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Abstract

The problem of sizing gates for power-delay tradeo�s is of

great interest to designers. In this work, the theoretical basis for

gate sizing under delay and power considerations is presented,

and results on a practical implementation are presented. The

dynamic power as well as the short-circuit power are modeled,

using notions of delay and transition density, and the optimiza-

tion problem is formulated using notions of convex program-

ming. Previous approaches have not modeled the short circuit

power, and our experimental results show that the incorporation

of this leads to counter-intuitive results where the minimum-

power circuit is not necessarily the minimum-sized circuit.

1 Introduction

It has long been realized that the procedure of gate sizing

is a useful tool for reducing circuit delays in CMOS integrated

circuits. Several methods have been proposed as solutions when

the problem is posed as an area-delay tradeo�, such as [1{3], to

name just a few. Lately, the power dissipation has emerged as

another vital consideration in circuit design. This paper ap-

proaches the problem of gate sizing for power-delay tradeo�s

under a nonlinear programming formulation. The exact solu-

tion to the formulated optimization problem is found.

The contributions of this work include appropriatemodeling

of the power dissipation (including short-circuit dissipation) for

accuracy and tractability. We show that power and delay are

not necessarily con
ictingobjectives; one can increase transistor

sizes from the minimum size in a circuit and reduce its power

dissipation! This is consistent with observations made in [4].

The sizing problem can be described as follows. It must be

ensured that the worst-case delay of each combinational stage

is restricted to be below a certain speci�cation. Given a CMOS

circuit topology, improvements in the timing behavior of a cir-

cuit can be achieved by increasing the sizes of some transistors

in the circuit. This incurs expenses in terms of additional chip

area, and often (but not always, as will be shown later), in-

creased power dissipation. An optimization problem must be

solved for a set of transistor sizes with an acceptable tradeo�.

Various formulations of the sizing problem may be consid-

ered, with one of area, delay or power constituting the objective

function, and with constraints on the other two. One formula-

tion that recognizes that a designer's objective is to achieve the

best performance at a given clock period may be stated as

minimize Power(w) (1)

subject to Delay(w) � Tspec

Area � Aspec

and Each gate size � Minsize

where bothDelay and Power are functions of the gate sizes,w,

Tspec and Aspec are, respectively, the constraints on the circuit

delay and area, and Minsize is dictated by the technology.
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It should be pointed out here that the optimization problem

(1) must be solved on one combinational subcircuit at a time.

Although the entire circuit may have millions of gates, the num-

ber of variables in the sizing problem will be comfortably small.

Previous approaches that have taken power considerations

into account during transistor sizing include [2,5,6]. All of these

approaches considered the dynamic power dissipation only, and

neglected the role of the short-circuit power. However, this

is not always a valid assumption. The idea that the short-

circuit power accounts for under 20% of the total power in a

\well-designed" circuit is a valid one, but intermediate circuit

parameters obtained during the course of an optimization may

not correspond to well-designed circuits. This could lead to

incorrect results: for example, neglecting the short-circuitpower

would imply that aminimumpower circuitmust haveminimum-

sized transistors, a statement that we will show to be untrue.

In this work, we utilize Elmore time constants [7] and esti-

mate the circuit delay and power dissipation based on this tim-

ing model. We show that both the circuit delay and the power

dissipation are posynomial functions1 [8] of the gate sizes, and

show that the sizing problem, with any one of the area, delay

and power as the objective and the remaining two as constraint

functions, can be solved by solving a small number of convex

programs. The relevance of this fact is in that convex programs

are unimodal, and any local minimum is a global minimum.

These underlying convex programs may be solved exactly using

an e�cient and rigorous mathematical optimization algorithm

as is done here, or by good heuristics like TILOS [1].

In our approach, each gate is characterized by two sizes,Wn

and Wp, corresponding to the n and p device sizes in the gate.

As a notational comment, the term \gate sizes" will henceforth

refer to the Wn and Wp values for all gates in the circuit.

The paper is organized as follows. Section 2 outlines the

gate level model. The power and delay models are described in

Sections 3 and 4, respectively. The formalization of the opti-

mization problem is featured in Section 5. Experimental results

are presented in Section 6, and we conclude in Section 7.

2 Gate-level Modeling of a Circuit

We reduce each gate to an equivalent inverter whose n- (p-)

transistor size is Wn (Wp). The optimal values of theWn's and

Wp's are found by solving an optimization problem, and these

may be mapped back individual transistor sizes.

A CMOS gate can be represented by an equivalent inverter

with n- and p- transistor sizes of Wn and Wp, respectively. A

transistor of size x in the inverter is modeled by a resistance as:

Ron =

n
KR=x when the transistor is on

1 when the transistor is o�
(2)

1A posynomial is a function g of a positive vector w 2 R
n that has

the form g(w) =
P

j

j

Qn

i=1
w
�ij

i
where the exponents �ij are real

numbers and the coe�cients 
j > 0. A posynomial can be mapped onto

a convex function through the variable transformation (wi) = (exi ) [8]



where the value of KR is di�erent for the n- and p-type tran-

sistors. Additionally, each transistor has associated with it the

parasitic capacitances, Cs;Cd and Cg, at its source, drain and

gate, respectively. Each is directly proportional to transistor

size, x; due to the symmetry of the transistor, the proportion-

ality constants for the source and drain parasitic capacitances

are equal, and di�erent from that for the gate capacitance.

3 Computation of the Power Dissipation of a Circuit

The power dissipation of each gate in a circuit is the sum

of two components: the dynamic power and the short circuit

power. The leakage current power is negligible and is not con-

sidered. Each of these is described below, and it is shown that

when the switching count at a gate output is �xed, both compo-

nents are posynomial functions of the gate sizes, which implies

that the total power is also a posynomial.

3.1 Dynamic Power Dissipation

The dynamic power is the power dissipated in charging and

discharging capacitances in the circuit. The magnitude of this

power for a gate driving a load capacitance CL, under a clock

frequency f , and with a switching probability of pT , is given by

Pdynamic = Cl � V
2
dd � f � pT (3)

where Vdd is the supply voltage. From the gate model shown

above, it can be seen that the output capacitance driven by

a gate, and hence the dynamic power, is a linear (and hence

posynomial) function of the Wn and Wp values of the current

gate and of all of its fanouts for a �xed set of pT 's.

3.2 Short-circuit Power Dissipation

During the switching of an inverter, when the input voltage

value is between VT and Vdd�VT , where jVT j is the magnitude

of the threshold voltage, both the n- and the p-transistors are

on and provide a direct path between Vdd and ground. The

associated power, the short circuit power, is given by [9]:

Psc =
�

12
(Vdd � 2VT )

3
� � � f � pT (4)

where � is theMOS transistor gain factor, and � is the transition

time of the input transition, and f and pT are as de�ned earlier.

Consider a gate, G, that is driven by another gate, G1. The

transition time of the waveform at the output of gate G1 may

be modeled as twice its Elmore delay, since the Elmore delay is

the time required by the signal at its output to reach 50% of

its �nal value, as in [3]. Therefore, we see that the short circuit

power dissipation for gate G is dependent on

(a) the size of its own equivalent inverter, which contributes to

the factor � in Equation (4), and

(b) that of the equivalent inverters for G1 and all of its fanout

gates, which contribute to the factor � in Equation (4).

Note that � is a posynomial function of the gate sizes (as

will be shown in Section 4), and when multiplied by � (which

is / x), remains a posynomial function of the gate sizes (albeit

a di�erent one from �) for a �xed set of pT 's.

3.3 Computing Transition Densities

This work utilizes a probabilistic measure of switching ac-

tivity called transition density [10], where the algorithm takes

the signal probability and transition density of each primary

input and propagates the values through logic modules to es-

timate the transition density at each node in the circuit. The

algorithm was enhanced in [11], where the e�ect of �ltration in
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Figure 1: State diagram of a conceptual �lter.

real circuits was pointed out: due to the inertial delays of logic

gates, short pulses are �ltered out as the module is not fast

enough to respond to them. To model this �ltration e�ect of

the circuit inertial delays, a new delay block called a �lter block

was introduced. Note that the transition density at the output

of a gate using the method of [11] is the function of the gate

delays. We now outline the procedure for calculating transition

densities; for details the reader is referred to [10, 11].

Let P (x) denote the equilibrium probability of a logic signal

x(t), i.e., P (x) � P (x(t) = 1). This gives the fraction of time

that the signal x(t) is high. Let nx(T ) denote the number of

transitions of x(t) in (�T=2;T=2]. Then the transition density

of x(t), D(x), is de�ned to be D(x) = limT!1
nx(T )
T

.

It has been shown in [10] that, if y = f(x1; x2; � � � ; xn) is a

Boolean function and the inputs xi's are independent, then the

density of output y is given by:

D(y) =

nX
i=1

P (
@y

@xi
)D(xi) (5)

where @y

@x
is the Boolean di�erence of y with respect to x. For

simple gates (AND, OR, etc.), the Boolean di�erence can be

easily calculated, and for more complex Boolean functions, the

OBDD package can be used. Given the probability and density

values at the primary inputs, a single pass over the circuit, using

(5), gives the density value at every node.

At this point, the calculated transition density may be over-

estimated, especially for high-frequency circuits. To overcome

such a problem, a conceptual low-pass �lter is placed at the out-

put of each logic module. Let the input of the low-pass �lter be

x(t). Let F be the �lter block with input x(t) and output y(t).

The behavior of F can be de�ned by a �nite-statemachine with

four states as shown in Figure 3.3. The state S0 (corresponding

to x = y = 0) and S3 (x = y = 1) are stable states. The other

two states, S1 (x = 0; y = 1) and S2 (x = 1; y = 0), are unstable

states. The �lter will stay in stable states inde�nitely if x does

not change. If the �lter enters states S1 (S2), then it can stay

there for at most �0 (�1). After the transition period, the �lter

will automatically transit to stable state S0 (S3); or it could

fall back to S3 (S0) at any time during this period if x switches

back to 1 (0) again. Under this model, P (y) and D(y) can

be computed from P (x) and D(x) using the procedure derived

in [11].

4 Computation of the Circuit Delay

The delay calculation procedure is similar to that in [1]. The

maximum rise and fall delays between the primary inputs and

primary outputs of the circuit are computed using PERT. Two



numbers, th and tl, are assigned to each gate output, and are the

total rise and fall delay from the primary inputs, respectively.

The rise and fall delays of each gate are taken to be the

Elmore delays of the corresponding RC networks. These RC

networks are easy to build; for the falling (rising) transition,

we have the resistance of the n-(p-)transistor driving the gate

output capacitances, comprising of drain capacitances of the n-

and the p-transistor in the equivalent inverter for the current

gate, and the gate terminal capacitances of all fanout gates.

It can be seen from the RC models described in Section 2

that the delay of any gate is a posynomial function of the gate

sizes [1]. This has two consequences: �rstly, it implies that the

transition time, � , for each gate is a posynomial. This fact has

been used in Section 3.2 to show that the short-circuit power is a

posynomial function of the gate sizes. Secondly, since the delay

of any path is a sum of gate delays, it is also a posynomial, and

therefore, the circuit delay, which is the maximum of all path

delays, is a maximum of posynomials.

5 Formulation of the Optimization Problem

In this section, we will temporarilyassume that the switching

probability at the output of each gate is independent of the gate

sizes. This is, an invalid assumption that will later be removed.

The sizing problem is stated in (1). It has been shown earlier

that for constant switching probabilities, the power is a posyn-

omial function of the gate sizes, and the circuit delay is a maxi-

mum of posynomials. Therefore, the transformation (wi) = exi

maps the power to a convex function, and the delay into a max-

imum of convex functions, which is also convex [12].

Under this mapping, the optimization problem is stated as:

minimize Power(x) (6)

subject to Delay(x) � Tspec

Area(x) � Aspec

and Each gate size � Minsize

where Delay(x) and Power(x) are convex functions in x.

Therefore, all of the constraints above are convex, as is the

objective, and we now deal with a convex programming prob-

lem. An e�cient algorithm for the exact solution of convex

optimization problems [3] is used to obtain the solution to (6).

Note that if we present the sizing problem as an power-

delay-area tradeo�, with one of these three functions being the

objective, and with constraints on the other two, then the cor-

responding optimization problem can also be mapped onto a

convex programming problem. This arises out of the fact that

the area can be modeled as a posynomial [1].

Therefore, we may see that solving the power-delay-area

tradeo� for a �xed set of gate switching probabilities is equiv-

alent to solving a convex programming problem. However, as

pointed out in Section 3.3, the switching probabilities are de-

pendent on the gate delays, which are, in turn, dependent on

the gate sizes, and therefore the above assumption is invalid.

Therefore, we use the following solution scheme:

error = 1;

Set all gates to Minsize;

Calculate gate delays;

Compute pT = vector of transition probabilities

at each gate based on current gate delays;

while (error < �) f

oldpT = pT;

Solve gate sizing problem (convex program) for pT;

Table 1: Minimizing Power under Delay Constraints

Circuit Timing Area Power
Cycle

CPUTime

Spec.(ns) (Iterations)

cm138a (90 tran) 80ns 202.7 68.9e-12 31.8s(2)
Pu = 65.0e-12 70ns 240.4 89.0e-12 63.5s(2)
Du = 100.6ns 65ns 365.7 127.8e-12 53.8s(2)
Au = 162.0 60.3ns y 966.2 295.e-12 128.8s(2)

cordic (386 tran) 100ns 758.8 336.2e-12 953.9s(2)
Pu = 318.5e-12 80ns 1015.5 396.1e-12 388.3s(2)
Du = 134.1ns 70ns 1693.3 524.1e-12 859.3s(2)
Au = 694.8 64.4ns y 10826.4 2098.8e-12 256.8s(2)

b9 (472 tran) minpower 877.8 358.4e-12 684.8s(1)
Pu = 429.9e-12 150ns 881.3 358.4e-12 713.2s(1)
Du = 188.3ns 100ns 1457.2 563.8e-12 1359.0s(2)
Au = 849.6 95ns 1860.0 684.1e-12 2282.3s(2)

90ns 5022.2 1647.2e-12 696.1s(2)
87.1ns y 9937.1 3669.1e-12 497.6s(2)

comp (588 tran) minpower 1094.1 350.8e-12 2517.5s(1)
Pu =435.2e-12 120ns 1610.1 513.2e-12 7326.7s(2)
Du =257.5ns 100ns 2382.1 631.1e-12 3025.5s(2)
Au =1058.4 90ns 3445.6 793.7e-12 3008.4s(2)

82.2nsy 16371.3 2427.0e-12 12765.5s(2)

ttt2 (952 tran) minpower 1791.7 586.3e-12 3171.5s(1)
Pu = 754.0e-12 200ns 1854.7 824.7e-12 3366.8s(2)
Du = 267.2ns 150ns 2159.5 919.7e-12 1949.5s(2)
Au = 1713.6 130ns 4078.5 1457.1e-12 1752.4s(2)

122ns y 16556.9 6176.4e-12 3680.6s(2)

y denotes minimum achievable timing speci�cation

Calculate gate delays for new gate sizes;

Compute pT = vector of transition probabilities

at each gate based on current gate delays;

error =

pP
[pTi � oldpTi]

2

(#gates)
;

g

We �rst calculate the transition probabilities with all gates

set to minimum size. Next, taking these transition probabilities

to be �xed, we solve the gate sizing problem, which is a convex

programming problem under this assumption. On solving this

problem, we get a new set of gate sizes, and therefore a new

set of gate delays. We then recompute pT, and continue the

iterations until the switching probabilities converge. We cannot

formally prove that convergence is guaranteed, but in practice,

we found that convergence occurs in a very small number of

iterations (no more than two for all examples that we tried).

Note that due to the dependence of transition probabilities

on gate delays, we cannot claim the true problem of gate siz-

ing for power-delay-area tradeo�s to be a convex programming

problem. However, it is believed that the procedure above gives

a good solution in a reasonable amount of time.

6 Experimental Results

The theory developed above can be applied to extend any ex-

isting optimizationalgorithm for sizing, such as CONTRAST [3]

or TILOS [1]. In this work, we have employed Vaidya's convex

programming algorithm [13], also used in the CONTRAST al-

gorithm, to �nd an exact solution to the convex programming

problem formulated above. However, the TILOS approachmay

also be adapted to solve this problem.

The algorithm described above has been implemented as a

C program on a DEC Alpha 3000/AXP300. Results on several

benchmarks are presented. Table 1 illustrates the power-delay

tradeo� for various circuits under various delay speci�cations.

The �rst column lists the circuit name; the circuits have been

chosen from the LgSynth91 benchmarks. The power, Pu, delay,



Du, and area, Au, for the circuit when all devices are minimum-

sized are also shown, with the area being measured as the sum

of transistor sizes. A timing speci�cation is placed on the cir-

cuit, and it is optimized for the minimum power under that

constraint. The corresponding power and circuit area found by

the algorithm are shown in the next three columns. Note that

the power is speci�ed in terms of the power per clock transition,

which is denoted by Power
Cycle

in the table. In each case, it was

found that the results were obtained in under two iterations, i.e.

no more than two convex programs were required to be solved.

The value of � used to control convergence was set to 0.01. The

bulk of the computation is consumed by the transistor sizing

algorithm, and the CPU time required for transition density

calculations is virtually negligible. For each circuit, as the de-

lay speci�cation is made tighter, the minimal power dissipation

required to achieve the speci�cation increases nonlinearly and

monotonically. Moreover, with a tightening of the delay speci�-

cation, the marginal increase in the power is found to increase.

Traditional estimates of power for sizing purposes have con-

sidered only the dynamic component of power, given by Equa-

tion (3). The dynamic power function is a linear function (with

positive coe�cients) in the device sizes. Therefore, minimiz-

ing the dynamic power without any delay constraints implies

that all devices in the circuit must be minimum-sized. How-

ever, when one considers the role of short-circuit current, this

may not remain so. If a gate G drives a large capacitance, it

will have a slow rise time. Therefore, the transition time at

the input to any fanout gate is signi�cant and the short-circuit

power is noticeable. To optimize the power, it may be neces-

sary to size G to reduce the transition time at its output, and

therefore, the short-circuit current for any fanout gate of G.

Table 2: Minimizing Area vs. Minimizing Power

Min-area Min-power

Timing Optimization Optimization

Speci�cation Area/Power @ optimum Area/Power @ optimum

> 257.5 ns 1058.4/435.2e-12 1094.1/350.6e-12

220.1 ns 1067.2/350.6e-12 1094.1/350.6e-12

150.0 ns 1234.4/475.4e-12 1351.3/351.6e-12

120.0 ns 1530.8/546.7e-12 1610.1/513.1e-12

100.0 ns 2231.3/677.7e-12 2382.1/631.1e-12

90.0 ns 3071.7/857.4e-12 3445.6/793.7e-12

85.0ns 4384.1/1159.4e-12 5344.9/1094.3e-12

Lastly, for circuit comp,we present in Table 2 the circuit area

and the corresponding power (per cycle), for the case where the

objective is to minimize the circuit area, and the case where the

objective is to minimize the power, under various delay spec-

i�cations. Since the minimum power circuit corresponds to a

delay of 220.1 ns, for any larger speci�cation the power mini-

mizationwill result in a circuit with that delay. This table shows

that minimizing power and area are related, but not identical

objectives. It also answers the question posed in the title of this

paper: delay and power reduction do not always con
ict.

The delay corresponding to the minimum-power circuit here

is 15% less than that for a minimum-sized circuit. This is not

surprising since the goals of reducing the delay and the short-

circuit power are consistent. This e�ect is likely to be more

pronouncedwhen large loads are being driven by a gate; in such

cases, the improvements in delay and power using nonminimum

sizes are likely to be larger. The minimum-power circuit is found

to dissipate 19.5% less power than the minimum area circuit.

We caution the reader that the minimum delay circuit is

not always di�erent from the minimum power circuit, and this

was seen in several cases in the benchmark suite, particularly in

the smaller circuits. However, it was found that for the larger

circuits, the minimum delay and minimum power points were

distinct. This is consistent with the fact that larger circuits

typically have larger delays, which implies that the transition

time at the input to some gates is liable to be relatively large,

leading to more short-circuit power dissipation.

7 Conclusion

An algorithm for sizing with power considerations has been

presented as a small number of convex optimization problems.

It has been shown here that when the short-circuit power dis-

sipation for a minimum-sized circuit is signi�cant, the mini-

mum power circuit is not the minimum sized circuit. It has

been shown that power and delay are not necessarily con
ict-

ing objectives; it is possible that as a tighter delay speci�cation

is applied, a concomitant reduction in power (compared to a

minimum-sized circuit) may be achieved up to a point, beyond

which further delay reduction implies an increase in the power.

The short-circuit power model in this work may be re�ned

further, and future work relates to the use of more accurate

short-circuit power models during optimization.
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