Multi-level Synthesis for Safe Replaceability

Carl Pixley
Motorolalnc., MD OE321
6501 Wm Cannon Drive West
Austin, TX 78735

Abstract

We describe the condition that a sequential digital design is a
safe replacement for an existing design without making any as-
sumptions about a known initial state of the design or about its
environment. We formulate a safe replacement condition which
guaranteesthat if an original design is replaced by a new design,
the interacting environment cannot detect the change by observ-
ing the input-output behavior of the new design; conversely, if a
replacement design does not satisfy our condition an environment
can potentially detect the replacement (in this sense the replace-
ment is potentially unsafe). Our condition allows simplification of
the state transition diagram of an original design. We use the safe
replacement condition to derive a sequential resynthesis method
for areareduction of gate-level designs. We have implemented our
resynthesis algorithm and we report experimental results.

1 Introduction

We are concerned with the problem of sequential resynthesis for
gate-level synchronous, sequential designs. We start with a given
design and replace it with a modified design so that an environ-
ment around the original design cannot detect the replacement by
observing the input-output behavior of the design. We want to
make no assumptions about the environment. The state of a se-
quential design is captured the values of the latches in the design.
We will not make any assumption about a known initial state of
the sequential circuit. It is here that we differ from most previous
research in sequential synthesisof circuits.

In many industrial-level designs many latches (or flip-flops) do
not have areset line. Whileit iswell accepted that this statement
istrue in the data part of the designs, it is our experience that even
in the control part many latches do not have areset line. Avoiding
routing reset linesyieldssignificant gainin area, and isan important
reason why latches may not have reset lines. Also, latches without
reset lines cost less (in number of transistors required) that those
with reset lines. While most designs described in a hardware
description languagemay have a specified initial state, many gate-
level designs do have latches without a reset line. Even if latches
have a reset line, the reset line may be an output of derived logic
(with possibly other latches in the transitive fan-in) or different
latches may have different reset lines (thus, the initial state of the
design is not uniquely determined). Also, for many designsit is
true that the input/output behavior of the design, before the reset
lineis activated, is important.

Wewould liketo replacethe designwith another without making
any assumptions about the interacting environment and the state
the design can power up in. We will assume that no latches have
reset lines; designs where some of the latches have reset lines can

* Research supported by NSF/DARPA Grant M1P-8719546 and a summer intern-
ship from Motorola, Inc.
T Research supported by SRC Grant 94-DC-324

Permissionto copy without fee al or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires afee and/or specific permission.

Vigyan Singhal*
Dept. of Electrical Engineering and Computer Sciences
University of California at Berkeley

Adnan Aziz Robert K. Brayton

Berkeley, CA 94720

easily be modeled by merely treating the reset line asanother input.

Many researchershavebeen ableto obtain and exploit sequential
flexibility in gate-level designs by using the knowledge of the des-
ignated start state. Some of theseincludeusing don’t care resulting
from unreachable states [1], redundant latch removal [2], sequen-
tial redundancy removal [3] and equivalence net detection [4]. All
thesemethodsrely on theflexibility introduced becausemany states
in the design are not reachable from the start state, and hence we
are free to modify the behavior of any unreachable state arbitrarily.
However, if latchesdo not have reset lines, all states are reachable,
and methods which rely on unreachable states cannot provide any
more flexibility than the regular combinational flexibility afforded
by the network. In this paper, we use our replaceability notion to
obtain area reductions without assuming a designated start state.

We describe our condition for safe replacement and synthesis
techniques which does not assume reset lines. We describe how
our condition differs from other notions used to describe sequential
equivalence[5, 6]. We also discusshow other sequential resynthe-
sismethods, like retiming/resynthesis[7] and synchronousrelation
minimization [8], which do not directly usetheknowledgeof ades-
ignated start stateindirectly rely on the existence of aninitial state.
We will also show that the synthesis techniquesin [9] make im-
plicit assumptions about the environment of the design. For our
safe replacement condition, it is surprising even though the design
may power up in any state that we are able to obtain some area
reductions beyond combinational resynthesis. Furthermore, it is
not necessary to preserve the underlying state transition graph of
the design (as in the state re-encoding problem).

In Section 2, we provide the basic definitions and terminology
for this paper. Section 3 presents the previous work on sequential
equivalence and motivates why we need a stronger equivalence
condition. Sections 4 and 5 present “ safe replaceability” and how
we use this for multi-level sequential resynthesis. Finally, we
concludewith someinitial experimental experience.

2 Terminology and Background

We now make precise the notion of a finite state machine and our
model for sequential hardware. We also define classical notions of
equivalencefor statesin a machine, and for machines.

Definition 1 A deterministic Finite State Machine (DFSM) M is
aquintuple, (@, I, 0, X, §), where @ is the set of states, I is the
set of input values, O is the set of output values, A is the output
function, and ¢ is the next state function. The output function A
is a completely-specified function with domain (@ x I) and range
O. The next state function is a completely-specified function with
domain (@ x I) andrange Q.

A hardware design D consistsof a set of interconnected latches
and gates, as illustrated in Figure 1. For the purposes of this
paper, a design with » input wires, m output wires and ¢ latches

00 1994 ACM 0-89791-690-5/94/0011/0442 $3.50

i1 O

i O

Qo3

Figure 1: Gates + Latches= Sequential Network

is characterized by an associated DFSM with state space Qp =
{0,1}", input space I = {0, 1}", and output space O = {0, 1}";
thenext state and output functions are defined by the corresponding
logic. I'* refersto the set of all finite input sequences.

Wealso use A and é to denotethe output and next state functions
on sequences of inputs. So, if 7 = a1-a2-az---ap € I[P iSa
seguence of p inputs, these functions are recursively defined as
A(s,) = A(s, a1) - A(8(s, ar), ©') and 8(s, ®) = §(8(s,a1), 7'),
where 7/ = az - az- - - ap. Thus, the range-domain relationships
aeX: Q@ x 1P —=0Pandé:Q x 1P — Q.

Two designs are said to be compatible if they have the same
number of input and output wires. All notions of equivalence
and replaceability developed in this paper are meaningful only for
pairs of compatible designs. Henceforth, when talking about two
different designs compatibility is assumed.

Definition 2 Given a design Do, and states so € (p, and s1 €
Q@ p,, State s isequivalent to state s1 (so ~ s1) if for any sequence
of inputs = € I*, Apy(so,7) = Ap,(s1, 7). It can be easily
shown that if so ~ s1, then for any input sequence = € TI*,
8po(s0, ™) ~ 6p,(s1, 7).

The classical notion of equivalence between two DFSM’s [10,
page 23] isthe following:

Definition 3 Two DFSM’s M1 and M, areequivalent (M1 = M)
if for each state s in M, thereis a statet in M, such that s ~ ¢,
and for each state ¢ in M> thereis a state s in M3 suchthat s ~ ¢.

3 Previous Work

In this section we describe the few known notions of sequential
equivalence for circuits which do not have reset lines, and argue
why these might cause unsafe replacementsin some cases.

3.1 Sequential Hardware Equivalence (SHE)

Here we will briefly review the work presented in [5] regarding
equivalence between two gate-level hardware designs. When the
design powers up, the state it powers up in cannot be predicted,
and the desired input/output behavior is achieved from the design
by driving afixed initializing sequenceof input vectorsthroughthe
design after power-up.

Definition 4 Given a design Do, a sequence of inputs = € I*
is called a initializing sequenceif for any pair of states so, s1 €
Q Do, 8D(80,) ~ dpy(s1, 7). Adesign which hasaninitializing

seguenceis called initializable.

0/0 o/1
' ey
1)

D//

Figure 2: Designswhich do not have any initializing sequences

Definition 5 Giventwo designs Do and D1, astate pair (so, s1) €
Qp, X Qp, isaignableif thereis a sequenceof inputs = € I*
such that 6 po (7, s0) ~ 6p, (=, s1). The sequence r is called an
aligning sequence.

The following definition defines the notion of sequential hard-
ware eguivalence.

Definition 6 Designs Do and D1 areequivalent (Do ~ D) if all
state pairsarealignable.

Theorem 3.1 Do =~ D if and only if there is a single aligning
sequencethat aligns all state pairsin Q@p, x Qp, -

Now we argue why the notion of sHE does not work for safe
replacement of sequential designs.

From Theorem 3.1, two designs are considered equivalent if
there exists a universal aligning sequence. This sequenceis an
initializing sequence for either design. However, in the design
process, often the designers do not (or, can not [11]) know the
initializing sequencefor their designs. Even if they can determine
such a sequence = for a design, it may not be possible for the
environment to generate . So, for a safe replacement we need to
preserve al initializing sequences, and not just one. In that case
the one used being used by the environment will be preserved.

The notion of SHE does not place any constraints on the outputs
of the designs during the initialization phase. However, we claim
that this condition is too weak for a safe replacement. A priori, we
cannot assumethat the external environment is not sensitive to the
outputsduring theinitialization phase. Thisis especially important
becausethere may be another interacting design whoseinitializing
seguencemay be driven by an output of design Dy. Thusaffecting
the outputs of Do during initialization may destroy that initializing
sequence.

Finally, the notion of sHE doesnot work for designswhichare not
initializable (such adesign is not even equivalent to itself because
it doesnot have an aligning sequencewith itself). For example, the
design D’ in Figure® 2 is not equivalent to itself becausethe state
pair (10, 11) is not alignable. However, we can imagine at least
two classes of real designswhich are not initializable. First, if the
environment has some flexibility for the input/output behavior it
can accept from the design, the design may have multiple steady-
state behaviors (for example, design D’ in Figure 2). In this
example, the environment has a don’t care condition so that the
designis acceptableaslong asit alwaystogglestheinput (state 11)
or always outputsthe input (state 10), after the initialization phase.
For the second class, consider the design D"’ in Figure 2. It canbe
seenthat there isnoinitializing sequencefor thisdesign, and hence

IWe frequently represent designs by state transition graphs (STG's). A t-bit
binary-valued label on a state denotes that, in the design, the state is implemented
by that assignment of the ¢ latches. Notice that because a combinational function
can be implemented in many different ways, the design-to-STG transformationis a
many-to-onemapping.

77777777777777777777777 ? _D

DTTDL%
D@

RIS

Figure 3: An irredundant stuck-at-fault for a circuit is redundant for a sub-circuit

this design is not initializable. However, once the design powers
up, its state can be determined from its outputs, and based on the
outputs the design can be driven to state 0. Thus, the behavior of
this design can be controlled.

3.2 Redundancy Removal

Herewe briefly describethe sequential equivalencecondition used
by Cheng [6] for resynthesis of circuits by removing redundant
linesfrom thecircuits. Thebasicideaisto check if theinput/output
“behavior” of the circuit is acceptable even after an internal line
has been set to 0 or 1. If so, then the line can be replaced by a
constant, and the circuit simplified.

Definition 7 A fault is sequentially redundant if for any input se-
guence, any output line and any state of the faulty circuit D4, the
circuit D1 produces 1 (0) whenever theoriginal circuit Do produces
1 (0) fromall states of Dy. If Do producesan unknown output I/
on some input sequence (i.e. 1 from at least one power-up state
and O from at |least another) then D+ is allowed to produce either
0, 1 or U onthat input sequence.

If afault is sequentially redundant, the circuit may be replaced
by the faulty circuit, thereby simplifying the design. While the
condition in Definition 7 makes sense for resynthesis of a sin-
gle machine in isolation (because the new design is restricted to
produce the same output as the original design if the output is
deterministic), in hierarchical resynthesis, the condition can cause
unacceptable (unsafe) replacements.

Consider the gate-level design shown in Figure 3. This circuit
producesalif and only if the inputs over the last two clock cycles
areidentical (the output on thefirst cycleisarbitrary). Supposewe
selectawindow in the design (shown by thecircuit inside the dotted
rectangle) and resynthesize this sub-circuit. It is easily seen that
the stuck-at-1 fault is sequentially redundant for this sub-circuit.
However, for the faulty circuit, if the design of Figure 3 powers
up in state (o = 0,11 = 0, = 0) and input sequencel -1
is provided, it produces a 0 at the second clock cycle (the initial
design outputsa 1). This motivatesthe need for asafe replacement
condition— a condition so that the environment does not see any
new input/output behavior after the replacement. Noticethat if the
entire design in Figure 3 were considered, the shown fault would
no longer be redundant as per the condition in [6]. This pointsto
the desirable compositionality property that we would like to see
in a replacement condition— safe replacements for a sub-design
should still be safe replacements when the sub-designis composed
with another design.

The work in [9] is based on the replacement condition in [6]
assumingthat if the fault cannot be propagated to a primary output,
then thefault is redundant. For the examplewhich we just showed,
the fault cannot be propagated to any single output of the circuit
insidethewindow; sothe fault might be consideredredundantif the

window islooked at inisolation. However, if the given environment
is considered, the fault is not redundant since it can be propagated
to the primary output of the entire designin Figure 3. Noticethatin
the above example, the fault can be propagated to a set of primary
outputs but to no single primary output. We can also construct a
similar example where the fault cannot be propagated to any set
of primary outputs at a single time frame, but to a set of primary
outputs for a sequence of time frames. Thus, it is necessary to
guarantee that there can be no logic (combinational or sequential)
feeding from the outputs of a design which can detect the fault.

In this paper, we consider the more general problem of modify-
ing theinternal nodesof acircuit arbitrarily sothat the* behavior’ of
themodified circuit is acceptableaccording to our safereplacement
criterion— we want to guarantee the safe replaceability without
making any assumptionson the environment. Also, in Section 5.4,
we show that setting the internal node input lines to constants and
verifying the validity of the modified design is a special case; thus
the exact solution for our proposed method covers the redundancy
removal techniques.

3.3 Retiming and Resynthesis

Retiming and resynthesis [7] can be used to perform sequential
optimization by alternating steps of moving of latches across com-
binational logic (retiming) and performing combinational resyn-
thesis.

Retiming seems to be able to work if latches do not have reset
lines. However, consider once again the circuit in Figure 3. Sup-
pose latch o is retimed across the fanout to two latches 7} and I,
then the power-up state(ip = 0,15 = 1,11 = 0, > = 0) producesa
O oninput sequencel- 1, whereasno power-up state in the original
design exhibits this behavior. So the reason given in Section 3.2,
for searching for anew safe replacement condition, applieshere as
well.

3.4 Synchronous Relations

Damiani and De Micheli [8] proposed using synchronous recur-
renceequations (or synchronousrelations) to capturedon’t carein-
formation in sequential circuits. A synchronousrelation expresses
the flexibility for a sub-circuit in a sequential gate-level design as
a Boolean relation on finite sequences of inputs and outputs. Al-
though the synchronousrelation does not depend on a designated
start state, the start state has to be taken into account. For adesign
without reset lines, we can construct an example [12] where two
designs satisfy the same synchronousrel ation but a state of one de-
sign may exhibit some behavior exhibited by no state of the other
design.

4 Safe Replaceability

We want a condition for safe replacement which guarantees that
if we replace an old design with a new one, it is impossible for
any environment to detect that the replacement has been made.

Figure 4: Example of a safe replacement

Conversely, wewould like all replacementsthat cannot be detected
by any environment to satisfy our condition. We assume that no
latches have reset lines?. Sinceit cannot be predicted which state
thedesign powersupin, we can safely assumethat no matter which
state the original design powers up in, the subsequent input/output
behavior of the design is acceptableto the environment. Based on
this observation, we give the following condition (the safe replace-
ment condition):

Definition 8 Design D is a safe replacement for design Do (de-
noted by D1 < Do) if given any state s; € @p, and any finite
input sequencer € I*, thereexistssomestate so € @ p, suchthat
the output behavior Ap, (s1,) = Apy(so, 7).

We argue that the above condition provides maximum flexibility
while guaranteeing that the replacement cannot be detected by the
environment. First, if we make the above condition any weaker,
then there exists an input sequence = and a state in the new design
D1 sothat if the D41 powers up in this state and seesthe sequence
«, it will produce a behavior which could not have been seen from
any statein Do. Thisviolates our requirement that no environment
should be able to detect the replacement. Secondly, since we have
assumed that the power-up state of a design cannot be predicted,
if D1 < Dy, then for every input sequence any power-up state of
D1 behaveslike some power-up state of Do. Thisimplies that any
behavior from any state of D, is acceptable. Thus our condition
guarantees that replacing Do by D cannot be detected by any
environment.

Any design which has the same state transition graph as the
original design trivially satisfies the safe replacement condition.
As anon-trivial example consider designs Do and 21 in Figure 4,
where D1 < Do. States 00, 11 and 01 in D1 behave like states
000, 011 and 101, respectively, in Do for al input sequences.
The remaining state 10 in D behaveslike state 010 for all input
seguencesstarting with 0, and like state 101 for all input sequences
starting with 1. Notice that state 10 in D4 is not equivalent to any

2|f some latches have a reset line, they can be modeled by alatch without a reset
lineif we treat the reset line as another primary input; see [12] for details.

state in Do; conversely, ho statein D1 is equivalent to state 001 in
Dyo. Definition 8 guaranteesthat there is no input/output behavior
in 1 which is not present in Do. On the other hand, state 001
in Do outputs sequence 1 - 1- 0 on the input sequence1-1-1
whereas no state of 12, can exhibit this behavior. However, we
had claimed that no environment can detect if Dy is replaced by
D1. This apparent paradox can be explained by the observation
that sinceit is not true that every power-up state of Do exhibitsthis
behavior, the environment of)¢ could not possibly depend on this
behavior, and hence it cannot always expect the output sequence
for1-1-0fortheinputusel- 1- 1eachtime the design powersup.

It is easy to seethat the safe replacement condition doesnot suf-
fer from any problemswith the previous notionsthat we discussed
in Section 3. Most importantly, it satisfies the compositionality
property— if D1 < Do, then D1® C' < Do® C, where ® denotes
composition of two designs.

Definition 9 Givenadesign D, aset of states.S C @@p isaclosed
setif for anyinputa € I, anystates € S: é6p(s,a) € S.

Definition 10 A terminal strongly connected component (tSCC)
of adesign D isa closed set of states.S C @ p such that for every
pair of states so, s1 € S : thereexists an input sequencer € 7*
such that ép (So, 7T) = 81,

We have shown other properties of safe replacement in [13]:

e The relation < is transitive and reflexive, but not symmet-
ric. (The replaced design has fewer or same input/output
behaviors asthe original design).

e A replacement design can have fewer or more latches than
the original design (in Figure4, Do has 3 latcheswhereas D1
has 2).

¢ Unlike sequential hardware equivalence[5], safe replaceabil -
ity also appliesto adesignwhich doesnot haveany initializing
sequence.

o If D1 < Dy, every initializing sequencefor Dg isaninitial-
izing sequencefor D1 aswell.

e If D1 < Dy, then every tSCC in Dy must be equivalent (by
Definition 3) to atSCC in Dy.

5 Sequential Resynthesis

We want to exploit the flexibility provided by the safe replacement
condition in Definition 8 to optimize synchronous sequential cir-
cuits. Unfortunately, Definition 8 doesnot directly provideaclosed
form expression to express all the flexibility for safe replacement.

A sequential gate-level design can be viewed as a connection
between a purely combinational part and a set of latches (Figure 1).
The inputs to the combinational part are the real primary outputs
of the design ¢ plus the wires from the latches, or the present
state vector, denoted by #. The outputs of the combinational part
are the real primary outputs of the design & plus the wires to the
latches, or the next state vector, denoted by . Wewant to optimize
this combinational part while maintaining the safe replacement
condition. If we can express the flexibility in Definition 8 by a
Boolean relation in (7, &, @, i), we can use known techniques[14]
for minimizing multi-level networks given a Boolean relation, in
terms of the inputs and outputs of the network.

Unfortunately, the flexibility allowed by the safe replace-
ment condition cannot be represented by a Boolean relation
between the domain space (7, #) and the range space (3, 7).

@ -1 101

Figure 6: Design D3 (an unsafe replacement for Do)

Consider the design D» in Figure 5 which is a safe replace-
ment of the design Do of Figure 4. The two designs dif-
fer on their mappings of the following 6 points in (7, 7):
(0,111), (0, 100), (1, 100, 1), (0, 001), (1,001), (0,110). One
property of Boolean relations is that the flexibility for each point
in the domain space is independent of other points[15]. So, if the
flexibility for safe replacement could be expressed by a Boolean
relation, then every design corresponding to aflexibility choicefor
each of these 6 domain points would be avalid replacement (there
are 2° such designs). In particular, design Ds in Figure 6, which
behaveslike D, on point (0, 110) and like Do on the other points,
would be a safe replacement. However, this is not so because if
design D3 powers up in state 111 and is given the input sequence
0- 0- 0it producesthe output sequencel - 1 - 1, whereasthere is
no state in Do which exhibitsthis behavior. Thustheflexibility for
safe replaceable designs with the same number of latches cannot
be expressed as a Boolean relation in (7, ¥) x (3,7). One way
to represent such flexibility would be through Multiple Boolean
Relations [15], which are arbitrary sets of Boolean relations.

5.1 Sufficient Condition for a Safe Replacement

Aswe arguedin thelast section, the completeflexibility for safe re-
placement can be expressed by a multiple Boolean relation. How-
ever, because of the intractably large solution space of multiple
Boolean relations, there are no known general techniques to use
multiple Boolean relations for logic synthesis. We now provide a
sufficient (but not necessary) condition for safe replacement, from
which we will obtain a Boolean relation in (7, £, 3,) to express
partial flexibility for safe replacement.

Proposition 5.1 Givendesigns Doand D; suchthat for every state
s1 € Qp, andinput ¢ € I, there exists a state so € Qp, such
that)\Dl(sl, a) =)\DO(SO, a) and 5D1(51, a) ~ 5D0(SO, a). Then
D1 < Do.

00/0
1-/0

00/0
1-/1

Figure 7: Example of a safe replacement

Proof: Choose any state s1 € @ p,, and any input sequence n =
ap-a1---ap € I*. Now, there exists astate so € Q p, such that
)\Dl(sl, ao) =)\DO(SO, ao) and 5D1(51, ao) ~ 5D0(SO, ao). Thus
)\Dl(sl, 7T) =)\DO(So,Tr), and henceD1 j Do. | |

The above result is not a necessary condition for safe replace-
ment. For example, consider the designs 24 and Ds in Figure 7. It
canbeseenthat Ds < D4. However, in design Ds state 01 goesto
state 01 on input 00, and no state in design D is state equivalent
to state 01 on design Ds (as discussed in Section 4, there may be
states in the replacement design which are not equivalent to any
statein the original design). On the other hand, designs o and D1
of Figure4 which satisfy the sufficient condition of Proposition5.1,
and thus 1 < Do.

5.2 Flexibility for Resynthesis

We will use the sufficient condition in Proposition 5.1 to derive a
method to extract and use flexibility for sequential resynthesis.

First, note that anecessary condition for safe replacement isthat
every tSCC in the new desigh must be equivalent to atSCC in the
old design. A tSCC can be thought of as defining a steady state
behavior of the design. So at the state-transition level we cannot
alter the behavior of the statesin sometSCC of the original design.
For our synthesis method we will choose a set of states which is
closed under al inputs, called the core:

Definition 11 Givenadesign D, a set of statesS C @ p iscalled
acoreof thedesignif it isa closed set under all inputs, i.e. for any
input ¢ and any states € S: 6p(s,a) € 5.

We will preserve the behavior of the core during resynthesis,
and in order to make resynthesis tractable, we will preserve the
encodings of the states in the core. Note that since the core is
closed under al inputsit contains atSCC of the original designand
thus satisfies the necessary condition discussed above.

Proposition 5.1 indicates that each state reachable from some
statein D1 isequivalent to somestatein Dg. The set of these states
will serve asthe core of the old design, which we will reproducein
the new design. We require that each of the remaining statesin the
new design satisfy the following Boolean relation 73(7, d,7). In
the following, core(Z) = 1if and only if state 7 liesin the chosen
core.

P(1,6,§) = FZo[(Apo(Fo,7) = &) A (6po(Fo,7) = F)] A

core(§) @

Intuitively, atriple (7, g, %) satisfiesthe relation P iff thereisa
state #g in the given design which transitions to state ¢ and outputs
4 on input 7, and 7 lies inside the core. It is easy to see that if
the core of the old design is preserved and the relation P holds for

the remaining states of the new design, the sufficiency condition of
Proposition 5.1 is satisfied.

We can now form a Boolean relation R(f, &, 3, %) which ex-
pressesthe flexibility for the entire network including statesinside
the core:

~(core(#)) A P(1, 3, 7)] @)

Intuitively, the relation R ensuresthat the states inside the core
have the same behavior (next state and output) as the origina
design, while the states outside the core are free to choose any
behavior which satisfies the relation P.

We recall from Section 5 that thetotal flexibility for the network
cannot be expressed by a Boolean relation; we are able to get a
relation here because our condition in Proposition 5.1 is only a
sufficient condition.

5.3 Choiceof Core

For a given design there may be many choices for the core which
satisfy Definition 11. Some natural choicesare:

e Theset of all states @ p,.

e Any onion ring [16] of the design. Onion rings A1, Ay, . ..
are defined recursively:

A = QDoa
Apyr = {ylFiel, v € Ay D 8py(z,0) =y} (3)
For design D4 in Figure 7, A, = {00,01, 10,11}, A> =
Az =--- = Ae = {01,10,11}. A isasocalledtheouter
envelopeof adesign. The outer envelopeis computable by a
fixed-point computation starting from @ p,,.

e Any tSCC of the design. Design D4 has only one tSCC:
{10,11}.

Any of the above choicessatisfies Definition 11 and can be used
in equation 2. The ideal choice is a small core to give us a large
number of states outside the core because we have flexibility only
in modifying the behavior of states outside the core. The smallest
tSCC is the smallest set which qualifies as a core.

However, we are restricted by the requirement that the starting
design must itself satisfy the Booleanrelation R. The only known
method for minimizing multi-level networks under flexibility ex-
pressed by a Boolean relation [14] requires this restriction, as we
shall seelater in Section 5.4.

For example, if we choose the tSCC of design Dy in Figure 4
(states000, 011 and 101) asthe core, the design D doesnot satisfy
relation R in expression 2 because the state 111 (a non-core state)
does not jump to a state inside the core on input 1 and hence does
not satisfy P. Choicesof core that guaranteethat the given design
satisfies R are @ p, (the set of all states) and the second onion
ring A (the set of states reachable in one step from @ p,). The
former does not give any flexibility because all states are in the
new design; so we makethe latter choice. While it might seemthat
we lose much flexibility by having to choose a much larger core
than the smallest possible, our experiments in Section 6 indicate
that choosing A» gives us most of the flexibility for most of the
examples.

54 Multi-level Synthesis

Previous sectionsreferred to amulti-level combinational logic net-
work that computes the next states and outputs of a sequential
design. More precisely, the Boolean network .\ associated with
a sequential circuit is a directed acyclic graph such that for each
nodein\/, thereisaBoolean variable «; and an associated Boolean
function f; suchthat «; = f;. The support of f; is the set of vari-
ables corresponding to the immediate fan-ins of the node. The
primary input variables {1, 12, . . ., tn, £1, T2, . . ., ©+ } COrrespond
to theinputsand present states of the sequential circuit; the primary
output variables {01, 02, . .., 0m, ¥1, ¥2, . . ., y¢ } cOrrespondto the
outputs and next states. Intermediate nodes are thosewhich do not
correspond to inputs or outputs. The network computes a function
from the input space B™** to the output space B™** derived by
composing the functions at the intermediate nodes.

Since hardware designstypically arise by composing small mod-
ules, it is very natural for circuits to have a multi-level structure.
Thenodesof the corresponding Boolean network represent thelog-
ical functionality of the modules. It hasbeen observed that the area
of the hardwareimplementation of adesignisstrongly correlatedto
the total number of literals in the factored form[17] representation
of the functions at the logic nodes. Thus minimizing the function
(with respect to the literal count) at the node constitutes a powerful
synthesistechnique.

At any intermediate node of a network thereis alocal function
fi © B" — B, where r is the cardinality of the support. Node
simplification is the process of optimizing a Boolean network by
using don’t cares in conjunction with a two level minimizer [18]
to optimize the functions at the nodes. These don’t cares arisein
several ways:

e Becauseof the structure of the network, only a certain subset
of B™ may be generated by assignmentsto the inputs. This
givesriseto satisfiability don’t care (SDC) pointsfor f; [17].

e For certaininput assignments, the valuestaken by the primary
outputs of A/ may be independent of the function computed
by a node; these are observability don’t care points (ODC)
for that node [19].

e For certaininput assignmentsthe functionality of thenode can
be changed without destroying safe replaceability; this flexi-
bility leadsto the replaceability don’t cares points (RDC).

TheODC at anode can be computed by considering the output
a,, of the node to be another input; thus the primary outputs of A
are expressed in terms of the primary inputsand «,,. The ODC is
the set of pointsin B” where no primary output of A dependson
Oy
Let R(?, &, 3,) be a Boolean relation expressing all the flexi-
bility in the choice of combinational logic for a sequential circuit.
Cerny and Marin [20] demonstrate a close relationship between
optimizing a Boolean network with respect to a given Boolean re-
lation, and computing observability don’'t care sets. The starting
network A must satisfy therelation R.. Therelation can be viewed
as a single node with inputs 7, T, 0,7, this node is referred to as
the observability node. Composing this node with the network as
shown in Figure 8 yields an observability network A/ It is shown
in [20, 14] that all the don’t cares that can be used to optimize the
nodesin V' are derivable from the ODC of the nodein the network
N,

Inour scenario, therelation R(f, £, 3,) isgivenby equation 2in
Section 5.2, with core(Z) being the set A as definedin equation 3
in Section 5.3. Asdiscussed in section 5.3, for this choice of core,
the combinational logic network associated with theinitial designis

Observability Network A\’

Observability Node

Outputs+
Next States

N

Impl ementation A"

i 12, T1 Oy
Inputs + Present States

Figure 8: ODC's from the Observability Network yield flexibility
under Observability Relation for nodes in Implementation Net-
work.

an implementation for R(?, £,d, 7). Using R asthe observability
node guaranteesthat, for any other internal node, the ODC derived
from the observability network contains the RDC for the original
network.

We use Binary Decision Diagrams (BDD’s) to represent the
design, flexibility relation, and core. Thereisavariable associated
with each primary input and each primary output; for each latch
there is a present state and next state variable. Let « be a node
in the design for which the ODC is to computed. We add a new
BDD variable «,, corresponding to the output of «, and generate
BDD'’s for the next state and output functions in terms of the
primary inputs, latch outputs, and «,,. These are composed with
theflexibility relation to obtain the BDD for the function computed
by the observability network. Let f (7, £,) be the output of
the observability network; then the ODC for node « is given by
F@ 2 0w =010, % au = 0)+f(1, & o = 1) f(1, T, an = 0).
Thisisin terms of primary inputs; we then project this set into the
space comprised of the fan-ins of the node (asin [19]). Theseare
used in conjunction with a subset of the satisfiability don’t care set
to optimize the function at «.

We are computing all inputs under which the outputs are inde-
pendent of the function computed at the node. Thuswe will detect
cases where an internal line (which is an input to a node) can be
set to a constant while maintaining compatibility with relation R.
This means that we automatically remove redundant faults (which
satisfy R) from the circuit. Note that we are able to detect these
redundanciesbecausewe are computing theflexibility of each node
just before minimizing it; if we had obtained compatible flexibility
(asin [14]) for all nodes before minimizing them simultaneously
we would not be able to claim this. The price we pay isin time:
we need to simplify nodes on an individual basis, and if the node

is simplified, potentially all the BDDs for functions that the node
fans out to must be recomputed.

6 Experiments

We have implemented the above method for sequential resynthesis
presented in this paper in the SIS sequential synthesis system [21].
Weused BDD'sto represent all setsand functionsand to performall
the set manipulationsimplicitly. We have performed experiments
on the ISCAS89 benchmark suite (from s344 to s1494). Since
some ISCAS benchmarks are very minor variations of each other
and give almost identical results, we chosethe largest example (for
example, s1288 representss1288 and s1196; s444 represents
s444,s400 and s382, etc.) for each class.

We report our experiments in Table 1. First observe that, for
many examples, the size of the core (the second onion ring A5) is
closeto the size of the tSCC (each of the examples has exactly one
tSCC) when compared to the total number of states (2°, where I,
is the number of latches).

Since we are minimizing the network one node at a time, very
small nodes are unlikely to yield much optimizations. The node
sizes of the benchmark circuits were very small; we executed the
SIS commands sweep; el imnate 10 to partialy collapse
the network. For some benchmarks, a totally collapsed network
had a smaller literal count than a partially collapsed one; for these
circuits, we started with the totally collapsed network (using com-
mand sweep; col | apse).

The table reports the reduction in the total number of literals
of the network. We have partitioned the literal reduction into
reductions due to satisfiability don’'t cares (SDC), observability
don’t cares (ODC) and replaceability don’t cares (RDC) separately.
We minimized each internal nodesthree times: using SDC, using
(SDC +0ODC), using (SDC + ODC + RDC). Theliteral reductions
under the ODC column are reductions in addition to those under
the SDC column; those under the RDC column are reductionsin to
those under the SDC + ODC columns. Note that theliteral savings
under the RDC column, for example, does not indicate the savings
dueto the safe replaceability don’t cares; itisactually the difference
in the savings using (SDC + ODC + RDC) and (SDC + ODC). We
have observed that alot of theliteral saving is commonto all three
methods: SDC, ODC and RDC. So a 0 in the RDC column might
indicate that most of the flexibility dueto RDC is already captured
by SDC and ODC. However, the CPU times reported in the table
under the three columns represent the total time taken for each
method separately.

Itisinteresting to compare the RDC statistics to the ODC statis-
tics because while ODC provides observability don't cares for an
internal node in terms of the primary inputs, RDC provides safe
replaceability don’t caresin addition to the observability don’t care
points. Then we project these don’t cares to the immediate fan-ins
of the node using the same techniques used for projecting ODC
points [19]. We observe that for some examples, ODC gives no
literal reductions beyond SDC alone but RDC is able to obtain
additional, though modest, reductions. These reductions are of
the order of 5% on these circuits. On other circuits RDC gives
no additional improvements over SDC and ODC. For these ex-
amples, most replaceability don’'t care points may be overlapping
with satisfiability and observability don’t care points. Except for
2 examples, the CPU time taken by RDC flexibility is of the same
order as the time taken to utilize the SDC and ODC flexibility.

ISCAS89 benchmarks may not constitute a good source of ex-
amples to judge the potential of our approach. Thisis becausefor
many of the circuits, collapsing the logic to two levels before ap-
plying our minimization yields a smaller circuit, thus negating the
wholebasisof doing multi-level logic minimizations. Furthermore,

Circut | I | O | L #states #literals Savings (in #literals) Time (in seconds)
tSCC | core | 2" || stat] end | SDC] ODC | RDC | SDC| ODC| RDC
s349 9 |11 |15 || 1487 | 23232 32768 || 173 | 157 9 7 0] 057 140 | 123.89
s386 717 |6 13 13 64 || 205 | 138 53 0 14 | 0.83 1.03 1.83
444 3| 6 |21 8864 | 23740 2097152 || 236 | 171 50 15 0| 0.76 1.56 471
s510 | 19 | 7 | 6 47 61 64 || 307 | 255 52 0 0| 197 235 3.17
s526 3 | 6 |21 | 8868 | 401460 2097152 || 323 | 233 79 0 11| 6.32 6.61 10.80
s713 | 35 | 23 | 19 || 1544 6663 524288 || 285 timeout after 10000 sec
832 | 18 |19 | 5 25 25 32 || 470 | 351 | 110 0 9] 304 418 12.60
s953 | 16 | 23 | 29 504 504 | 536870912 || 700 | 597 78 20 5| 38| 1714 37.56
s1238 | 14 | 14 | 18 || 2615 2652 262144 || 882 | 636 98 148 0 | 14.74 | 176.26 | 1075.49
s1494 | 8 |19 | 6 48 48 64 || 896 | 542 | 353 0 1] 2681 | 3497 58.17

Table 1: Experimental results. 7, O and L denote the number of inputs, outputs and latches, respectively. The savingsreported used ODC
are in addition to those under SDC; those reported under RDC are in addition to those reported under (SDC+ODC). The sum of these three
columnsis the difference between the starting and ending literal count.

the average node sizeistoo small to hopefor any significant reduc-
tion over that given by the SDC. Hence the merit of our approach
may be better judged on the basis of real multi-level designs.

Memory explosion is a common problem with BDD's. in the
problem size. For our experiments we noted that the ability to
finish the examples (and the time taken) was most influenced by
the number of input wires to the design. The number of latches
and the number of output wires are also afactor, though to alesser
degree. Since large designs routinely arise as set of interacting
components, it is natural to decompose the design into smaller
components and synthesize them independently. Intuitively, the
components being smaller, will be less complex, and hence easier
to synthesize. We expect that our methods will be most useful in
resynthesizing an arbitrary portion of a design without worrying
about any interaction with its environment.

7 Conclusionsand Future Work

We have provided a notion of safe replaceability (<) that isinde-
pendent of initial statesof adesignand theintended environment of
adesign. We have used this notion to provide amethod for sequen-
tial resynthesistowards an areareduction of gate-level designs; our
notion does not require us to preserve the state transition behavior
of the design. We have implemented our algorithm using BDD'’s.
and we expect to be able to test our algorithm on industrial-level
designs.

The synthesis method presented in this paper is just one way of
exploiting theflexibility allowed by the safe replacement condition.
We are looking at other methods for sequential synthesis for this
notion of segquential equivalence.

We would also like to be able to handle arbitrarily large netlists
for our resynthesis methods. For this we are working on parti-
tioning algorithms which decompose a network into modules so
that the number of wires running across the modulesis minimized.
Fewer interconnection wires gives ustwo advantages: we can han-
dle larger number of latches before we run into a BDD explosion
problem, and we can expect fewer states in the core (and hence
more flexibility) if we have fewer controlling input lines running
to the modules. Furthermore, reducing the number of output lines
restricts the observable output sequenceswhich leadsto larger ob-
servabledon’t cares.

References
[1] B.Lin,H.J Touati,andA. R. Newton, “Don’t Care Minimization of Multi-level
Sequential Logic Networks,” in Proc. Intl. Conf. on Computer-Aided Design,
pp. 414417, Nov. 1990.
[2] C.Berthet, O. Coudert, and J. C. Madre, “New Ideason Symbolic Manipulation
of Finite State Machines,” in Proc. Intl. Conf. on Computer Design, Oct. 1990.

[3l

(9

[10]

(11
(12

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21

H. Cho, G. D. Hachtel, and F. Somenzi, “ Redundancy Identification and Re-
moval Based on Implicit State Enumeration,” in Proc. Intl. Conf. on Computer
Design, pp. 77-80, Oct. 1991.

G. Berry and H. J. Touati, “Optimized Controller Synthesis Using Esterel,” in
Workshop Notes of Intl. Workshop on Logic Synthesis, (Tahoe City, CA), May
1993.

C. Pixley, “ A Theory and I mplementationof Sequential HardwareEquivalence,”
|EEE Trans. Computer-Aided Design, vol. 11, pp. 1469-1494, Dec. 1992.
K.-T. Cheng, “Redundancy Removal for Sequentia Circuits Without Reset
States,” |EEE Trans. Computer-Aided Design, vol. 12, pp. 13-24, Jan. 1993.

S. Malik, E. M. Sentovich, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“Retiming and Resynthesis: Optimization of Sequential Networkswith Combi-
national Techniques,” |EEE Trans. Computer-Aided Design, vol. 10, pp. 74-84,
Jan. 1991.

M. Damiani and G. De Micheli, “Synthesis and Optimization of Synchronous
Logic Circuitsfrom Recurrence Equations,” in Proc. European Conf. on Design
Automation, pp. 226-231, Mar. 1992.

L. Entrenaand K.-T. Cheng, “Sequentia Logic Optimization by Redundancy
Addition and Removal,” in Proc. Intl. Conf. on Computer-Aided Design,
pp. 310-315, Nov. 1993.

J. Hartmanis and R. E. Stearns, Algebraic Structure Theory of Sequential Ma-
chines. Intl. Seriesin Applied Mathematics, Englewood Cliffs, N.J.: Prentice-
Hall, 1966.

R. Rudell, Synopsys, Inc.. Personal communication, Mar. 1994.

C. Pixley, V. Singhal, A. Aziz, and R. K. Brayton, “Multi-level Synthesis for
Safe Replaceability,” Tech. Rep. UCB/ERL M94/31, Electronics Research L ab,
Univ. of California, Berkeley, CA 94720, Apr. 1994.

V. Singhal and C. Pixley, “The Verification Problem for Safe Replaceability,” in
Proc. of the Conf. on Computer-Aided Verification (D. L. Dill, ed.), vol. 818 of
Lecture Notes in Computer Science, pp. 311-323, Springer-Verlag, June 1994.
H. Savoj and R. K. Brayton, “Observability Relations and Observability Don’t
Cares,” inProc. Intl. Conf.on Computer-Aided Design, pp. 518-521,Nov. 1991.
E. M. Sentovich, V. Singhal, and R. K. Brayton, “Multiple Boolean Relations,”
in Workshop Notes of the Intl. Workshop on Logic Synthesis, (Tahoe City, CA),
May 1993.

S.-W. Jeong, Binary Decision Diagramsand their Applicationsto Implicit Enu-
meration Techniquesin Logic Synthesis. PhD thesis, Department of Electrical
and Computer Engineering, University of Colorado, Boulder, CO 80309, 1992.
R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli, “Multilevel
Logic Synthesis,” Proceedingsof the |EEE, vol. 78, pp. 264—-300, Feb. 1990.
R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLS Synthesis Kluwer Aca-
demic Publishers, 1984.

H. Savoj, R. K. Brayton, and H. Touati, “ExtractingLocal Don’'t Caresfor Net-
work Optimization,” in Proc. Intl. Conf. on Computer-Aided Design, pp. 514—
517, Nov. 1991.

E. Cerny and M. A. Marin, “An Approach to Unified Methodology of Combi-
national Switching Circuits,” |EEE Trans. Computers, vol. 27, no. 8, 1977.

E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli,“ Sequential Circuit Design Using Synthesisand Opti-
mization,” in Proc. Intl. Conf. on Computer Design, pp. 328-333, Oct. 1992.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

