
A Testability Measure for Hierarchical Design Environments

Mike H.C. Lee and D.L. Tao

Department of Electrical Engineering
SUNY at Stony Brook, Stony Brook, NY 11794

Abstract

In this paper a new approach is proposed to compute
testability of a combinational circuit in a hierarchical
design environment. The testability of a circuit is �rst
computed at the functional level using the Walsh ex-
pression of the functional block, and its complexity is
linear with respect to the number of functional blocks.
The functional level testability measure is then used to
compute the testability at the gate/switch level. Our
extensive simulation results show that the testability
measure of the proposed method re
ects closely to the
actual testability measure (both at the functional level
and the gate level) when the granularity of a functional
block is much higher than that of primitive gates.

1 Introduction

In a hierarchical design environment, VLSI circuits
are �rst designed and simulated at the functional level,
and then a gate/switch level implementation will be
generated by a silicon compiler or automatic synthe-
sizing tools. Meanwhile, testing of a VLSI circuit must
be done at the gate level in order to ensure the con�-
dence of testing. It is known that design for test at the
functional level can signi�cantly reduce the complex-
ity of testing at the gate level. Hence, it is necessary
to develop testing tools at the functional level which
can be used to alleviate the testing problems at the
gate level. Testability measures have been playing a
critical role in all automatic testing environments. A
number of gate level testability measures have been
proposed, but they cannot be used at the functional
level [1, 3, 4, 8, 12]. On the other hand, a few func-
tional testability functions are developed, but they
do not address the testing problem at the gate level
[2, 11]. The objective of our research is to bridge this
gap by developing a testability measure for hierarchi-
cal design environments, i.e., it can be used both at
the functional level and the gate/switch level.

In this paper a new hierarchical testability measure
is introduced for combinational circuits in hierarchi-
cal design environments. The testability measure is
constructed based on the Walsh expression of a logic
function and COP [1]. A Walsh expression is suitable
for functional level testing because the Walsh expres-
sion itself is a functional representation and Walsh co-
e�cients re
ect inherent features of the logic function.
The strategy used in COP is utilized to make compu-
tational time and memory requirement practically fea-

sible. Moreover, the testability measure at the func-
tional level will be used to compute testability at the
gate/switch level. Furthermore, our extensive simula-
tion results demonstrate the proposed method is able
to provide accurate testability measures for combina-
tional circuits, and so it can be used to guide design for
testability at both the functional and the gate levels.

2 Walsh Series

The most common way to represent a logic func-
tion is to use a Boolean equation. A logic function
can also be expressed by other representations, such
as a Rademacher-Walsh expression (or simply Walsh
expression) as follows.

F (x) =
X
8i�I

Ci'i(x); (1)

where x = (x1; x2; � � � ; xn); 'i(x) =
Q
8l2i(2xl � 1),

and I = f1; 2; � � � ; ng. This set of polynomials is or-
thonormal with respect to each other under the inner
product:

1

2n

X
x2X

'i(x)'j(x) =

�
0 i 6= j
1 i = j ;

where X is the set containing all possible x. As a
result, Walsh coe�cients can be computed as follows:

Ci =
1

2n

X
x2X

F (x)'i(x): (2)

We now use an example to illustrate a function be-
ing represented by a Walsh expression.

Example 1: Let us consider the circuit
shown in Figure 1. The Walsh coe�cients for
f(x1; x2; x3; x4; x5) are shown in Table 1. Hence, the
output of the circuit can be represented by:

F (x1; x2; x3; x4; x5) =
X

8i�f1;2;3;4;5g

Ci'i(x): (3)

For example,'0(x) = 1, '2(x) = (2x2�1), '1;3;5(x) =
(2x1 � 1)(2x3 � 1)(2x5 � 1). When x1x2x3x4x5 =
11110, by using Equation 3 and Table 1, we �nd
F (1; 1; 1; 1;0) = 0, whereas when x1x2x3x4x5 =
01010, we �nd F (0; 1; 0; 1; 0) = 1. 2

AWalsh expression has been used in testing [9, 10],
where Walsh coe�cients are used as signatures in

1



x1

x2
x3

x4

x5

Figure 1: A Simple Combinational Circuit

built-in self test circuit design. In this paper, we will
show that a Walsh expression is a perfect represen-
tation for computing functional-level testability. The
signal probability of a logic function and the observ-
ability of an input line can be computed by using the
following theorems.

Theorem 1: When all input variables of a logic func-
tion are statistical independent of each other, the sig-
nal probability of F (x), S(F (x)), can be computed as
follows

S(F (x)) =
X
8i�I

Ci

Y
8l2i

(2S(xl) � 1); (4)

S(xl) : the signal probability at xl:

Theorem 2: When all input variables of a logic func-
tion are statistical independent of each other, the ob-
servability of an input line can be computed using the
following expression.

S(Ok) =
X

8i�I�k

Ĉi

Y
8l2i

(2S(xl)� 1): (5)

where Ĉi =
X

8l�I�j

4�Cl �Ci�l, and i� l represents

the symmetric di�erence of two sets i and l.
The proof can be found in [7]. A drawback of us-

ing the Walsh expression is that the number of terms
grows exponentially with the number of input vari-
ables. When a circuit is represented at the functional
level, it is reasonable to assume that each functional
block has less than or equal to 10 primary inputs,
such as adders, encoders/decoders, multiplexers, etc,
and so the testability function constructed based on a
Walsh expression will not introduce a signi�cant com-
putational overhead. This is also justi�ed by the fact
that majority of cell libraries at the RT level have 10
or fewer input variables. For a logic function with
more than 10 input variables, the testability of this
function can be computed by partitioning the input
space, such as multipliers, data path, multiplexers.

3 Determining Testability Hierarchi-
cally

Given a circuit which is represented by an intercon-
nection of functional blocks, the signal probabilities

at input/output nets of functional blocks can be com-
puted recursively from the primary inputs. In such a
process, we assume that signals on inputs of a func-
tional block are statistically independent of each other
1. In addition, for a fanout net its observability OBfn

is computed as

OBfn = 1�
Y

for all fanout branches

(1� OBfb); (6)

where OBfb is the observability on a fanout branch.
We now present a procedure to compute the detection
probabilities of a circuit represented at the functional
level. Similar to the de�nitions of levelizing a circuit
at the gate level, we de�ne input/output distance for
each functional block as follows. When a circuit is
represented at the functional level, all primary input
lines have the input distance (ID(xi)) as 0. The input
distance of a functional block i is n+1 if ID(j) < n+1
for all immediate predecessors j of i and ID(k) = n
for some immediate predecessor k of i. Similarly, the
output distance of a primary output is 0. The output
distance of a functional block i is n+1 ifOD(j) < n+1
for all immediate successor j of i and OD(k) = n for
some immediate successor k of i.

Procedure I: Functional-Level Detection
Probability

1. Assign signal probabilities to all primary inputs
and i = 1.

2. For each and every functional block with ID(i),
compute signal probabilities at its output(s) using
Equation 4. Note that the signal probability of
an input line is equal to the one at the output line
of the predecessor.

3. If there exists a primary output whose signal
probability is unknown, then i = i + 1 and go
to Step 2.

4. Assign the observabilities to primary output lines
and i = 1.

5. For each and every functional block with OD(i),
compute observability for each output line j,
OBj , using Equation 6. For each input line of
a functional block, k, compute the relative ob-
servability with respect to each output line of the
functional block, ROBk;j (Equation 5). The ob-
servability of an input line, k, is equal to

OBk = 1�
Y

8 output

lines; j; of a block

(1� ROBk;j � OBj):

Moreover, the detection probability of a net is
equal to the product of its signal probability and
its observability.

1The validity of this assumption will be discussed in Section
4.

2



6. If there exists a primary input line whose observ-
ability is unknown, then i = i+ 1 and go to Step
5. 2

Example 2: Let us consider the circuit in Fig-
ure 2, and the signal probabilities at the primary
inputs are 1

2
, and the observability at the output is

1. The signal probabilities and observabilities of the
input/output lines of functional blocks are computed
by using Walsh expressions in Equations 4 and 5.
We obtain S(l3) =

3
8
, S(l4) =

33
64
, OB(l3) =

3
8
, and

OB(l4) = 1. The observability at the input x2 with
respect to net l3 = 3

4
, and so the observability at the

input x2 with respect to the primary output l4 =
9
32
.

Similarly, the observability at the input x4 with re-
spect to the primary output l4 =

11
32
. 2

The signal probabilities and the observabilities at
the input/output nets of functional blocks provide us a
testability measure of a circuit at the functional level.
This can be carried out at the gate level or at the
switch level. In other words, the testability can be
computed hierarchically as follows. The detection
probability of a fault inside of a block can be computed
by using the signal probability at the input lines of the
block and the observability at the output line(s) of the
block. This is done by the following procedure.

Procedure II: Gate/Switch Level Detec-
tion Probability

1. Set the detection probabilities of all faults into 0.

2. Partition the functional blocks of the circuit into
m groups, and two functional blocks are in the
same group i� they have the same gate-level
(switch-level) implementation. Set i to 1.

3. In group i let l be the number of input variables
of the functional block and n be the number of
elements. Set j to 0.

4. Let vj be an input vector where j is the decimal
representation of vj . Find all faults which are
detectable by vj in a functional block of group i
at each of its outputs. Let k = 1.

5. For the k-th functional block at the i-th group,
compute the probability of the input vector,
Prk(vj), using signal probabilities of input lines
of the k-th block, the detection probability of a
fault f in the k-th block will be computed by

DPf = DPf+Prk(vj)�

�
1�

Y
8qj vj detectsf

at the output line q

(1�OBq)

�
:

6. k = k + 1. If k � n, then go to Step 5.

7. j = j + 1. If j < 2l, then go to Step 4.

8. i = i+ 1. If i � m, then go to Step 3. 2

B1x1

x2

x3

x4
x5

x6

l1

l2

l3

l4

B2

�

�

�

�

Figure 2: A Circuit Represented in Hierarchical Fash-
ion

Example 3: Let us continue from the previous ex-
ample. We have S(l3) =

3
8
, S(l4) =

33
64
, OB(l3) =

3
8
,

and OB(l4) = 1. The detection probability of f1
(stuck-at 0 at l1) with respect to the inputs and out-
put of block B1 is 1

8
, and the observability of l3 is 3

8
.

Hence, the detection probability of this fault will be
3
64
. Similarly, the signal probability of l3 is 3

8
. The

test patterns for detecting f2 in block B2 include:
l3x4x5x6 = 0001; 1000, and 1001. The probabilities
of receiving these patterns at the inputs of B2 are re-
spectively equal to 5

8
� 1

8
, 3
8
� 1

8
and 3

8
� 1

8
. Using

Equation 4 and 5, we found that the detection prob-
ability of f2 (stuck-at 1 at l2) is

11
64
. 2

4 Experimental Results

We have implemented Procedure I and Procedure
II in C language and run it on Sun-Unix systems. We
�rst consider a set of FPGA benchmark circuits by
Kuznar et al [6]. In [6], 10 ISCAS benchmark circuits
are respectively mapped into Xilinx-2000 FPGAs. An
Xilinx-2000 series FPGA contains 64 � 100 Con�g-
urable Logic Blocks (CLB), and each CLB can im-
plement a 4-input logic function. In [6] 10 ISCAS
benchmark circuits represented as an interconnection
of CLBs will be utilized as functional descriptions of
ISCAS85 benchmark circuits. For the sake of simplic-
ity, we call them ISCAS functional level benchmark
circuits. Table 2 shows the results of mapping ISCAS
benchmark circuits into Xilinx FPGAs. It includes
the number of gates and the number of fan-out stems
(FOS) in the underlying gate level implementation.
This table also includes the number of CLBs and the
number of fan-out stems at the functional block level.

We consider all single stuck-at faults at the in-
put/output lines of each functional block, and com-
pute their detection probabilities. The Procedure I
is used to compute the detection probability of each
fault in 10 ISCAS functional-level benchmark circuits,
denoted by DPc(f). In order to verify the accuracy of
our results, a large number of random test vectors (32k

3



� 1 M) are applied to those ISCAS functional-level
benchmark circuits. By using a functional-level fault
simulator recently developed at the SUNY at Stony
Brook, the actual detection probability of each fault
is computed and it is denoted by DPa(f). For each
fault f , we compare DPa(f) with DPc(f), and then
compute the root mean square (RMS) between the
computed detection probability and actual detection
probability as follows.

RMS =

vuutX
8f

�
DPc(f)�DPa(f)

�2

= M;

where M is the total number of faults in a circuit. We
now consider the detection probability at the gate level
for all single stuck-at faults. The detection probability
of each stuck-at fault is computed using Procedure I
and Procedure II. Again, a large number of test vectors
are applied, and a gate level fault simulator is used to
compute an actual detection probability. Moreover,
the RMS between the computed detection probability
and actual detection probability is shown in Table 3.
In Table 3, we also list corresponding results computed
using COP.

Similar to COP, we have assumed that signals at
input lines of a functional block are statistically in-
dependent of each other. At the gate level, this as-
sumption introduces large computational errors be-
cause of reconvergent fan-out circuits. From Table 3,
we can see that if the number of fanout stems at the
functional level is very close to that at the gate level
(except c1355), then the performance of the proposed
scheme is comparable to COP. We design four sets of
additional experiments. Seven functional circuits are
constructed and considered. The RMS values of de-
tection probability at the functional level and at the
gate level are shown in Table 4. From these experi-
ments it can be seen that when the granularity of a
functional block is much higher than primitive gates,
the proposed method generates a much more accurate
testability measure than COP.

Another important question is how close our func-
tional testability measure it is to the actual testability.
This is equivalent to the problem of testing the close-
ness of two sets of data. The correlation coe�cient
(CC) is widely used for this purpose. The correlation
coe�cient is de�ned as follows:

CC =

n
X
8i2F

ADi �CDi �

X
8i2F

ADi

X
8i2F

CDi

�AD�CD
;

where ADi is the actual detection probability for
the fault i which is obtained from fault simula-
tion, CDi is the detection probability obtained by
the proposed method for fault i, n is total num-
ber of faults, F is the set containing all faults,

�AD =
q
n
P
8i2F AD

2
i � (

P
8i2F

ADi)2 and �CD =

q
n
P
8i2F CD

2
i � (

P
8i2F CDi)2. Now we consider

the faults at the functional level (all single stuck-at
faults at the input/output of functional blocks) and
compute the testability using Procedure I. Also we
consider the same set of faults of a gate level imple-
mentation and apply 1 M samples to fault simulator
and compute the detectability for these faults. The
results are given in Table 5. It can be seen that the
functional level testability information obtained from
the proposed method re
ects the actual testability ob-
tained from the gate level. When the granularity of a
functional block is much larger than primitive gates,
the average correlation coe�cient is equal to 0.99, i.e.,
the prediction error range is about 1%. Therefore our
method is suitable for a hierarchical design environ-
ment when the detectability information is needed and
the gate level implementation is not even available.

COP assumes that signals at the inputs of a gate
are independent of each other, and so a considerable
amount of errors is introduced in computing the testa-
bility. Recently, Ercolani et al [3] proposed two new
methods to compute the testability at the gate level,
and a limited signal dependency is taken into account.
The average RMS values using these two methods are
78% and 87% of that by COP as shown in Table 6.
If the granularity level of a functional block is much
higher than primitive gates, then the average RMS
values using the proposed method is only 31% of that
from COP (using results in Table 5).

Since each functional block has up to 10 inputs,
the run time for computing testability of a functional
block is about several CPU seconds in our experiments
using a SUN Sparc-IPC workstation. The execution
times of our implementations are shown in Table 7,
they are measured when our programs are running on
a SUN Sparc-IPC workstation. Since our implemen-
tation is not optimized, the execution time in Table
7 can be further reduced by incorporating heuristics,
such as decomposition technique used in [5]. More
importantly, the run time complexity of the proposed
scheme is linear in terms of the number of blocks, and
so our technique is applicable to large combinational
circuits.

5 Conclusion
In this paper, a new testability measure has been

proposed for a hierarchical design environment. To
our best knowledge, this is the �rst comprehensive
study on hierarchical testability measurement. Since
the testability is computed in top-down fashion, it
can be easily intergrated into the existing hierarchi-
cal CAD design environments. We found that when
the granularity of functional blocks is much larger
than that of primitive gates, more accurate testability
can be obtained than existing approximationmethods,
such as COP and that [3], provided that the compu-
tational complexity is linear with respect to the num-
ber of blocks in a given circuit. The functional level
testability computed by using the proposed method
is very close to the actual testability measure at the
functional level. Moreover, the gate-level testability

4



measure of the proposed technique is more accurate
than that obtained using approximated methods, such
as COP and that in [3].

References

[1] F. Brglez, P. Pwnall, and R. Hum, \Application
of testability analysis: from ATPG to critical de-
lay path tracing", Proceedings of IEEE Interna-
tional Test Conference, pp. 705-712, 1984.

[2] C.H. Chen and P.R. Menon, \An approach to
functional level testability analysis", Proceedings
of International Test Conference, pp. 373 - 379,
1989.

[3] S. Ercolani, et al \Testability measures in pseu-
dorandom testing", IEEE Transactions on CAD,
Vol. CAD-11, no. 6, pp. 794-800, June, 1992.

[4] S.K. Jain and V.D. Agrawal, \Statistical fault
analysis" IEEE Design and Test of Computers,
Vol. 2, no. 3, pp. 38-49, Feb. 1985.

[5] R. Krieger, B. Becker, and R. Sinkovic, \A
BDD - based algorithm for computation of ex-
act fault detection probabilities", Proceedings of
23rd FTCS, pp. 186-195, June, 1993.

[6] R. Kuznar, F. Brglez, and K. Kozminski, \Cost
Minimization of Partitions into Multiple De-
vices", IEEE/ACM Proceedings of the 30th DAC,
Dallas, Texas, June 14-18, 1993.

[7] Mike H.C. Lee, \Applying Walsh Series to Au-
tomatic Testing" Ph.D Dissertation, Dept. of
Electrical Engineering, SUNY at Stony Brook,
9/1994.

[8] S.C. Seth et. al., \An exact analysis for e�-
cient computation of random-pattern testability
in combinational circuits", Proceedings of 16-th
FTCS, pp. 318-323, 1986.

[9] M. Serra and J.C. Muzio, \Space compaction for
multiple-output circuits", IEEE Transactions on
CAD, Vol. CAD-7, no. 10, pp. 1105-1113, Octo-
ber, 1988.

[10] A.K. Susskind, \Testing by verifying Walsh coef-
�cients", IEEE Transactions on Computers, Vol.
C-32, no. 2, pp. 198-201, Feb., 1983.

[11] K. Thearling and J. Abraham, \An easily com-
puted functional level testability measure", Pro-
ceedings of International Test Conference, pp.
381 - 390, 1989.

[12] H. J. Wunderlich, \Protest: a tool for probabilis-
tic testability analysis", Proceedings of 22nd DAC
conference, pp. 204-211, 1985.

Table 1. Walsh Coe�cients of a Logic Function

c0 c5 c2;3 c4;5 c1;3;5 c3;4;5 c2;3;4;5
19

32

5

32

1

32

3

32

1

32

1

32

1

32

c1 c1;2 c2;4 c1;2;3 c1;4;5 c1;2;3;4 c1;2;3;4;5
�9

32

1

32

�1

32

1

32

�1

32

�1

32

1

32

c2 c1;3 c2;5 c1;2;4 c2;3;4 c1;2;3;5
1

32

7

32

�1

32

�1

32

�1

32

�1

32

c3 c1;4 c3;4 c1;2;5 c2;3;5 c1;2;4;5
3

32

1

32

�3

32

�1

32

�1

32

1

32

c4 c1;5 c3;5 c1;3;4 c2;4;5 c1;3;4;5
�3

32

1

32

5

32

1

32

1

32

�1

32

Table 2. 1985-ISCAS Functional-Level Benchmark Circuits

Circuit c432 c499 c880 c1355 c1908
Gate NG 133 170 239 488 293
Level NFOS 39 26 50 226 74
Xilinx NCLB 63 74 110 74 147

NFOS 39 26 50 42 73

Circuit c2670 c3540 c5315 c6288 c7552
Gate NG 530 821 1182 2384 1538
Level NFOS 133 253 192 1393 409
Xilinx NCLBs 210 373 535 833 611

NFOS 123 246 190 1393 401

where NG, NFOS, and NCLB respectively denote the number of
gates, the number of FOS, the number of CLBs.

Table 3. RMS of Detection Probabilities

Circuit c432 c499 c880 c1355 c1908
Cop 0.084 0.033 0.029 0.126 0.045
FL 0.099 0.045 0.028 0.019 0.052
GL 0.085 0.041 0.028 0.024 0.024

Circuit c2670 c3540 c5315 c6288 c7552
Cop 0.077 0.060 0.039 0.214 0.064
FL 0.059 0.049 0.032 0.258 0.053
GL 0.053 0.046 0.028 0.232 0.048

Table 4. RMS of Detection Probabilities

FL GL GL FL GL
Circuit NB NG RMS RMS RMS

COP New New
16x16 Mul. 49 2068 0.412 0.056 0.040
Mux16 5 35 0.037 0.012 0.006
Mux64 21 147 0.023 0.010 0.004
LZC16 8 65 0.026 0.030 0.015
LZC64 19 190 0.009 0.014 0.006
MAX16 15 87 0.076 0.035 0.030
MAX64 75 435 0.097 0.030 0.024

Table 5. Detection Probability Correlations

Circuit CC Circuit CC
c432 0.860 16-bit Multiplier 0.968
c499 0.984 16x1 Multiplexer 0.997
c880 0.984 64x1 Multiplexer 0.994
c1355 0.997 16-bit LZC 0.997
c1908 0.972 64-bit LZC 0.998
c2670 0.960 MAX16 0.995
c3540 0.952 MAX64 0.977
c5315 0.983
c6288 0.723
c7552 0.960

Table 6. RMS Improvements Over COP

RMSDWAA

RMSCOP
[3] RMSCCM

RMSCOP
[3] RMSNEW

RMSCOP

0.78 0.87 0.31

Table 7. Run Time for Computing Detection Probabilities

Circuit c432 c499 c880 c1355 c1908
GL (sec) 6.63 6.86 11.1 34.6 14.4
FL (sec) 0.53 0.35 0.80 0.42 0.92
Circuit c2670 c3540 c5315 c6288 c7552
GL (sec) 32.0 42.7 73.8 101.5 84.4
FL (sec) 1.42 2.62 3.73 5.69 4.18

Circuit 16x16 Mul. Mux16 Mux64 LZC16
GL (sec) 380.8 1.45 1.72 1.90
FL (sec) 91.8 0.10 0.2 0.13
Circuit LZC64 MAX16 MAX64
GL (sec) 19.7 30.3 33.9
FL (sec) 5.8 2.80 4.62

Note that GL (FL) denotes gate-level (functional level).

5


	ED&TC95
	Front Matter
	Table of Contents
	Session Index
	Author Index


