
Multi-level Synthesis for Safe Replaceability

Carl Pixley Vigyan Singhal� Adnan Azizy Robert K. Brayton
Motorola Inc., MD OE321 Dept. of Electrical Engineering and Computer Sciences

6501 Wm Cannon Drive West University of California at Berkeley
Austin, TX 78735 Berkeley, CA 94720

Abstract
We describe the condition that a sequential digital design is a
safe replacement for an existing design without making any as-
sumptions about a known initial state of the design or about its
environment. We formulate a safe replacement condition which
guarantees that if an original design is replaced by a new design,
the interacting environment cannot detect the change by observ-
ing the input-output behavior of the new design; conversely, if a
replacement design does not satisfy our condition an environment
can potentially detect the replacement (in this sense the replace-
ment is potentially unsafe). Our condition allows simplification of
the state transition diagram of an original design. We use the safe
replacement condition to derive a sequential resynthesis method
for area reduction of gate-level designs. We have implemented our
resynthesis algorithm and we report experimental results.

1 Introduction
We are concerned with the problem of sequential resynthesis for
gate-level synchronous, sequential designs. We start with a given
design and replace it with a modified design so that an environ-
ment around the original design cannot detect the replacement by
observing the input-output behavior of the design. We want to
make no assumptions about the environment. The state of a se-
quential design is captured the values of the latches in the design.
We will not make any assumption about a known initial state of
the sequential circuit. It is here that we differ from most previous
research in sequential synthesis of circuits.

In many industrial-level designs many latches (or flip-flops) do
not have a reset line. While it is well accepted that this statement
is true in the data part of the designs, it is our experience that even
in the control part many latches do not have a reset line. Avoiding
routing reset lines yields significant gain in area,and is an important
reason why latches may not have reset lines. Also, latches without
reset lines cost less (in number of transistors required) that those
with reset lines. While most designs described in a hardware
description language may have a specified initial state, many gate-
level designs do have latches without a reset line. Even if latches
have a reset line, the reset line may be an output of derived logic
(with possibly other latches in the transitive fan-in) or different
latches may have different reset lines (thus, the initial state of the
design is not uniquely determined). Also, for many designs it is
true that the input/output behavior of the design, before the reset
line is activated, is important.

We would like to replace the design with another without making
any assumptions about the interacting environment and the state
the design can power up in. We will assume that no latches have
reset lines; designs where some of the latches have reset lines can

�Research supported by NSF/DARPA Grant MIP-8719546 and a summer intern-
ship from Motorola, Inc.

yResearch supported by SRC Grant 94-DC-324

easily be modeled by merely treating the reset line as another input.
Many researchershave been able to obtain and exploit sequential

flexibility in gate-level designs by using the knowledge of the des-
ignated start state. Some of these include using don’t care resulting
from unreachable states [1], redundant latch removal [2], sequen-
tial redundancy removal [3] and equivalence net detection [4]. All
these methods rely on the flexibility introduced because many states
in the design are not reachable from the start state, and hence we
are free to modify the behavior of any unreachable state arbitrarily.
However, if latches do not have reset lines, all states are reachable,
and methods which rely on unreachable states cannot provide any
more flexibility than the regular combinational flexibility afforded
by the network. In this paper, we use our replaceability notion to
obtain area reductions without assuming a designated start state.

We describe our condition for safe replacement and synthesis
techniques which does not assume reset lines. We describe how
our condition differs from other notions used to describe sequential
equivalence [5, 6]. We also discuss how other sequential resynthe-
sis methods, like retiming/resynthesis [7] and synchronous relation
minimization [8], which do not directly use the knowledge of a des-
ignated start state indirectly rely on the existence of an initial state.
We will also show that the synthesis techniques in [9] make im-
plicit assumptions about the environment of the design. For our
safe replacement condition, it is surprising even though the design
may power up in any state that we are able to obtain some area
reductions beyond combinational resynthesis. Furthermore, it is
not necessary to preserve the underlying state transition graph of
the design (as in the state re-encoding problem).

In Section 2, we provide the basic definitions and terminology
for this paper. Section 3 presents the previous work on sequential
equivalence and motivates why we need a stronger equivalence
condition. Sections 4 and 5 present “safe replaceability” and how
we use this for multi-level sequential resynthesis. Finally, we
conclude with some initial experimental experience.

2 Terminology and Background
We now make precise the notion of a finite state machine and our
model for sequential hardware. We also define classical notions of
equivalence for states in a machine, and for machines.

Definition 1 A deterministic Finite State Machine (DFSM) M is
a quintuple, (Q; I;O; �; �), where Q is the set of states, I is the
set of input values, O is the set of output values, � is the output
function, and � is the next state function. The output function �

is a completely-specified function with domain (Q� I) and range
O. The next state function is a completely-specified function with
domain (Q� I) and range Q.

A hardware design D consists of a set of interconnected latches
and gates, as illustrated in Figure 1. For the purposes of this
paper, a design with n input wires, m output wires and t latches

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0442 $3.50

o2

o1

o3

y1 x1

x2y2

y3 x3

i1

i2

i3

Figure 1: Gates + Latches = Sequential Network

is characterized by an associated DFSM with state space QD =
f0;1gt, input space I = f0; 1gn, and output space O = f0; 1gm;
the next state and output functions are defined by the corresponding
logic. I� refers to the set of all finite input sequences.

We also use� and � to denote the output and next state functions
on sequences of inputs. So, if � = a1 � a2 � a3 � � �ap 2 Ip is a
sequence of p inputs, these functions are recursively defined as
�(s; �) = �(s; a1) � �(�(s; a1); �

0) and �(s; �) = �(�(s; a1); �
0),

where �0 = a2 � a3 � � �ap . Thus, the range-domain relationships
are � : Q� Ip ! Op and � : Q� Ip ! Q.

Two designs are said to be compatible if they have the same
number of input and output wires. All notions of equivalence
and replaceability developed in this paper are meaningful only for
pairs of compatible designs. Henceforth, when talking about two
different designs compatibility is assumed.

Definition 2 Given a design D0, and states s0 2 QD0 and s1 2
QD1 , state s0 is equivalent to state s1 (s0 � s1) if for any sequence
of inputs � 2 I�, �D0 (s0; �) = �D1 (s1; �). It can be easily
shown that if s0 � s1, then for any input sequence � 2 I�,
�D0(s0; �) � �D1(s1; �).

The classical notion of equivalence between two DFSM’s [10,
page 23] is the following:

Definition 3 Two DFSM’sM1 andM2 are equivalent (M1 �M2)
if for each state s in M1 there is a state t in M2 such that s � t,
and for each state t in M2 there is a state s in M1 such that s � t.

3 Previous Work
In this section we describe the few known notions of sequential
equivalence for circuits which do not have reset lines, and argue
why these might cause unsafe replacements in some cases.

3.1 Sequential Hardware Equivalence (SHE)
Here we will briefly review the work presented in [5] regarding
equivalence between two gate-level hardware designs. When the
design powers up, the state it powers up in cannot be predicted,
and the desired input/output behavior is achieved from the design
by driving a fixed initializing sequence of input vectors through the
design after power-up.

Definition 4 Given a design D0, a sequence of inputs � 2 I�

is called a initializing sequence if for any pair of states s0; s1 2
QD0 , �D0(s0; �) � �D0(s1; �). A design which has an initializing
sequence is called initializable.

0/0

0/1

1/1

1/0

10

11

0/0
01

00

1/10/01/0

D

1/0

1/1
0 1

0/0 0/1

D

Figure 2: Designs which do not have any initializing sequences

Definition 5 Given two designsD0 andD1, a state pair (s0; s1) 2
QD0 � QD1 is alignable if there is a sequence of inputs � 2 I�

such that �D0(�; s0) � �D1(�; s1). The sequence � is called an
aligning sequence.

The following definition defines the notion of sequential hard-
ware equivalence.

Definition 6 Designs D0 and D1 are equivalent (D0 � D1) if all
state pairs are alignable.

Theorem 3.1 D0 � D1 if and only if there is a single aligning
sequence that aligns all state pairs in QD0 �QD1 .

Now we argue why the notion of SHE does not work for safe
replacement of sequential designs.

From Theorem 3.1, two designs are considered equivalent if
there exists a universal aligning sequence. This sequence is an
initializing sequence for either design. However, in the design
process, often the designers do not (or, can not [11]) know the
initializing sequence for their designs. Even if they can determine
such a sequence � for a design, it may not be possible for the
environment to generate �. So, for a safe replacement we need to
preserve all initializing sequences, and not just one. In that case
the one used being used by the environment will be preserved.

The notion of SHE does not place any constraints on the outputs
of the designs during the initialization phase. However, we claim
that this condition is too weak for a safe replacement. A priori, we
cannot assume that the external environment is not sensitive to the
outputs during the initialization phase. This is especially important
because there may be another interacting design whose initializing
sequence may be driven by an output of designD0. Thus affecting
the outputs of D0 during initialization may destroy that initializing
sequence.

Finally, the notion of SHE does not work for designs which are not
initializable (such a design is not even equivalent to itself because
it does not have an aligning sequence with itself). For example, the
design D0 in Figure1 2 is not equivalent to itself because the state
pair (10; 11) is not alignable. However, we can imagine at least
two classes of real designs which are not initializable. First, if the
environment has some flexibility for the input/output behavior it
can accept from the design, the design may have multiple steady-
state behaviors (for example, design D0 in Figure 2). In this
example, the environment has a don’t care condition so that the
design is acceptable as long as it always toggles the input (state 11)
or always outputs the input (state 10), after the initialization phase.
For the second class, consider the designD00 in Figure 2. It can be
seen that there is no initializing sequence for this design, and hence

1We frequently represent designs by state transition graphs (STG’s). A t-bit
binary-valued label on a state denotes that, in the design, the state is implemented
by that assignment of the t latches. Notice that because a combinational function
can be implemented in many different ways, the design-to-STG transformation is a
many-to-one mapping.

l0
l1

l2

s.a.1

Figure 3: An irredundant stuck-at-fault for a circuit is redundant for a sub-circuit

this design is not initializable. However, once the design powers
up, its state can be determined from its outputs, and based on the
outputs the design can be driven to state 0. Thus, the behavior of
this design can be controlled.

3.2 Redundancy Removal
Here we briefly describe the sequential equivalence condition used
by Cheng [6] for resynthesis of circuits by removing redundant
lines from the circuits. The basic idea is to check if the input/output
“behavior” of the circuit is acceptable even after an internal line
has been set to 0 or 1. If so, then the line can be replaced by a
constant, and the circuit simplified.

Definition 7 A fault is sequentially redundant if for any input se-
quence, any output line and any state of the faulty circuit D1, the
circuitD1 produces 1 (0) whenever the original circuitD0 produces
1 (0) from all states of D0. If D0 produces an unknown output U
on some input sequence (i.e. 1 from at least one power-up state
and 0 from at least another) then D1 is allowed to produce either
0, 1 or U on that input sequence.

If a fault is sequentially redundant, the circuit may be replaced
by the faulty circuit, thereby simplifying the design. While the
condition in Definition 7 makes sense for resynthesis of a sin-
gle machine in isolation (because the new design is restricted to
produce the same output as the original design if the output is
deterministic), in hierarchical resynthesis, the condition can cause
unacceptable (unsafe) replacements.

Consider the gate-level design shown in Figure 3. This circuit
produces a 1 if and only if the inputs over the last two clock cycles
are identical (the output on the first cycle is arbitrary). Suppose we
select a window in the design (shown by the circuit inside the dotted
rectangle) and resynthesize this sub-circuit. It is easily seen that
the stuck-at-1 fault is sequentially redundant for this sub-circuit.
However, for the faulty circuit, if the design of Figure 3 powers
up in state (l0 = 0; l1 = 0; l2 = 0) and input sequence 1 � 1
is provided, it produces a 0 at the second clock cycle (the initial
design outputs a 1). This motivates the need for a safe replacement
condition— a condition so that the environment does not see any
new input/output behavior after the replacement. Notice that if the
entire design in Figure 3 were considered, the shown fault would
no longer be redundant as per the condition in [6]. This points to
the desirable compositionality property that we would like to see
in a replacement condition— safe replacements for a sub-design
should still be safe replacements when the sub-design is composed
with another design.

The work in [9] is based on the replacement condition in [6]
assuming that if the fault cannot be propagated to a primary output,
then the fault is redundant. For the example which we just showed,
the fault cannot be propagated to any single output of the circuit
inside the window; so the fault might be consideredredundant if the

window is looked at in isolation. However, if the given environment
is considered, the fault is not redundant since it can be propagated
to the primary output of the entire design in Figure 3. Notice that in
the above example, the fault can be propagated to a set of primary
outputs but to no single primary output. We can also construct a
similar example where the fault cannot be propagated to any set
of primary outputs at a single time frame, but to a set of primary
outputs for a sequence of time frames. Thus, it is necessary to
guarantee that there can be no logic (combinational or sequential)
feeding from the outputs of a design which can detect the fault.

In this paper, we consider the more general problem of modify-
ing the internal nodes of a circuit arbitrarily so that the “behavior’ of
the modified circuit is acceptableaccording to our safe replacement
criterion— we want to guarantee the safe replaceability without
making any assumptions on the environment. Also, in Section 5.4,
we show that setting the internal node input lines to constants and
verifying the validity of the modified design is a special case; thus
the exact solution for our proposed method covers the redundancy
removal techniques.

3.3 Retiming and Resynthesis
Retiming and resynthesis [7] can be used to perform sequential
optimization by alternating steps of moving of latches across com-
binational logic (retiming) and performing combinational resyn-
thesis.

Retiming seems to be able to work if latches do not have reset
lines. However, consider once again the circuit in Figure 3. Sup-
pose latch l0 is retimed across the fanout to two latches l00 and l000 ,
then the power-up state (l00 = 0; l000 = 1; l1 = 0; l2 = 0) produces a
0 on input sequence 1 �1, whereas no power-up state in the original
design exhibits this behavior. So the reason given in Section 3.2,
for searching for a new safe replacement condition, applies here as
well.

3.4 Synchronous Relations
Damiani and De Micheli [8] proposed using synchronous recur-
rence equations (or synchronous relations) to capture don’t care in-
formation in sequential circuits. A synchronous relation expresses
the flexibility for a sub-circuit in a sequential gate-level design as
a Boolean relation on finite sequences of inputs and outputs. Al-
though the synchronous relation does not depend on a designated
start state, the start state has to be taken into account. For a design
without reset lines, we can construct an example [12] where two
designs satisfy the same synchronous relation but a state of one de-
sign may exhibit some behavior exhibited by no state of the other
design.

4 Safe Replaceability
We want a condition for safe replacement which guarantees that
if we replace an old design with a new one, it is impossible for
any environment to detect that the replacement has been made.

0/1

1/1

1/1

0/0

0/0

1/0

0/1
1/1

0/1

0/1 0/1

1/1

1/1

1/1

1/1

0/0

0/0

-/1

1/0

1/0

0/1

-/0

D

D

0

1

111

100

001

110 010 000 011

101

0010 11

01

Figure 4: Example of a safe replacement

Conversely, we would like all replacements that cannot be detected
by any environment to satisfy our condition. We assume that no
latches have reset lines2. Since it cannot be predicted which state
the design powers up in, we can safely assume that no matter which
state the original design powers up in, the subsequent input/output
behavior of the design is acceptable to the environment. Based on
this observation, we give the following condition (the safe replace-
ment condition):

Definition 8 Design D1 is a safe replacement for design D0 (de-
noted by D1 � D0) if given any state s1 2 QD1 and any finite
input sequence� 2 I�, there exists some state s0 2 QD0 such that
the output behavior �D1(s1; �) = �D0 (s0; �).

We argue that the above condition provides maximum flexibility
while guaranteeing that the replacement cannot be detected by the
environment. First, if we make the above condition any weaker,
then there exists an input sequence� and a state in the new design
D1 so that if the D1 powers up in this state and sees the sequence
�, it will produce a behavior which could not have been seen from
any state in D0. This violates our requirement that no environment
should be able to detect the replacement. Secondly, since we have
assumed that the power-up state of a design cannot be predicted,
if D1 � D0, then for every input sequence any power-up state of
D1 behaves like some power-up state of D0. This implies that any
behavior from any state of D1 is acceptable. Thus our condition
guarantees that replacing D0 by D1 cannot be detected by any
environment.

Any design which has the same state transition graph as the
original design trivially satisfies the safe replacement condition.
As a non-trivial example consider designs D0 and D1 in Figure 4,
where D1 � D0. States 00, 11 and 01 in D1 behave like states
000, 011 and 101, respectively, in D0 for all input sequences.
The remaining state 10 in D1 behaves like state 010 for all input
sequences starting with 0, and like state 101 for all input sequences
starting with 1. Notice that state 10 in D1 is not equivalent to any

2If some latches have a reset line, they can be modeled by a latch without a reset
line if we treat the reset line as another primary input; see [12] for details.

state in D0; conversely, no state in D1 is equivalent to state 001 in
D0. Definition 8 guarantees that there is no input/output behavior
in D1 which is not present in D0. On the other hand, state 001
in D0 outputs sequence 1 � 1 � 0 on the input sequence 1 � 1 � 1
whereas no state of D1 can exhibit this behavior. However, we
had claimed that no environment can detect if D0 is replaced by
D1. This apparent paradox can be explained by the observation
that since it is not true that every power-up state ofD0 exhibits this
behavior, the environment of D0 could not possibly depend on this
behavior, and hence it cannot always expect the output sequence
for 1 � 1 �0 for the input use 1 � 1 � 1 each time the design powers up.

It is easy to see that the safe replacement condition does not suf-
fer from any problems with the previous notions that we discussed
in Section 3. Most importantly, it satisfies the compositionality
property— ifD1 � D0, thenD1
C � D0
C , where
 denotes
composition of two designs.

Definition 9 Given a designD, a set of states S � QD is a closed
set if for any input a 2 I , any state s 2 S: �D(s; a) 2 S.

Definition 10 A terminal strongly connected component (tSCC)
of a design D is a closed set of states S � QD such that for every
pair of states s0; s1 2 S : there exists an input sequence � 2 I�

such that �D(s0; �) = s1,

We have shown other properties of safe replacement in [13]:

� The relation � is transitive and reflexive, but not symmet-
ric. (The replaced design has fewer or same input/output
behaviors as the original design).

� A replacement design can have fewer or more latches than
the original design (in Figure 4, D0 has 3 latches whereasD1

has 2).

� Unlike sequential hardware equivalence [5], safe replaceabil-
ity also applies to a design which does not have any initializing
sequence.

� If D1 � D0, every initializing sequence for D0 is an initial-
izing sequence for D1 as well.

� If D1 � D0, then every tSCC in D1 must be equivalent (by
Definition 3) to a tSCC in D0.

5 Sequential Resynthesis
We want to exploit the flexibility provided by the safe replacement
condition in Definition 8 to optimize synchronous sequential cir-
cuits. Unfortunately, Definition 8 does not directly provide a closed
form expression to express all the flexibility for safe replacement.

A sequential gate-level design can be viewed as a connection
between a purely combinational part and a set of latches (Figure 1).
The inputs to the combinational part are the real primary outputs
of the design ~i plus the wires from the latches, or the present
state vector, denoted by ~x. The outputs of the combinational part
are the real primary outputs of the design ~o plus the wires to the
latches, or the next state vector, denoted by ~y. We want to optimize
this combinational part while maintaining the safe replacement
condition. If we can express the flexibility in Definition 8 by a
Boolean relation in (~i; ~x;~o; ~y), we can use known techniques [14]
for minimizing multi-level networks given a Boolean relation, in
terms of the inputs and outputs of the network.

Unfortunately, the flexibility allowed by the safe replace-
ment condition cannot be represented by a Boolean relation
between the domain space (~i; ~x) and the range space (~o; ~y).

111

100

001

110 010 000

101

011

0/1 0/1

1/1

1/1

1/1

0/0

0/0

1/0

1/0
1/1

-/1

-/1

0/0

0/1

Figure 5: Design D2 (a safe replacement for D0)

111

100

001

110 010 000

101

011

0/1

0/1 0/1

1/1

1/1

1/1

0/0

0/0

-/1

1/0

1/0-/0
1/1

0/1

Figure 6: Design D3 (an unsafe replacement for D0)

Consider the design D2 in Figure 5 which is a safe replace-
ment of the design D0 of Figure 4. The two designs dif-
fer on their mappings of the following 6 points in (~i; ~x):
(0;111); (0; 100); (1; 100;1); (0; 001); (1; 001); (0; 110). One
property of Boolean relations is that the flexibility for each point
in the domain space is independent of other points [15]. So, if the
flexibility for safe replacement could be expressed by a Boolean
relation, then every design corresponding to a flexibility choice for
each of these 6 domain points would be a valid replacement (there
are 26 such designs). In particular, design D3 in Figure 6, which
behaves like D2 on point (0; 110) and like D0 on the other points,
would be a safe replacement. However, this is not so because if
design D3 powers up in state 111 and is given the input sequence
0 � 0 � 0 it produces the output sequence 1 � 1 � 1, whereas there is
no state in D0 which exhibits this behavior. Thus the flexibility for
safe replaceable designs with the same number of latches cannot
be expressed as a Boolean relation in (~i; ~x) � (~o; ~y). One way
to represent such flexibility would be through Multiple Boolean
Relations [15], which are arbitrary sets of Boolean relations.

5.1 Sufficient Condition for a Safe Replacement
As we argued in the last section, the complete flexibility for safe re-
placement can be expressed by a multiple Boolean relation. How-
ever, because of the intractably large solution space of multiple
Boolean relations, there are no known general techniques to use
multiple Boolean relations for logic synthesis. We now provide a
sufficient (but not necessary) condition for safe replacement, from
which we will obtain a Boolean relation in (~i; ~x;~o; ~y) to express
partial flexibility for safe replacement.

Proposition 5.1 Given designsD0 andD1 such that for every state
s1 2 QD1 and input a 2 I , there exists a state s0 2 QD0 such
that �D1 (s1; a) = �D0(s0; a) and �D1 (s1; a) � �D0(s0; a). Then
D1 � D0.

10

11

01/0

00

00/0

1-/0
01/1

00/0

01/0
1-/101

5D

10

11

01/0

01

11/0

-0/1

01/1

01/0

--/0

00

4D

01/1

00/0

00/0
1-/1

1-/000/0

00/0
1-/1

1-/0

Figure 7: Example of a safe replacement

Proof: Choose any state s1 2 QD1 , and any input sequence � =
a0 � a1 � � �ap 2 I�. Now, there exists a state s0 2 QD0 such that
�D1 (s1; a0) = �D0 (s0; a0) and �D1 (s1; a0) � �D0(s0; a0). Thus
�D1 (s1; �) = �D0(s0; �), and hence D1 � D0.

The above result is not a necessary condition for safe replace-
ment. For example, consider the designsD4 andD5 in Figure 7. It
can be seen thatD5 � D4. However, in designD5 state 01 goes to
state 01 on input 00, and no state in design D4 is state equivalent
to state 01 on design D5 (as discussed in Section 4, there may be
states in the replacement design which are not equivalent to any
state in the original design). On the other hand, designsD0 andD1

of Figure 4 which satisfy the sufficient condition of Proposition 5.1,
and thus D1 � D0.

5.2 Flexibility for Resynthesis
We will use the sufficient condition in Proposition 5.1 to derive a
method to extract and use flexibility for sequential resynthesis.

First, note that a necessary condition for safe replacement is that
every tSCC in the new design must be equivalent to a tSCC in the
old design. A tSCC can be thought of as defining a steady state
behavior of the design. So at the state-transition level we cannot
alter the behavior of the states in some tSCC of the original design.
For our synthesis method we will choose a set of states which is
closed under all inputs, called the core:

Definition 11 Given a designD, a set of states S � QD is called
a core of the design if it is a closed set under all inputs, i.e. for any
input a and any state s 2 S: �D(s;a) 2 S.

We will preserve the behavior of the core during resynthesis,
and in order to make resynthesis tractable, we will preserve the
encodings of the states in the core. Note that since the core is
closed under all inputs it contains a tSCC of the original design and
thus satisfies the necessary condition discussed above.

Proposition 5.1 indicates that each state reachable from some
state in D1 is equivalent to some state inD0. The set of these states
will serve as the core of the old design, which we will reproduce in
the new design. We require that each of the remaining states in the
new design satisfy the following Boolean relation P(~i; ~o; ~y). In
the following, core(~x) = 1 if and only if state ~x lies in the chosen
core.

P(~i; ~o; ~y) = 9~x0[(�D0(~x0;~i) = ~o) ^ (�D0 (~x0;~i) = ~y)] ^

core(~y) (1)

Intuitively, a triple (~i; ~o; ~y) satisfies the relation P iff there is a
state ~x0 in the given design which transitions to state ~y and outputs
~o on input ~i, and ~y lies inside the core. It is easy to see that if
the core of the old design is preserved and the relation P holds for

the remaining states of the new design, the sufficiency condition of
Proposition 5.1 is satisfied.

We can now form a Boolean relation R(~i; ~x;~o; ~y) which ex-
presses the flexibility for the entire network including states inside
the core:

R(~i; ~x;~o; ~y) =

[core(~x) ^ (~y = �D0(~x;~i)) ^ (~o = �D0 (~x;~i))] _

[:(core(~x)) ^ P(~i; ~o; ~y)] (2)

Intuitively, the relation R ensures that the states inside the core
have the same behavior (next state and output) as the original
design, while the states outside the core are free to choose any
behavior which satisfies the relation P .

We recall from Section 5 that the total flexibility for the network
cannot be expressed by a Boolean relation; we are able to get a
relation here because our condition in Proposition 5.1 is only a
sufficient condition.

5.3 Choice of Core
For a given design there may be many choices for the core which
satisfy Definition 11. Some natural choices are:

� The set of all states QD0 .

� Any onion ring [16] of the design. Onion rings A1;A2; : : :
are defined recursively:

A1 = QD0 ;

Ak+1 = fyj9i 2 I; x 2 Ak : �D0(x; i) = yg (3)

For design D4 in Figure 7, A1 = f00;01; 10;11g;A2 =
A3 = � � � = A1 = f01;10; 11g. A1 is also called the outer
envelope of a design. The outer envelope is computable by a
fixed-point computation starting from QD0 .

� Any tSCC of the design. Design D4 has only one tSCC:
f10;11g.

Any of the above choices satisfies Definition 11 and can be used
in equation 2. The ideal choice is a small core to give us a large
number of states outside the core because we have flexibility only
in modifying the behavior of states outside the core. The smallest
tSCC is the smallest set which qualifies as a core.

However, we are restricted by the requirement that the starting
design must itself satisfy the Boolean relationR. The only known
method for minimizing multi-level networks under flexibility ex-
pressed by a Boolean relation [14] requires this restriction, as we
shall see later in Section 5.4.

For example, if we choose the tSCC of design D0 in Figure 4
(states 000, 011 and 101) as the core, the designD0 does not satisfy
relation R in expression 2 because the state 111 (a non-core state)
does not jump to a state inside the core on input 1 and hence does
not satisfy P . Choices of core that guarantee that the given design
satisfies R are QD0 (the set of all states) and the second onion
ring A2 (the set of states reachable in one step from QD0). The
former does not give any flexibility because all states are in the
new design; so we make the latter choice. While it might seem that
we lose much flexibility by having to choose a much larger core
than the smallest possible, our experiments in Section 6 indicate
that choosing A2 gives us most of the flexibility for most of the
examples.

5.4 Multi-level Synthesis
Previous sections referred to a multi-level combinational logic net-
work that computes the next states and outputs of a sequential
design. More precisely, the Boolean network N associated with
a sequential circuit is a directed acyclic graph such that for each
node inN , there is a Boolean variableui and an associatedBoolean
function fi such that ui = fi. The support of fi is the set of vari-
ables corresponding to the immediate fan-ins of the node. The
primary input variables fi1; i2; : : : ; in; x1; x2; : : : ; xtg correspond
to the inputs and present states of the sequential circuit; the primary
output variables fo1; o2; : : : ; om; y1; y2; : : : ; ytg correspond to the
outputs and next states. Intermediate nodes are those which do not
correspond to inputs or outputs. The network computes a function
from the input space Bn+t to the output space Bm+t derived by
composing the functions at the intermediate nodes.

Since hardware designs typically arise by composing small mod-
ules, it is very natural for circuits to have a multi-level structure.
The nodes of the corresponding Boolean network represent the log-
ical functionality of the modules. It has been observed that the area
of the hardware implementation of a design is strongly correlated to
the total number of literals in the factored form [17] representation
of the functions at the logic nodes. Thus minimizing the function
(with respect to the literal count) at the node constitutes a powerful
synthesis technique.

At any intermediate node of a network there is a local function
fi : Br ! B, where r is the cardinality of the support. Node
simplification is the process of optimizing a Boolean network by
using don’t cares in conjunction with a two level minimizer [18]
to optimize the functions at the nodes. These don’t cares arise in
several ways:

� Because of the structure of the network, only a certain subset
of Br may be generated by assignments to the inputs. This
gives rise to satisfiability don’t care (SDC) points for fi [17].

� For certain input assignments, the values taken by the primary
outputs of N may be independent of the function computed
by a node; these are observability don’t care points (ODC)
for that node [19].

� For certain input assignments the functionality of the node can
be changed without destroying safe replaceability; this flexi-
bility leads to the replaceability don’t cares points (RDC).

The ODC at a nodeu can be computed by considering the output
�u of the node to be another input; thus the primary outputs of N
are expressed in terms of the primary inputs and �u. The ODC is
the set of points in Br where no primary output of N depends on
�u.

Let R(~i; ~x;~o; ~y) be a Boolean relation expressing all the flexi-
bility in the choice of combinational logic for a sequential circuit.
Cerny and Marin [20] demonstrate a close relationship between
optimizing a Boolean network with respect to a given Boolean re-
lation, and computing observability don’t care sets. The starting
networkN must satisfy the relationR. The relation can be viewed
as a single node with inputs ~i; ~x;~o; ~y; this node is referred to as
the observability node. Composing this node with the network as
shown in Figure 8 yields an observability networkN 0 . It is shown
in [20, 14] that all the don’t cares that can be used to optimize the
nodes in N are derivable from the ODC of the node in the network
N 0.

In our scenario, the relationR(~i; ~x;~o; ~y) is given by equation 2 in
Section 5.2, with core(~x) being the setA2 as defined in equation 3
in Section 5.3. As discussed in section 5.3, for this choice of core,
the combinational logic network associated with the initial design is

Next States
Outputs+

Observability Node
R(~i; ~x; ~o; ~y)

Inputs + Present States
i2

yty1

i1 in

u

o1 om

x1 xt

�u

ImplementationN

Observability NetworkN 0

Figure 8: ODC’s from the Observability Network yield flexibility
under Observability Relation for nodes in Implementation Net-
work.

an implementation for R(~i; ~x;~o; ~y). Using R as the observability
node guarantees that, for any other internal node, the ODC derived
from the observability network contains the RDC for the original
network.

We use Binary Decision Diagrams (BDD’s) to represent the
design, flexibility relation, and core. There is a variable associated
with each primary input and each primary output; for each latch
there is a present state and next state variable. Let u be a node
in the design for which the ODC is to computed. We add a new
BDD variable �u corresponding to the output of u, and generate
BDD’s for the next state and output functions in terms of the
primary inputs, latch outputs, and �u. These are composed with
the flexibility relation to obtain the BDD for the function computed
by the observability network. Let f(~i; ~x;�u) be the output of
the observability network; then the ODC for node u is given by
f(~i; ~x;�u = 1)f(~i; ~x;�u = 0)+f̄(~i; ~x;�u = 1)f̄(~i; ~x;�u = 0).
This is in terms of primary inputs; we then project this set into the
space comprised of the fan-ins of the node (as in [19]). These are
used in conjunction with a subset of the satisfiability don’t care set
to optimize the function at u.

We are computing all inputs under which the outputs are inde-
pendent of the function computed at the node. Thus we will detect
cases where an internal line (which is an input to a node) can be
set to a constant while maintaining compatibility with relationR.
This means that we automatically remove redundant faults (which
satisfy R) from the circuit. Note that we are able to detect these
redundanciesbecausewe are computing the flexibility of each node
just before minimizing it; if we had obtained compatible flexibility
(as in [14]) for all nodes before minimizing them simultaneously
we would not be able to claim this. The price we pay is in time:
we need to simplify nodes on an individual basis, and if the node

is simplified, potentially all the BDDs for functions that the node
fans out to must be recomputed.

6 Experiments
We have implemented the above method for sequential resynthesis
presented in this paper in the SIS sequential synthesis system [21].
We used BDD’s to represent all sets and functions and to perform all
the set manipulations implicitly. We have performed experiments
on the ISCAS89 benchmark suite (from s344 to s1494). Since
some ISCAS benchmarks are very minor variations of each other
and give almost identical results, we chose the largest example (for
example, s1288 represents s1288 and s1196; s444 represents
s444, s400 and s382, etc.) for each class.

We report our experiments in Table 1. First observe that, for
many examples, the size of the core (the second onion ring A2) is
close to the size of the tSCC (each of the examples has exactly one
tSCC) when compared to the total number of states (2L, where L
is the number of latches).

Since we are minimizing the network one node at a time, very
small nodes are unlikely to yield much optimizations. The node
sizes of the benchmark circuits were very small; we executed the
SIS commands sweep; eliminate 10 to partially collapse
the network. For some benchmarks, a totally collapsed network
had a smaller literal count than a partially collapsed one; for these
circuits, we started with the totally collapsed network (using com-
mand sweep; collapse).

The table reports the reduction in the total number of literals
of the network. We have partitioned the literal reduction into
reductions due to satisfiability don’t cares (SDC), observability
don’t cares (ODC) and replaceability don’t cares (RDC) separately.
We minimized each internal nodes three times: using SDC, using
(SDC + ODC), using (SDC + ODC + RDC). The literal reductions
under the ODC column are reductions in addition to those under
the SDC column; those under the RDC column are reductions in to
those under the SDC + ODC columns. Note that the literal savings
under the RDC column, for example, does not indicate the savings
due to the safe replaceability don’t cares; it is actually the difference
in the savings using (SDC + ODC + RDC) and (SDC + ODC). We
have observed that a lot of the literal saving is common to all three
methods: SDC, ODC and RDC. So a 0 in the RDC column might
indicate that most of the flexibility due to RDC is already captured
by SDC and ODC. However, the CPU times reported in the table
under the three columns represent the total time taken for each
method separately.

It is interesting to compare the RDC statistics to the ODC statis-
tics because while ODC provides observability don’t cares for an
internal node in terms of the primary inputs, RDC provides safe
replaceability don’t cares in addition to the observability don’t care
points. Then we project these don’t cares to the immediate fan-ins
of the node using the same techniques used for projecting ODC
points [19]. We observe that for some examples, ODC gives no
literal reductions beyond SDC alone but RDC is able to obtain
additional, though modest, reductions. These reductions are of
the order of 5% on these circuits. On other circuits RDC gives
no additional improvements over SDC and ODC. For these ex-
amples, most replaceability don’t care points may be overlapping
with satisfiability and observability don’t care points. Except for
2 examples, the CPU time taken by RDC flexibility is of the same
order as the time taken to utilize the SDC and ODC flexibility.

ISCAS89 benchmarks may not constitute a good source of ex-
amples to judge the potential of our approach. This is because for
many of the circuits, collapsing the logic to two levels before ap-
plying our minimization yields a smaller circuit, thus negating the
whole basis of doing multi-level logic minimizations. Furthermore,

Circuit I O L #states #literals Savings (in #literals) Time (in seconds)
tSCC core 2L start end SDC ODC RDC SDC ODC RDC

s349 9 11 15 1487 23232 32768 173 157 9 7 0 0.57 1.40 123.89
s386 7 7 6 13 13 64 205 138 53 0 14 0.83 1.03 1.83
s444 3 6 21 8864 23740 2097152 236 171 50 15 0 0.76 1.56 4.71
s510 19 7 6 47 61 64 307 255 52 0 0 1.97 2.35 3.17
s526 3 6 21 8868 401460 2097152 323 233 79 0 11 6.32 6.61 10.80
s713 35 23 19 1544 6663 524288 285 timeout after 10000 sec
s832 18 19 5 25 25 32 470 351 110 0 9 3.04 4.18 12.60
s953 16 23 29 504 504 536870912 700 597 78 20 5 3.85 17.14 37.56
s1238 14 14 18 2615 2652 262144 882 636 98 148 0 14.74 176.26 1075.49
s1494 8 19 6 48 48 64 896 542 353 0 1 26.81 34.97 58.17

Table 1: Experimental results. I , O and L denote the number of inputs, outputs and latches, respectively. The savings reported used ODC
are in addition to those under SDC; those reported under RDC are in addition to those reported under (SDC+ODC). The sum of these three
columns is the difference between the starting and ending literal count.

the average node size is too small to hope for any significant reduc-
tion over that given by the SDC. Hence the merit of our approach
may be better judged on the basis of real multi-level designs.

Memory explosion is a common problem with BDD’s. in the
problem size. For our experiments we noted that the ability to
finish the examples (and the time taken) was most influenced by
the number of input wires to the design. The number of latches
and the number of output wires are also a factor, though to a lesser
degree. Since large designs routinely arise as set of interacting
components, it is natural to decompose the design into smaller
components and synthesize them independently. Intuitively, the
components being smaller, will be less complex, and hence easier
to synthesize. We expect that our methods will be most useful in
resynthesizing an arbitrary portion of a design without worrying
about any interaction with its environment.

7 Conclusions and Future Work
We have provided a notion of safe replaceability (�) that is inde-
pendentof initial states of a design and the intended environmentof
a design. We have used this notion to provide a method for sequen-
tial resynthesis towards an area reduction of gate-level designs; our
notion does not require us to preserve the state transition behavior
of the design. We have implemented our algorithm using BDD’s.
and we expect to be able to test our algorithm on industrial-level
designs.

The synthesis method presented in this paper is just one way of
exploiting the flexibility allowed by the safe replacementcondition.
We are looking at other methods for sequential synthesis for this
notion of sequential equivalence.

We would also like to be able to handle arbitrarily large netlists
for our resynthesis methods. For this we are working on parti-
tioning algorithms which decompose a network into modules so
that the number of wires running across the modules is minimized.
Fewer interconnection wires gives us two advantages: we can han-
dle larger number of latches before we run into a BDD explosion
problem, and we can expect fewer states in the core (and hence
more flexibility) if we have fewer controlling input lines running
to the modules. Furthermore, reducing the number of output lines
restricts the observable output sequences which leads to larger ob-
servable don’t cares.

References
[1] B. Lin, H. J. Touati, and A. R. Newton, “Don’t Care Minimization of Multi-level

Sequential Logic Networks,” in Proc. Intl. Conf. on Computer-Aided Design,
pp. 414–417, Nov. 1990.

[2] C. Berthet, O. Coudert, and J. C. Madre, “New Ideas on Symbolic Manipulation
of Finite State Machines,” in Proc. Intl. Conf. on Computer Design, Oct. 1990.

[3] H. Cho, G. D. Hachtel, and F. Somenzi, “Redundancy Identification and Re-
moval Based on Implicit State Enumeration,” in Proc. Intl. Conf. on Computer
Design, pp. 77–80, Oct. 1991.

[4] G. Berry and H. J. Touati, “Optimized Controller Synthesis Using Esterel,” in
Workshop Notes of Intl. Workshop on Logic Synthesis, (Tahoe City, CA), May
1993.

[5] C. Pixley, “A Theoryand Implementationof Sequential HardwareEquivalence,”
IEEE Trans. Computer-Aided Design, vol. 11, pp. 1469–1494, Dec. 1992.

[6] K.-T. Cheng, “Redundancy Removal for Sequential Circuits Without Reset
States,” IEEE Trans. Computer-Aided Design, vol. 12, pp. 13–24, Jan. 1993.

[7] S. Malik, E. M. Sentovich, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“Retiming and Resynthesis: Optimization of Sequential Networks with Combi-
national Techniques,” IEEE Trans. Computer-Aided Design, vol. 10, pp. 74–84,
Jan. 1991.

[8] M. Damiani and G. De Micheli, “Synthesis and Optimization of Synchronous
Logic Circuits from Recurrence Equations,” in Proc. European Conf. on Design
Automation, pp. 226–231, Mar. 1992.

[9] L. Entrena and K.-T. Cheng, “Sequential Logic Optimization by Redundancy
Addition and Removal,” in Proc. Intl. Conf. on Computer-Aided Design,
pp. 310–315, Nov. 1993.

[10] J. Hartmanis and R. E. Stearns, Algebraic Structure Theory of Sequential Ma-
chines. Intl. Series in Applied Mathematics, Englewood Cliffs, N.J.: Prentice-
Hall, 1966.

[11] R. Rudell, Synopsys, Inc.. Personal communication, Mar. 1994.
[12] C. Pixley, V. Singhal, A. Aziz, and R. K. Brayton, “Multi-level Synthesis for

Safe Replaceability,” Tech. Rep. UCB/ERL M94/31, Electronics Research Lab,
Univ. of California, Berkeley, CA 94720, Apr. 1994.

[13] V. Singhal and C. Pixley, “The Verification Problem for Safe Replaceability,” in
Proc. of the Conf. on Computer-Aided Verification (D. L. Dill, ed.), vol. 818 of
Lecture Notes in Computer Science, pp. 311–323, Springer-Verlag, June 1994.

[14] H. Savoj and R. K. Brayton, “Observability Relations and Observability Don’t
Cares,” in Proc. Intl. Conf. on Computer-AidedDesign, pp. 518–521,Nov. 1991.

[15] E. M. Sentovich, V. Singhal, and R. K. Brayton, “Multiple Boolean Relations,”
in Workshop Notes of the Intl. Workshop on Logic Synthesis, (Tahoe City, CA),
May 1993.

[16] S.-W. Jeong, Binary Decision Diagrams and their Applications to Implicit Enu-
meration Techniques in Logic Synthesis. PhD thesis, Department of Electrical
and Computer Engineering, University of Colorado, Boulder, CO 80309, 1992.

[17] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli, “Multilevel
Logic Synthesis,” Proceedings of the IEEE, vol. 78, pp. 264–300, Feb. 1990.

[18] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis. Kluwer Aca-
demic Publishers, 1984.

[19] H. Savoj, R. K. Brayton, and H. Touati, “Extracting Local Don’t Cares for Net-
work Optimization,” in Proc. Intl. Conf. on Computer-Aided Design, pp. 514–
517, Nov. 1991.

[20] E. Cerny and M. A. Marin, “An Approach to Unified Methodology of Combi-
national Switching Circuits,” IEEE Trans. Computers, vol. 27, no. 8, 1977.

[21] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli, “Sequential Circuit Design Using Synthesis and Opti-
mization,” in Proc. Intl. Conf. on Computer Design, pp. 328–333, Oct. 1992.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

