
Bit Parallel Test Pattern Generation
for Path Delay Faults

Manfred Henftling Hannes Wittmann
Institute of Electronic Design Automation, Department of Electrical Engineering

Technical University of Munich, 80290 Munich, Germany

Abstract

A method to apply bit-parallel processing at all stages of
robust and nonrobust test pattern generation for path delay
faults is presented. Two different modes of bit-parallel pro-
cessing are combined: fault parallel test pattern generation
(FPTPG) and alternative parallel test pattern generation
(APTPG). We discuss the problems that appear while ex-
ploiting bit-parallelity and we describe how to overcome
them. Experimental results demonstrate a reduction of
aborted faults and an acceleration up to a factor of nine.

1 Introduction

The increasing complexity of logic systems and the ap-
plication of high performance semiconductor technologies
have major consequences in view of test preparation. Tests
targeted for stuck-at faults may be insufficient to guarantee
an acceptable quality level, because some defects and/or
random process variations do not change the steady state
behavior of a circuit but do affect the dynamic behavior of a
system. Considering path delay testing, not only the num-
ber of gates increases with the circuit size, but the number
of structural paths does, too.

The path delay fault model [1] has been introduced to
detect slow chips. It assumes delay faults on entire paths
in a circuit. A lot of research has been devoted to the topic
of path delay fault testing. Best suited algorithms for fault
simulation [1, 2, 3, 4] have been proposed. All state-of-
the-art tools use bit-parallelity for fault simulation. In the
area of test pattern generation (TPG) efficient approaches
[5, 6, 7, 8, 9, 10] have been presented. Contrary to fault
simulation none of these tools exploits bit-parallelity. In
fact, there is one attempt [11] to use up to four bits of a word
for test pattern generation for stuck-at faults. However, the
proposed methods result in a speed-up of only 1.2.

In spite of the discouraging results of [11], two inter-
esting facts form a strong motivation to exploit the entire
machine word length for automatic test pattern generation.
First, there is enormous unused resource. Only a small frac-
tion of a machine word representing a logic value is really
active. Second, bit-parallelism has already been exploited

successfully during fault simulation. The step from single
pattern single fault propagation (SPSFP) to parallel pattern
single fault propagation (PPSFP) [3, 12, 13] resulted in a
speed improvement.

This paper shows that it is possible to use the whole ma-
chine word length for test pattern generation. For the very
first time we perform successfully bit-parallel test genera-
tion at all stages of the algorithm. Two different modes of
bit-parallel processing are possible: fault parallel test pat-
tern generation (FPTPG) where L faults are treated simul-
taneously, and alternative parallel test pattern generation
(APTPG) that allows the examination ofL different pattern
alternatives for a given fault. Starting with FPTPG and
passing over to APTPG for still undetected faults we ex-
ploit the machine word length for easy- and hard-to-detect
faults.

After a short introduction to Path Delay Fault Testing
in the following section the bit-parallel TPG approach is
explained in Section 3. Some interesting details that ap-
pear while using bit-parallelity are discussed in Section 4.
The experimental results given in Section 5 show advan-
tages and improvements of the new approach. Section 6
concludes the paper.

2 The Path Delay Fault Model

Smith [1] has introduced a hardware model for delay
testing. The combinational circuit under test is embedded
between a block of input latches and a block of output
latches. All latches are assumed to be glitchless. At time
T1 the first vector V1 is loaded into the input latches. At
time T2, after all signals in the circuit have reached stable
values, the second vector V2 is applied. The logic values
of the primary outputs are sampled into the output latches
at time TS = T2 + TC , where TC is the desired clock rate.

A path P has a nominal delay d(P ) and may have a
delay fault called �(P ). P is said to be faulty if the delay
fault causes the wrong value of its primary output at time
TC , i.e. d(P ) + �(P ) > TC . A path delay fault is called
robust detectable, if and only if, its detection is independent
of all other delay faults in the circuit. If delays of arbitrary
gates may invalidate the detection, the fault is nonrobust



detectable. Obviously, robust detection implies nonrobust
detection.

All signals that feed gates on a path and are not path
signals are called off-path signals. The task of testing a
path delay fault is to sensitize a given target path. All off-
path signals of the path have to be set to logic values that
allow the propagation of a transition at the primary input
along the target path to its primary output. The test pattern
generation algorithm consists of two steps. First, the path
sensitization is performed, i.e., the required logic values
are assigned to all path signals and all off-path signals.
Second, all logic values at the off-path signals are justified
by assigning appropriate logic values to the primary inputs
of the circuit. Test pattern generation is performed for all
paths in the circuit.

3 Bit Parallel Test Pattern Generation

With this section we will present our bit-parallel test
pattern generation approach. Only for sake of explanation,
we first restrict ourselves to nonrobust TPG. The extension
to robust test generation is explained in the next section.

To generate nonrobust tests only the final logic values
of the signals have to be considered. A three valued logic
is convenient for this task: 0; 1; and X. As we have three
values, we need dlog23e = 2 bits for encoding. To exploit
the whole machine word length L, we store L logic values
in two words. Each bit level represents one logic value.
A best suited implication procedure guarantees an efficient
handling of the words while performing bit-parallel im-
plications. Table 1 shows the encoding we have chosen.

logic value 0-bit 1-bit
0 1 0
1 0 1
X 0 0

conflict (C) 1 1

Table 1: Encoding for nonrobust TPG

The combination (1,1) is not used for encoding. Hence, it
represents an illegal signal assignment, i.e., a conflict.

To illustrate the procedure we consider an example cir-
cuit that is shown in Figure 1 for FPTPG and in Figure 2
for APTPG, respectively. In the sequel we concentrate on
bit-parallel TPG and consider path sensitization and back-
trace in Section 4. We assume for our example a four-bit-
computer, i.e., L = 4.

3.1 Fault Parallel TPG

During FPTPG we consider L faults simultaneously.
First, L paths are sensitized and the resulting implications
are performed. Now, there may be unjustified logic values
in the circuit. As long as there is at least one logic value

that is not justified, a backtrace procedure is performed and
bit-parallel implications are made from the primary inputs.
Consider our example of Figure 1. We want to perform

e

x

y

s

t

r

1111

1111

111x

110x
11Cx

x111

1111

000x

xxxx

q

110x

110x

p

000x

x111

1101

1101

00xx

x010

11x1

a

b

c

d

Figure 1: Performing FPTPG

FPTPG for 4 paths. We treat the paths b � p� x; b� q �
s�x; c� r� s�x; and c� r� s� y in parallel on the bit
levels 0 through 3. In our notation, bit level 0 is on the right
hand side and bit level 3 is on the left hand side. Figure 1
shows the resulting logic values of the four bit levels after
sensitizing the paths and performing the implications.

We can distinguish three cases. On bit level 2 and 3 all
signal values are justified. Hence, the two corresponding
paths are tested. On bit level 1 a conflict occurred at signal c
(denoted by a ”C”). As no optional value assignments have
been made, the path is redundant. Because the sensitization
of subpath b�q�s with a rising transitionat b is impossible
all paths containing this subpath are proved to be redundant,
too. Finally, on bit level 0 no conflict occurred, but the value
1 at signal s is not yet justified. The result of the backtrace
procedure is to assign a 1 to input d, and after the resulting
implications, signal s is justified and a test pattern for path
b � p � x is found. The advantage of FPTPG is that it
is possible to treat multiple paths simultaneously and not
sequentially.

3.2 Alternative Parallel TPG

In order to examine several alternatives of test patterns
simultaneously, APTPG is performed. If the result of back-
trace indicates that at various primary inputs 0 and 1 is
required, L alternatives can be considered simultaneously.
Assume that we want to test path a � p � x with a falling
transition at a. The final values are shown in Figure 2. We
sensitize the path at all L bit levels. Backtrace indicates to
assign values to the primary inputs c and d. We examine
all four possibilities in four bit-levels at one time. As there
is at least one bit level without conflict the path is tested.

In general, we can consider all possible value assign-
ments at log2L primary inputs. As soon as we exceed this



e

x

y

s

t

r

1111

q

p

1111 1111

1111

0000
0000

0011

0101

0011

0011

0111

0111

1100

1111

x000
xxxx

1111

1111

a

b

c

d

Figure 2: Performing APTPG

limit we proceed with conventional backtracking on all bit
levels simultaneously.

3.3 Combination of FPTPG and APTPG

FPTPG and APTPG complete one another excellently.
In order to treat easy-to-test faults as efficient as possible,
we start with FPTPG and identify a lot of testable and
redundant paths; this leads to a speed-up of test pattern
generation. If backtracking is necessary, we dynamically
pass over to APTPG. We avoid the effort of resensitizing a
target path by simply flattening the active bit of a logic value
to multiple bit levels. With the help of APTPG we examine
hard-to-detect faults. As we examine several alternatives
a time, backtracking is less probable and greater areas of
the search space can be examined; our combined method
results in less aborted faults, faster test pattern generation,
and faster redundancy identification.

4 Details of Bit Parallel TPG

While developing bit-parallel TPG the single tasks of the
algorithm were adapted. Bit-parallelity offers the possibil-
ity of an improved formulation of the path sensitization.
Backtracking had to be adapted to bit-parallelity. The con-
sideration of robust tests needed further examination. If
robust tests for path delay faults are generated, not only
the final value has to be considered, but some signals are
required to be stable at their value. We use the seven valued
logic of [5] to perform the generation. Our encoding of the
seven values is shown in Table 2. In order to achieve effi-
cient gate evaluations we use four bits for encoding. The
general TPG-algorithm is the same as for nonrobust TPG.
The difference is that the stable values have to be justified
from the primary inputs. FPTPG and APTPG work in the
same way as explained in Section 3. A detailed explanation
of the mentioned procedures is given in [14].

logic value 0-bit 1-bit stable-bit instable-bit
0s 1 0 1 0
1s 0 1 1 0
0s 1 0 0 1
1s 0 1 0 1
0x 1 0 0 0
1x 0 1 0 0
X 0 0 0 0

conflict 1 1 x x
conflict x x 1 1

Table 2: Encoding for robust TPG

5 Experimental Results

The bit-parallel test generation approach was imple-
mented in "C" and is integrated in our test preparation tool
TIP; currently, TIP consists of 6000 lines of code. We use
global implications and perform parallel pattern fault simu-
lationafter every L generated test patterns (L is the machine
word length);no further heuristics and speed-up-techniques
are implemented. The approach is tested with the help of
well-known benchmark circuits [15, 16, 17]. When se-
quential circuits are processed, only the combinational part
is considered. Several experiments were performed to get
an impression of the improvements of the new techniques.

The initial experiment we made shows the efficiency of
the bit-parallel test pattern generator. We generated robust
and non robust tests for the ISCAS85 benchmarks. These
circuits are known to be hard to test due to their enormous
number of paths and due to the difficulties in detecting
their delay faults. We ran this experiment on a DECstation
3000/500 with a machine word length ofL = 64. Table 3

Circuit # faults # tested efficiency time [s]
c432 583652 3730 100.00 % 951.33
c499 795776 133696 99.94 % 2284.40
c880 17284 16083 100.00 % 49.84
c1355 8346432 22782 99.96 % 14509.06
c1908 1458114 97495 99.98 % 86387.41
c2670 1359920 15370 99.99 % 755.02
c3540 57353342 88356 99.99 % 140135.93
c5315 2682610 81435 99.99 % 14457.13
c7552 1452988 86114 99.87 % 42895.47

Table 3: Robust ATPG for the ISCAS85 circuits

and Table 4 show the results, which demonstrate that we are
able to handle all circuits in a reasonable amount of time1.
#faults and #tested represent the number of functional
paths in the circuit and the number of tested faults. The
efficiency is given as efficiency = (1� #aborted

#faults
) �100%,

where #aborted is the number of aborted faults. Finally,
the time for test generation is shown. Contrary to previ-

1except circuit c6288, containing 1020 functional paths



Circuit # faults # tested efficiency time [s]
c432 583652 15855 100.00 % 17.01
c499 795776 367744 100.00 % 446.91
c880 17284 16652 100.00 % 6.51
c1355 8346432 1110304 100.00 % 1124.25
c1908 1458114 355168 100.00 % 380.55
c2670 1359920 130626 100.00 % 114.52
c3540 57353342 1202584 100.00 % 9637.56
c5315 2682610 342117 100.00 % 1604.68
c7552 1452988 277244 100.00 % 2825.41

Table 4: Nonrobust ATPG for the ISCAS85 circuits

ously published approaches for nonrobust test generation,
no aborted paths are left. In the case of robust test gener-
ation some aborted paths have been left for the ISCAS85
benchmarks; however the fraction of aborted faults is al-
ways lower than 10�3. These two observations also hold
for all sequential benchmark circuits.

In the main part of our experiment we compared the
bit-parallel generator to a version that is restricted to one
bit level. Of course, we carefully omitted any unneces-
sary overhead. The comparison is shown in Table 5 and
Table 6. Thereby, tsens is the time for sensitizing the

Circuit tsens tsingle tparallel
tsingle
tparallel

s713 0.92 1.63 0.37 4.4
s838 6.04 18.12 5.62 3.2
s938 10.14 14.17 1.59 8.9
s991 15.76 39.98 29.34 1.4
s1269 45.15 717.67 408.84 1.8
s1423 31.06 110.62 13.16 8.4
s3271 18.31 631.30 154.70 4.1
s5378 51.40 122.01 26.92 4.5
s9234 108.66 257.99 121.40 2.1
s13207 763.12 537.54 255.07 2.1
s15850 4770.00 41853.60 19579.88 2.1

Table 5: Comparison of bit parallel and single bit genera-
tion (robust ATPG)

paths (identical for single-bit and bit-parallel sensitization),
tsingle is the time required by the single-bit approach, and
tparallel is the time used by the parallel method proposed
in this paper. The given results impressively show the im-
provements of our bit-parallel approach. For all circuits
a speed-up is achieved; the average acceleration is about
five. Furthermore, contrary to the parallel approach, some
aborted faults occurred while handling the circuits with the
single-bit approach. Hence, we achieve both a speed-up of
test generation and a reduction of aborted faults.

With the next experiments, we compared ourselves
to three efficient and well-known state-of-the-art tools.
TSUNAMI-D [8] represents an efficient BDD-based ap-
proach. BDDs are known to be best suited for test genera-

Circuit tsens tsingle tparallel
tsingle
tparallel

s713 1.32 1.00 0.15 6.7
s838 1.41 3.26 1.41 2.3
s938 2.33 2.41 0.54 4.5
s991 3.96 11.67 1.63 7.2
s1269 17.50 23.50 7.44 3.2
s1423 10.91 44.76 10.26 4.4
s3271 6.24 15.76 6.40 2.5
s5378 16.02 17.76 3.06 5.8
s9234 45.12 140.59 36.47 3.9
s13207 1551.86 1634.67 3836.50 2.3
s15850 30929.62 27602.17 5448.47 5.1

Table 6: Comparison of bit parallel and single bit genera-
tion (nonrobust ATPG)

tion as long as the BDD can be constructed. DYNAMITE
[10] is a structural method that has been shown to perform
very well. Since all published results were achieved on a
DEC 5000/200 (L = 32) we computed our results for this
machine, thoughonly 32 instead of 64 bits can be exploited.
The results for ten published sequential circuits can be seen
in Table 7 and 8 for nonrobust and robust test generation,
respectively. The tables show that the bit-parallel approach
is able to generate complete test sets in a reasonable amount
of time. For some circuits TIP performs slightly slower than
TSUNAMI-D. For detecting non-robust tests TSUNAMI-
D is based on a slightly deviated test class compared to
TIP and DYNAMITE. For nonrobust test generation TIP is
up to eight times faster than DYNAMITE, for robust test
generation it is comparable. Please note, that up to now
we use the suboptimal seven valued logic [5] instead of a
ten valued logic [6] for generating robust tests. Further-
more no heuristics and speedup techniques are used. These
resources are topics of our future work.

The comparison with NEST [9] is difficult to do. NEST
targets on a fast and good estimation of the fault coverage,
while we want to perform complete test generation. Results
for the circuits presented in Table 8 can be found in [9].
The interested reader may perform a comparison, always
keeping in mind the different intentions of the two tools.

6 Conclusion

We have shown with this contribution that it is possible
to perform bit-parallel test pattern generation at any stage
of path delay fault test generation. The experimental results
presented show that, analogously to bit-parallel fault simu-
lation, a speedup of up to nine is obtained and a reduction
of aborted faults is possible. Our future research activity
concentrates on further speed-up techniques and the appli-
cation of bit-parallel test generation to further fault models,
first of all the stuck-at fault model.



Circuit TIP TSUNAMI-D DYNAMITE
# tested time [s] # tested time [s] # tested time [s]

s641 2270 2.5 2096 6.7 2270 6.2
s713 4922 4.4 2066 15.1 4922 26.8
s1196 3759 13.5 3708 8.7 3759 24.9
s1238 3684 14.0 3663 9.0 3684 31.2
s1423 45198 60.3 33981 878.5 45198 208.2
s1494 1927 20.7 1926 2.4 1927 5.2
s5378 21928 57.8 19413 284.1 21928 111.9
s13207 476145 10195.8 162798 1566.0 476145 12274.6
s15850 10782994 125419.9 n.a. n.a. 10782994 975240.0
s38584 334927 11991.7 170291 1934.7 334927 32364.9

Table 7: Comparison for nonrobust test generation (DEC 5000/200)

Circuit TIP TSUNAMI-D DYNAMITE
# tested time [s] # tested time [s] # tested time [s]

s641 1979 6.4 1979 8.2 1979 6.7
s713 1184 4.0 1184 20.6 1184 15.0
s1196 3581 69.0 3562 15.0 3579 32.3
s1238 3589 71.2 3654 16.6 3587 37.8
s1423 28696 162.1 23220 926.5 28696 315.0
s1494 1882 90.4 1882 3.0 1882 17.1
s5378 18656 227.6 18248 296.9 18656 198.0
s13207 27603 2813.8 27484 4286.0 27603 1984.0
s15850 182673 62138.1 n.a. n.a. 182673 86040.0
s38584 92239 14060.0 90146 4790.2 92239 10636.0

Table 8: Comparison for robust test generation (DEC 5000/200)

References

[1] Gordon L. Smith. Model for Delay Faults Based Upon Paths. In
Proceedings IEEE International Test Conference, pages 342–349,
November 1985.

[2] Irith Pomeranz and Sudhakar M. Reddy. An Efficient Non–
Enumerative Method to Estimate Path Delay Fault Coverage. In
Proceedings IEEE/ACM International Conference on Computer–
Aided Design, pages 560–567, November 1992.

[3] Franz Fink, Karl Fuchs, and Michael H. Schulz. Robust and Non-
robust Path Delay Fault Simulation by Parallel Processing of Pat-
terns. IEEE Transactions on Computers, pages 1527–1536, Decem-
ber 1992.

[4] Manfred Henftling, Hannes C. Wittmann, and Kurt J. Antreich.
Path Hashing to Accelerate Delay Fault Simulation. In Proceedings
IEEE/ACM Design Automation Conference, pages 522–526, 1994.

[5] C. J. Lin and S. M. Reddy. On Delay Fault Testing in Logic Circuits.
In Proceedings IEEE/ACM International Conference on Computer–
Aided Design, pages 148–151, November 1986.

[6] Karl Fuchs, Franz Fink, and Michael H. Schulz. DYNAMITE: An
Efficient Automatic Test Pattern Generation System for Path Delay
Faults. IEEE Transactionson Computer–AidedDesign, pages1323–
1335, October 1991.

[7] Kwang-Ting Cheng, Srinivas Devadas, and Kurt Keutzer. Robust
Delay–Fault Test Generation and Synthesis for Testability Under a
Standard Scan Design Methodology. In Proceedings IEEE/ACM
Design Automation Conference, pages 80–86, June 1991.

[8] Debashis Bhattacharya, Prathima Agrawal, and Vishwani D.
Agrawal. Delay Fault Test Generation for Scan/Hold Circuits using
Boolean Expressions. In Proceedings IEEE/ACM Design Automa-
tion Conference, pages 159–164, June 1992.

[9] Irith Pomeranz, Sudhakar M. Reddy, and Prasanti Uppaluri. NEST:
A Non–Enumerative Test Generation Method for Path Delay Faults
in Combinational Circuits. In Proceedings IEEE/ACM Design Au-
tomation Conference, pages 439–445, June 1993.

[10] Karl Fuchs, Hannes C. Wittmann, and Kurt J. Antreich. Fast Test
Pattern Generation for all Path Delay Faults Considering Various
Test Classes. In Proceedings European Test Conference, pages 89–
98, April 1993.

[11] Kewal Saluja and Kyuchull Kim. Improved Test Generation for
High-Activity Circuits. IEEE Design & Test of Computers, pages
26–31, August 1990.

[12] J. A. Waicukauski, E. B. Eichelberger, D. O. Forlenza, E. Lindbloom,
and T. McCarthy. Fault Simulation for Structured VLSI. VLSI
Systems Design, pages 20–32, December 1985.

[13] Kurt J. Antreich and Michael H. Schulz. Accelerated Fault Simu-
lation and Fault Grading in Combinational Circuits. IEEE Transac-
tions on Computer–Aided Design, pages 704–712, September 1987.

[14] Manfred Henftling and Hannes Wittmann. A Bit Parallel ATPG
Approach for Path Delay Faults. Technical Report TUM-LRE-6-
94, Department of Electrical Engineering, Technical University of
Munich, Germany, 1994.

[15] Franc Brglez and Hideo Fujiwara. A Neutral Netlist of 10 Com-
binational Benchmark Circuits and a Target Translator in Fortran.
In IEEE International Symposium on Circuits and Systems; Special
Session S6AB on ATPG and Fault Simulation, pages 663–698, June
1985.

[16] Franc Brglez, David Bryan, and Krzysztof Kozminski. Combi-
national Profiles of Sequential Benchmark Circuits. In Proceed-
ings IEEE International Symposium on Circuits and Systems, pages
1929–1934, May 1989.

[17] Franc Brglez. ACM/SIGDA Benchmark Electronic Newsletter
DAC ’93 Edition. Microelectronics Center of North Carolina
(MCNC), June 1993.


	ED&TC95
	Front Matter
	Table of Contents
	Session Index
	Author Index


