v1,.., vn}, the objective is
to find a mapping fromS to a number of sequencers (i.e., queues or
stacks) that optimizes a cost function (e.g., number of sequencers
or total number of registers). We assume that scheduling and FU
allocation have already been done. Therefore every variable v that
belongs toS is described by the following information: (Label,
Write Step, Read Step, Source, Destination). Thelabel is basically
an integer identifier, thewrite step (denoted asWS(v)) is the c-step
at whichv is defined (i.e., written by a source), theread step (de-
noted as (RS(v)) is the c-step at whichv is read by a destination.
The source anddestination are integer values to represent the FU
or I/O port that produces and uses variablev, respectively. If a vari-
ablev is written/read more than once then variable splitting [4] is
used to convert it to a single write, single read variable.

Definition 2: A control sequenceof a sequencer is the sequence
of values assigned to its control lines during all the c-steps of the
schedule. A control sequenceCSof a sequencersatisfiesthe write/
read requirements of a variablev if applyingCSon the sequencer
guarantees thatv is written in the sequencer atv's write step and is
fetched from the sequencer atv's read step.

In general, two types of constraints have to be dealt with in allo-
cating variables to sequencers. First, we have to make sure that
there is no access conflict between variables allocated to the same
sequencer. Second, we have to make sure that there is no control
sequence conflict between variables allocated to the same sequenc-
er (i.e., there is a control sequence that satisfies the write/read re-
quirements of all variables allocated to a sequencer).

In what follows, we will address the problem of allocating vari-
ables to queues and the problem of allocating variables to stacks.
The primary objective in both cases is to minimize the number of
queues and stacks, which also helps to reduce the total number of
registers and interconnect required. Detailed descriptions of algo-
rithms are omitted due to space limitations.

3.1: Allocating variables to queues
 In allocating variables to queues, a variablev is added to the

head of a queueQ by shifting it intoQ, and is dequeued fromQ by
shifting it out ofQ. Based on this scheme, the allocation procedure
is somewhat complicated because the shift-register-like structure
imposes some constraints on the mapping procedure. If a variable
is mapped to a queue of sizen then the number of c-steps between
its write step and read step (i.e., itslifetime interval length = (read
step - write step)) must be greater than or equal ton because at
leastn c-steps are needed to shift the variable through the registers
of the queue. It should be stressed that the lengths of the lifetime
intervals of variables allocated to a queue need not be equal. For
examplev1 andv2 in Fig. 2 can be mapped to the same queue of

Shift Left
(Push)

Shift Right
(Pop)

data outdata in

 Fig. 1: Examples of sequencers. (a) A queue implemented as a unidirectional

(a) (b)

data in data out

data indata out

Shift Left

Shift Right

 (c) A bidirectional queue. (d) A bidirectional ring.
 shift register (b) A stack implemented as a bidirectional shift register.

(c)

(d)

data in
data out

Shift

data out

data in

 Q

Q[1]

Q[n]

size 3 because the control sequence shown in the figure satisfies
the write and read timing requirements of both of them.

To get a clear view of how variables can be grouped in the same
queue, we start by giving the following definitions.

Definition 3: A valid queue allocation Pi,j,l = [l,CSj] (wherel is
an integer value that is less than or equal to the length ofvi andCSj
denotes a control sequence) is defined for each variablevi such that
if the control sequenceCSj is applied on a sizel queue, it will satis-
fy the read and write requirements ofvi. In other words, it repre-
sents one valid control sequence for allocatingvi to a sizel queue.
The set of valid queue allocationsΨ(vi) is defined as the set that
includes allPi,j,l ’s of vi (i.e., the set of all possible control sequenc-
es for allocatingvi to queues of any size).

Using the above definitions, grouping a set of variables into a
queue, such that no access or control sequence conflict exists be-
tween variables is formalized by the following theorem.

Theorem1: A set of variablesV ={v1,v2,...vk} can be allocated
to the same queue iff:

1. RS(vi) ≠ RS(vj) andWS(vi) ≠ WS(vj) ∀ vi , vj ∈ V ; and
2. Ψ(v1) ∩ Ψ(v2) ∩ ... ∩ Ψ(vk) ≠ {}.
Proof:
Sufficiency: Obviously, if condition 1 holds then no read or write

conflicts exists. If condition 2 holds then there must exist at least
one common valid queue allocation for all variables inV (i.e., a
queue of sizel and a control sequence for this queue that satisfies
the read and write requirements of all the variables inV). There-
fore, if conditions 1 and 2 hold then all variables inV can be allo-
cated to the same queue.

Necessity: If condition 1 does not hold then there must be a read
or write conflict between two or more variables and hence they
cannot be allocated to the same queue. If condition 2 does not hold
then there must be at least one variable of V whose read or write
timing requirements are not satisfied and thus the set of variables
cannot be allocated to the same queue. ❏

Considerv1 andv2 in Fig. 2 as a simple example.
P1,1,3 = [3, (shift shift shift shift no shift shift)]∈ Ψ(v1).
P2,1,3 = [3, (shift shift shift shift no shift shift)]∈ Ψ(v2).
Since [3, (shift shift shift shift no shift shift)] is in bothΨ(v1)

andΨ(v2) thenΨ(v1) ∩ Ψ(v2) ≠ {} and thereforev1 andv2 can
be allocated to the same queue of size 3 as shown in the figure. We
chose not to list all elements ofΨ(v1) andΨ(v2) because of space
limitations.

The above theoretical discussion illustrates that the grouping of
variables into queues involves searching a huge search space espe-
cially if the number of variables is large. Therefore, it is crucial to
find a way to reduce the size of the search space in order to find a
practical allocation method. The remedy of this problem comes by
taking into consideration that we are dealing mostly with applica-
tions that exhibit a certain degree of computational regularity. In
such applications variables are clustered into classes of variables
or “clusters” where the variables of each cluster have the same life-
time interval length and have distinct yet consecutive write and
read steps. In our approach, we take advantage of this observation
to reduce the search space and simplify the allocation process by
dealing with clusters of variables instead of dealing with individual
variables. The allocation procedure is divided into two phases. In
the first phase, variables are grouped into clusters according to
their lifetime interval lengths, such that all variables in a cluster

have the same lifetime interval length, but have distinct write
steps. In this way, all variables in a cluster need to stay floating (or
to be “delayed”) for an equal number of clock cycles. Moreover,
since they have distinct read and write steps, they can share a
queue that delays them the required number of clock cycles. Then,
in the second phase, clusters of variables that do not have conflict-
ing control sequences are merged and allocated to queues. We have
adopted a simple sufficient condition for merging a group of clus-
ters into a queue of sizek, which is as follows:
1. No two variables at two different clusters have lifetime overlaps.
2. k is greater than or equal to the maximumlifetime density (i.e.,

the maximum number of live variables at any c-step) of all clus-
ters and is less than or equal to the minimum lifetime interval of
all variables in all clusters.
It can be seen easily that the first condition guarantees that there

will be no conflict in control sequences. The second condition
guarantees that the size of the queue is large enough to hold all the
variables assigned to the queue and small enough to flush all vari-
ables out at the required time. In this way a queue can be viewed as
a k-cycle delay element (or more precisely, at leastk-cycle delay
element).

Finally, the size of a queue can often be further reduced (post
optimized) after performing the initial allocation. The idea is to de-
tect if there is a number of c-steps during which, no variable is
shifted in or out of a queue. Then, an equivalent number of regis-
ters are removed from the queue. The control sequence compen-
sates for the missing registers (delays) by freezing (i.e., not
shifting) the new queue an equivalent number of c-steps.

3.2: Allocating variables to stacks
 The stack allocation approach is based on the notion of stack

compatibility. A compatibility relation is established between vari-
ables that can share the same stack. In the following paragraphs we
will introduce this concept and show how it is used in the alloca-
tion approach.

Definition 5: The lifetime of a variablev1 includesthe lifetime
of another variablev2 iff:

(a)WS(v1) < WS(v2); and
(b) RS(v1) > RS(v2).

Theorem 2: A set of variablesV can be allocated to the same
stack iff for any two variablesvi and vj in V, one of the following
conditions holds:

1. The lifetime intervals ofvi andvj do not intersect.

v1 v2
1

2

3

4

5

6

v1

v2 v1

v1v2

v2

v2

v1

v2

C-step Control Sequence
Shift

Shift

Shift

Shift

No Shift

Shift

Fig. 2: v1 and v2 allocated to a queue of size 3.

2. The lifetime ofvi includes the lifetime ofvj or vice versa.
The proof is omitted due to space limitations. ❏

Definition 6: Two variablesv1 andv2 are stack compatible iff
their lifetime intervals do not intersect or the lifetime of one of
them includes the other's.

Therefore, the problem can be represented graphically as illus-
trated in Fig. 3 (d). Every vertex inG represents a variablevi in S.
There is an edge betweenvi andvj in G iff either condition 1 or 2
holds (i.e.,vi andvj are stack compatible). Hence the stack alloca-
tion problem reduces to the graph clique partitioning problem,
which is NP-complete for general graphs [5]. Similar to the well
known interval graphs for which the coloring problem is tractable
(i.e., computable in polynomial time) [19], the resulting compati-
bility graph originates from relations between intervals, which
makes it deceivingly appealing that the clique partitioning for such
a graph or equivalently, the coloring of its complement (i.e., the
conflict graph) could be computed in polynomial time. Nonethe-
less, the truth of the matter is that the clique partitioning of stack-
compatibility graphs is NP-complete. To verify this claim we will
introduce some of the basic relationships between intervals on a
line and their induced graphs.

Given a collection of intervals on a line, each pair of intervals
will satisfy exactly one of the following properties.
- Overlap: The two intervals intersect but neither properly contains
the other.
- Containment: One of the two intervals properly contains the other.
- Disjointness: The two intervals have empty intersection.

A graphG is called anoverlap graph if its vertices may be put
into one-to-one correspondence with the collections of intervals on
a line such that two vertices are adjacent inG iff their correspond-
ing intervals overlap (not just intersect) [19].

To be more formal, letΓ= { Ix | x ∈ V} be a collection of inter-
vals on a line. The pairs of distinct indices (which represent edges)
are partitioned into three mutually disjoint setsA, B and C as fol-
lows: For distinctx, y∈ V,

(x, y) ∈ A iff ∅ ≠ Ix ∩ Iy ≠ Ix , Iy
(i.e., the intervals overlap1);
(x, y) ∈ B iff either Ix ⊂ Iy or Iy ⊂ Ix
(i.e., one interval properly contains the other;
(x, y) ∈ C iff Ix ∩ Iy = ∅
(i.e,. the intervals are disjoint).
Thus we have that (V, A) is the overlap graph represented byΓ,

(V, A+B) is the interval graph represented byΓ and (V, B+C) is the
stack compatibility graph represented byΓ as depicted in Fig. 3.
Unlike the case in interval graphs, the coloring problem for overlap
graphs is NP-Complete although the problem of finding the maxi-
mal clique and the problem of finding the maximalstable set(i.e.,
maximal size subset of vertices no two of which are adjacent) for
them are tractable [12].

Now, our claim about the time complexity of the clique parti-
tioning of stack-compatibility graphs is verified by the following
theorem.

Theorem 3: The problem of mapping a set of variables to a min-
imum number of stacks is NP-Complete.

1. In the special case whenIx coincides withIy it is assumed that (x, y)
belongs toA rather thanB.

Proof:
It is sufficient to show that this problem is isomorphic to the col-

oring problem inoverlap graphs which has been shown to be NP-
complete [12]. Obviously the stack mapping problem herein which
is modeled as a clique partitioning of the stack compatibility graph,
can be modeled as a coloring problem for the conflict graph (which
is the complement of the compatibility graph). It turns out that the
resulting conflict graph is identical to the classical overlap graph
with the exception that the latter deals with continuous intervals
while the former deals with discrete intervals. Therefore, the stack
allocation problem is NP-Complete. ❏

In a previous paper, we have proposed solutions for this prob-
lem using integer linear programming and interconnection guided
heuristic search [11]. In this paper, we present a new greedy heu-
ristic that takes advantage of the special properties of stack com-
patibility graphs.

Heuristic for allocating variables to stacks: Once the
problem has been identified as a clique partitioning problem, any
of the effective techniques (e.g., Tseng and Siewiorek [3]) can be
applied to solve the problem. However, we have used a new meth-
od that exploits the special properties of stack compatibility
graphs. As mentioned earlier, the stable set problem and the clique
problem are tractable foroverlap graphs. Gavril [12] designed an
algorithm that computes the maximum stable set of an overlap
graph (which corresponds to a maximum clique in our stack-com-
patibility graph) inO(n3) time, wheren is the number of vertices.
His technique is adopted in our allocation heuristic. The heuristic
finds the maximum clique in the stack compatibility graph, assigns
its variables to a stack, removes the variables form the graph and
the process is repeated until the graph is empty. While this method
of course does not guarantee the minimality of the total number of
stacks, it however attempts to create at least a number of reason-
ably large stacks that can capture a large portion of the variables.
The variables that belong to the remaining small size stacks (as we
will see later) can be grouped in register files instead in the final
design. The rational behind this gready policy is to try to limit the

1 2 3 4 5 6 7 8 9 10 11 12C-step

a

b

c

d

e

f

g

(a)

(b) (c) (d)

Figure 3: (a) Lifetime intervals. (b) The overlap graph = (V, A).

(c) The interval graph =(V, A+B). (d) The stack comp. graphG =(V, B+C).

af

b

c

eg

db

a

c d

f
e

gb

a

c d

f
e

g

total number of memory elements (i.e., sequencers and register
files) from becoming too large; a situation which not only would
increase the interconnection hardware, but also would introduce
more delay due to multiplexers, increase of capacitive loads on
buses [7] and so fourth. The reader may refer to [10] for the de-
tailed description of the algorithm.

3.3: Putting it all together
Since the adequacy of sequencers allocation procedures is prob-

lem dependent because they actually try to detect and utilize access
patterns regularity, we have suggested a general interactive proce-
dure that can be used in order to assist the designer in applying the
most suitable allocation scheme. Our global allocation strategy has
three stages. In the first stage we try to allocate all variables to
queues since they are the least costly choice. Then based on a re-
jection criterion (e.g., register utilization or size of queue [10]), we
reject some of the queues that do not meet the minimum allowed
utilization. Those variables which have been allocated to rejected
queues will be used as input to the next stage in which we try to al-
locate variables to stacks. Similarly stacks that do not meet the
minimum allowed utilization will be rejected. Next, compatible
stacks and queues are merged into bidirectional queues as illustrat-
ed in Fig. 4 [10]. The remaining variables can then be used as input
to any conventional allocator to be allocated to register files. The
main steps of the procedure are shown in Fig. 5.

4: Experimental results

The proposed algorithms have been implemented on a SUN
SPARCstation I running SUN OS. To demonstrate the advantages

1....2....3.....4....5....6....7....8....9..10...11

v1
v2
v3

c-step

v4
v5

Figure 4: The merge of a stack and a queue into a bidirectional queue.
(a) Lifetimes of variables. (b) Status of the bidirectional queue in all c-steps.

 (b)

(a)

v1
v2 v1

v3
 v1
 v2

v5 v4
v5

v3

v3

v2 v1

v2

v3

v5
v5

v5 v4

Control sequence

Shift Right
Shift Right
Shift Right
Shift Right

Shift Right
Shift Right
Shift Left (Push)

No Shift
Shift Left (Push)

Shift Right (Pop)

Shift Right (Pop)

c-step

1
2

3
4

5
6
7
8

9

10

11

Queue

Stack

of the proposed approach, various examples were used in the ex-
periment. Benchmark examples of the 1988 workshop on high-lev-
el synthesis [9] were not included because they are mostly
irregular or in an irregular form, and thus do not suit our approach
that exploits regularity. Nevertheless we found a large number of
applications that give excellent results under our approach. Two of
which are presented in this paper. The CPU execution time for all
of them is less than one second.

The first example is an FIR filter used in [6] and [7]. The de-
scription of the FIR filter is given by:

A special case of the FIR filter (the 16-point FIR) is a well
known example in the high-level synthesis literature [2]. To show
how well our approach scales, we applied our method on the FIR
example with several values ofN and we used the more regular
FIR representation given in [6]. The graphical representation of the
FIR filter withN=4 is shown in Fig. 6 (a). Fig. 6 (b) shows the life-
time intervals of variables when scheduled with a multiplier and an
adder. The results of this example for the case whenN=4 and for

Fig. 5. The main steps in the general allocation procedure

divide variables into clusters

perform post optimizations

reject queues that do not
 meet rejection criteria

S= set of rejected variables

allocate S to stacks

reject stacks that do not meet
 rejection criteria

allocate S to register files

merger clusters into queues

start

 Stop

S= set of input variables

S= set of rejected variables

yn aj xn j−⋅
j 0=

N

∑=

the general case whenN=k are shown in Table 1 and are compared
with those obtained by another allocation scheme that allocates to
register files. In our comparison, it is assumed that the access delay
of a register file equals the decoding delay plus the delay associat-
ed with a register transfer operation which is denoted asc, whereas
the access delay of a queue equalsc. A decoder withn outputs can
be realized by (n-1) 1-to-2 decoders. The delay of a 1-to-2 decoder
is denoted asd. The first two entries in the table represent address
generation and decoding cost and the last entry represents access
delay of memory elements. It is clear that our approach eliminates
address generation and decoding cost and reduces access delay.
Fig. 7 shows the improvement in access delay obtained by using
sequencers over using register files, versusN, assuming that the ra-
tio c/d=4. The figure shows that our approach gives a significant
speedup that increases asN (and hence the total number of regis-
ters) gets larger.

The second example is a matrix vector multiplication algorithm
that computesAX=Y whereA is an M × N matrix andX andY are
vectors of lengthN andM respectively. The results of this example
for the case whenM=400 andN=160, implemented using different
numbers of FUs are shown in Table 2.

5: Conclusions

A novel approach for exploiting regularity in data path synthesis
is presented. The concept of using a more sophisticated hardware
model that contains what we term assequencers has been applied
to the synthesis process, and is aimed to achieve two main objec-
tives. First, to improve the data transfer delay of storage elements
since sequencers, which are best exemplified by queues and stacks,
are mainly implemented as unidirectional or bidirectional shift reg-
isters, and hence they do not suffer from decoding delays that grow
proportionally with the size of a register file. Second, to eliminate
the cost of memory address generation and decoding. Furthermore,
algorithms and procedures have been developed for allocating
variables to stacks and queues and to integrate the proposed tech-
niques into conventional high-level synthesis procedures. Experi-
mental results for a number of DSP applications show very
encouraging improvement in performance as well as significant re-
duction in hardware cost. We believe that this approach opens up a
new unexplored frontier for the synthesis of high performance
Isaacs that have a high degree of regularity and require short clock
cycles.

References
[1] M. C. McFarland, A.C. Parker and R. Composano, “The High Level Synthesis of

Digital Systems,”Proc. of IEEE, vol. 78, no. 2, pp. 301-318, Feb. 1990.
[2] D. Gajski, N. Dutt, A. Wu, and S. Lin,HIGH-LEVEL SYNTHESIS: Introduction to

Chip and System Design. Kluwer Academic Pub., 1992.

[3] C. Tseng and D. Siewiorek, “Automated Synthesis of Data Paths in Digital Sys-
tems,”IEEE Trans. on Computer-Aided Design, July 1986, pp. 379-395.

[4] F. S. Tsai and Y. C. Hsu, “STAR: An Automatic Data Path Allocator,”IEEE Trans.
on Computer-Aided Design, Sept. 1992, pp. 1053-1064.

[5] M. Garey and D. Johnson,Computers and Intractability.Freeman, San Fran-
cisco, California, 1979.

[6] C.Y. Roger Chen, and Michael Moricz, “A Delay Distribution Methodology for the
Optimal Systolic Synthesis of Linear Recurrence Algorithms,”IEEE Trans. on
Computer Aided Design, vol. 10, No. 6, June 1991, pp. 685-697.

[7] C. Mead and L. Conway,Introduction to VLSI systems. Addison Wesley, 1980.
[8] K. Parhi, “Systematic Synthesis of DSP Data Format Converters Using Life-Time

Analysis and Forward-Backward Register Allocation,”IEEE Trans. on Circuits
and Systems-II: Analog and Digital Signal Processing,” vol. 39 No. 7, July 1992.

[9] G. Borriello and E. Detjens, “High-Level Synthesis: Current Status and Future Di-
rections,”in Proc. of the 25th DAC, New York, NY, June 1988, pp. 477-482.

[10] M. Aloqeely, “Sequencers: a New Alternative for Data Path Synthesis,” Ph.D.
Dissertation in progress at Syracuse University.

[11] M. Aloqeely and C.Y. Roger Chen, “Sequencer-Based Data Path Synthesis of
Regular Iterative Algorithms,”In Proc. of the 31stDAC, June, 1994, pp. 156-61.

[12] M. C. Columbic.Algorithmic Graph Theory and Perfect Graphs. Academic Press,
1980.

TABLE 1 : RESULTS OF THEFIR FILTER EXAMPLE

Approach
Proposed design

Design using register
files

N=4 N=k N=4 N=k

address lines to memory 0 0 5 ≈ 2. [logk]

1-to-2 decoders 0 0 7 ≈ 2 .k -1

registers 9 ≈ 2.k +1 9 ≈ 2 .k +1

register files 0 0 2 2

sequencers 2 queues 2 queues 0 0

max. memory access delay ≈ c ≈ c ≈ c + 3.d ≈ c +d.[log k]

TABLE 2 : RESULTS OF THEMATRIX VECTORMULTIPLICATION EXAMPLE

Approach Proposed design Design using register
files

4 +
4 *

10 +
10 *

4 +
4 *

10 +
10 *

address lines to
memory

0 0 24 50

1-to-2 decoders 0 0 153 141

registers 157 151 157 151

register files 0 0 4 10

sequencers 4 queues 10 queues 0 0

max. memory access
delay

≈ c ≈ c ≈ c+ 6.d ≈ c+5.d

(a) (b)

1 2 3 4 5 1 2 3 4 5 1 2
v1

v3
v4
r1

r2
r3
r4

Cyclei Cyclei+1

v2

Fig. 7: Speedup of memory elements access delay versusN.

speedup

N

r1 r2 r3 r4

v4v3v2v1

y

x

a4a2a1a0 a3

5

5

4

4

3

3

2

21

1

Fig. 6 : Example 2: FIR filter given by : yn aj xn j−⋅
j 0=

N

∑=

 (a) The graphical representation. (b) Lifetime intervals of variables.

c: Delay associated with accessing an individual register.
d: Propagation delay of a single 1-to-2 decoder.

1.6

1.8

2

2.2

2.4

2.6

2.8

0 10 20 30 40 50 60 70

c-step

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

