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Abstract

This paper present a novel interface synthesis approach
based on a one-sided interface description. Whereas most
other approaches consider interface synthesis as optimizing
a channel toexisting client/server modules, we consider
the interface synthesis as part of the client/server module
synthesis (which may contain the re-use of existing mod-
ules). The interface synthesis approach describes the basic
transformations needed to transform the server interface
description into an interface description on the client side
of the communication medium. The synthesis approach is
illustrated through a point-to-point communication, but is
applicable to synthesis of a multiple client/server environ-
ment. The interface description is based on a formalization
of communicationevents.

1 Introduction

System level design may be viewed as the process of
mapping a conceptual model into a physical structure of
cooperating components. In this view a system is considered
as a set of servers and clients that communicate via a
communication medium.

In this paper we address the problem of automatically
obtaining a customized implementation of the interface
between client/server modules, termedinterface synthesis.
The main motivation is to adapt the interface during system
implementation, rather than having afixedcommunication
architecture as is the case in most hardware/software code-
sign approaches, e.g., [2, 5, 6] which are using memory
mapped I/O.

The simplest system consists of a single client invoking
one operation from a server, i.e., a point-to-point com-
munication. This corresponds to the traditional view of
hardware/software codesign where we initially have an
application which can not fulfill some given timing re-
quirements. In order to meet these timing requirements, a
subtask suitable for speedup is identified and moved to an
other module (hardware or software) capable of achieving
the required speedup. I.e., the original application becomes
a client which has to invoke the server in order to complete
its computation.

We present a general interface model and an approach
to interface synthesis which allows for communication op-
timization during client/server synthesis.

�This research has been sponsored by the Danish Technical Research
Council under the “Codesign” programme.
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Figure 1: The communication synthesis flow for point-to-point
communication.

2 Problem Formulation

Our synthesis approach is described in figure 1. The
figure outlines the different steps involved in synthesizing
a point-to-point communication. After system partitioning,
which also selects the high-level communication protocol
between the client and server, we first synthesize the server
as this is the task to be speeded up. When synthesizing the
server we may use traditional hardware synthesis in order to
create a new implementation or we may re-use an existing
module. Having synthesized the server, the next step is to
synthesize the channel from the selected media. The media
selection may be guided by the achieved server speed-up
and the system timing requirements, or it may be guided
from the system partitioning. Finally, we may synthesize
the client to complete our system.

This approach is different from the ones in [3, 7] where
both client and server are assumed implementedbeforein-
terface synthesis. In [3] both modules may, however, be
rescheduled to fulfill timing requirements. In [7] the focus is
to optimize the channel utilization by interleaving different
point-to-point communications on the same medium, re-



quiring extra wires for channel identification, i.e., a channel
alwayscontains separate wires for data, synchronization and
identification. Others, e.g., [1], have addressed the prob-
lem of interfacing standard components with incompatible
protocols.

The protocol selected during the partitioning phase pre-
scribes how and when to provide operands and pick up
results from the server in order to execute a particular server
operation. From the protocol description we may extract the
interface of the server, i.e., a one-sided interface describing
how the client has to interact with the server in order to
perform the server operation. The interface synthesis is
defined in terms of this interface description. Two interface
synthesis tasks may be identified;

1. Server implementationwhich transforms the abstract
interface description into an implementation defining
the exact sequence and timing of transfers.

2. Channel synthesiswhich maps the server interface to
the client-end of the channel, i.e., describing how to
transfer data and control to the server using the interface
of the channel. This task is also referred to as channel
mapping [9].

In this paper we are focusing onchannel synthesis, i.e., how
to obtain a physical implementation of the channel. Thus,
we assume that the server has already been implemented
and that the medium (or set of media) has already been
selected.

3 Interface Protocol Representation

The interface protocol to a module is specified as a
Protocol Flow Graph (PFG) which prescribes how and when
to provide input and receive output from a module. A PFG
may represent both abstract and concrete interface protocols;
An abstract interface protocol corresponds to an interface
at the specification level, i.e., before module synthesis.
The abstract PFG is extracted from the protocol description
obtained during partitioning. A concrete interface protocol
corresponds to an interface at the implementation level,
i.e., after module synthesis (scheduling and allocation). A
detailed description of the implementation of functional
modules and the relation to PFGs may be found in [4].

Figure 2a illustrates the abstract PFG for a fixed point
multiplier (FMULT) with data dependent execution time.
The PFG prescribe that the client has to send the valuesa

andb to the server, and when the flagd is raised the resultc
may be received by the client.

The interface protocol specified by a PFG may formally
be described in terms of communicationevents. Throughout
this paper we will use the notation based on communication
events to describe our interface synthesis approach, and
the graph based PFG notation to visualize various interface
protocols.

3.1 Interface Protocol Notation

A basic communication event is concerned with the
transfer of a single value;
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Figure 2: The Protocol Flow Graph for a fixed point multiplier: a)
Abstract view, b) Implementation view.

Definition 1 Lete be a basic event defined as:

e
4

= ?v j!v

wherev is a value to be transferred, and?v and!v prescribes
input and output values respectively.

As an interface protocol prescribes the order of value trans-
fers, we define the following temporal relations between
events;

Definition 2 Letopdenote a temporal relation between two
events, i.e.,e1 ope2. There are four relations; two serial
and two parallel:

op = ./ j .
n j ./k j k

Serial (
s)
ei ./ ej ei andej are executed sequentially in any

order.
ei .

n
ej ei and ej are executed sequentially and

with n � 1 cycles in between.n = 1
is denoted. and indicates consecutive
cycles. The case where any number of
cycles may elapse in between the two
events is denoted.�

Parallel (
p)
ei ./k ej ei and ej may be executed in parallel or

in any order.
ei k ej ei andej has to be executed in parallel.

In this contextparallel means simultaneously within the
same cycle, where a cycle is defined as the period between
to consecutive events on a synchronization signal, e.g., the
rising edge of a synchronous clock.

A set of value transfers which has to be transferred within
a givenfixednumber of cycles, is denoted atimed event, i.e,

Definition 3 A timed eventt is an event defined as:

t
4

= ?v j!v j e ope
where,

op 6= .
�

i.e., an event in whichno relation of type.� occurs.



Example 1: At the implementation view, a timed event
relates values to be transferred toactual cycles. This
means that in some cyclesno values are to be transferred.
Considering the example of a 4 cycle adder; in the first cycle
the two operandsa andb are transferred to the adder and in
cycle 4 the resultc is transferred from the adder. This may
result in the following timed event:

tADD = ((?a k ?b) .3 !c)

2

Synchronization is obtained through specialsynchroniza-
tion events. A synchronization event blocks the communi-
cation until some condition becomes true. The condition is
evaluated on values obtained through a set of value trans-
fers. This scheme corresponds to a generalization of the
implementation of handshaking as described in e.g., [7]. We
define the synchronization event as;

Definition 4 A synchronization eventw is an event which is
repeated until some boolean expression expr becomes true:

w
4

= (e : expr)+

the evente is always executed once.

theexpr is evaluated by the client on data obtained frome,
i.e., a synchronization event implements a polling mecha-
nism.

We can now give the complete definition of an event;

Definition 5 Let e be an event recursively defined as:

e
4

= ?v j!v j e ope j (e : expr)+

If an event describes the complete interface protocol to a
module, we will denote this event a PFG in order to relate
the two notations, i.e., PFG� e.

3.2 Server Interface

The interface to the server is described as a PFG. After
server synthesis, detailed information about the sequence
and timing of data and control transfers have been deter-
mined. This may be reflected in the PFG as illustrated
in figure 2b. Each timed event is now associated with an
instruction, which must be invoked in order to perform the
actual data transfer. The implementation view of the PFG
is an extended version of the protocol description used in
AMICAL [8].
Example 2: As an example, the PFG of figure 2a, i.e., the
specification view, may formally be expressed as:

PFGFMULT = ((?a ./k ?b) .
�
(!d : d = 1)+ .

� !c)

and the PFG of figure 2b, i.e., the implementation view, as:

PFGFMULT = ((?iTRF k ?a k ?b) .
�
(?iTEST k !d :

d = 1)+ .
�
(?iRES k !c))

Notice the introduction of instruction invocations in the
implementation view.
2
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Figure 3: The WRITE PFG of; a) a synchronous medium; b) an
asynchronous medium.

As previously stated, this paper is concerned with channel
synthesis assuming that the server has been synthesized.
Thus for the rest of this paper we are concerned with the
implementation view of PFGs, i.e., PFGs where op= .

n j
k .

3.3 Medium Interface

The communication medium,m, takes care of the phys-
ical data transport. Examples of communication media are
on-chip data busses, collections of wires or a VMEbus.
On an abstract level each medium provides the possibil-
ity of sending and receiving data. On a lower level each
medium specifies the protocol to send and receive data,
e.g., 4-phase handshake or fixed-delay, and the data size
to be transferred. In our representation each medium pro-
vides a READ (�!) and a WRITE (�?) operation for which
the low level interface is described by a PFG; PFGm;r

and PFGm;w respectively. Figure 3a shows the WRITE
operation for a synchronous medium; the implementation
view (?a .

2 ) specifies that the next data value cannot
be transferred until at least 3 cycles have elapsed. Fig-
ure 3b shows an example of an asynchronous medium;
PFGm;w = ((?req k ?a) .

�
(!ack : ack = 1)+) specifies

a handshake protocol where the valuesreq anda are send,
and where the next data value cannot be transferred until
ack has been received.

4 Channel Synthesis

A channel is an adaptation of a medium (or set of media)
to a client/server configuration. The channel is thus the
outcome of interface synthesis. The need for a channel
representation arises from the need to map the server PFG
to the client-end of the medium. In this context the channel
provides the necessary access operations in order for the
client to be able to invoke an operation in the server.

The adaptation of a medium to a client/server configura-
tion requires control logic and memory at the server-end of
the medium.

The mapping of the server PFG to the client-end is done
in two steps:

1. Expand the server PFG according to the bit-width of
the medium. This involves the possible expansion of



both timed events and values.

2. Substitute the send/receive events with the corre-
sponding medium WRITE/READ PFGs; PFGm;w and
PFGm;r .

Example 3: Consider the server timed eventt = (?a . ?b)
and a synchronous mediumm = (?w .2

) (see figure 3a)
with a bit-widthof 8, then table 1 shows the steps involved in
mapping the server PFG to the client-end for three different
bit-width of a and b. In the second mapping, we have to
segmenta andb in step 1, as they are both 16 bits wide and
the medium can only transfer 8 bits at a time. In the third
mapping,a and b may be combined in step 1 as they are
both 4 bits wide and thus, fits into a single transfer.
2

The example illustrates data and eventsegmentationas well
as datacombination. In order to identify these situations,
we need a way to deduce the bit-width of values, events and
the medium.

Definition 6 Let �(X) be the number of bits necessary to
represent the data contained inX, whereX may be an event
(e), a value (v), or a medium (m):

�(v)
4

= number of bits needed to represent valuev.

�(?v)
4

= �(v)

�(!v)
4

= �(v)

�(ei opej)
4

=
n

max(�(ei); �(ej)) for op2 
s

�(ei) + �(ej) for op2 
p

�(m)
4

= number of bits available in mediumm.

Definition 7 The density of a transferv in the context of a
mediumm is defined as:

�(v)
4

=
�(v)

�(m)

i.e.,�(v) states how much of the medium, in terms of bits,
that has to be used in order to fulfill the required transfer
of valuev. Thus,�(v) indicates whether a transfer has to
be segmented (�(v) > 1) or may be used in combination
with other transfers (�(v) < 1). These are the basic
transformations involved in step 1.

As two or more values transferred in a single cycle may
be viewed as a singleeffectivevalue, we define theeffective
eventas:

Definition 8 An effectiveeventeeff is an evente in which,

eeff
4

= e[vi k vj=vivj]

the new valuevivj is denoted acombinedvalue.

From the definition of�(e) we can now formulate the

transformation of step 1, i.e.,e
1
; e0.

Axiom 1 (Expansion)
Data segmentation:

9v 2 eeff : �(v) > 1 : v ; v1 . v2 . : : : . vn

ba

w r

Figure 4: Medium PFGs for a synchronous 8-bit bus; a) PFGm;w;
b) PFGm;r .

wheren = d�(v)e.

Data combination:

9vi opvj 2 eeff : �(vi) + �(vj) � 1 : vi opvj
1
; vi k vj

If v is a combined value we have to consider the original
values ofv when doing the segmentation.

The transformation of step 2 is straight forward:

Axiom 2 (Substitution)

8?vi; !vj 2 e :

vi
2
; v

0

i = PFGm;w [w=vi];

vj
2
; v

0

j = PFGm;r [r=vj]

5 Hardware Generation

The original server PFG still specifies how to perform
the wanted operation at theserver-endof the medium.
Thus, hardware is needed to store data at the server-end,
and to control when enough data has been transferred in
order to execute the server operation. To explain the
hardware generation, consider a simple case where the
communication media is a synchronous 8-bit bus able of
transferring data within a single clock cycle. In this case
the READ and WRITE operations take 8-bit arguments and
the corresponding PFGs consists of a single timed event as
shown in figure 4. The operation we want to invoke is the
FMULT1 operation of figure 2b which has two 8-bit input
arguments and one 16-bit output argument. The first timed
eventt1 = (?iTRF k ?a k ?b) of PFGFMULT specifies that the
two input argumentsa and b should be transferred in the
same cycle, along with a control code that must be assigned
to the server control port in order to execute instructioniTRF.
However, as:

t1;eff = (iTRFab) ; �(iTRFab) =
19
8

> 1

the media only allows one argument to be transferred in
each cycle. To encompass this limitation we need a buffer
and a control unit (FSM) on the server-end of the channel.
The control unit will examine the output of the medium until

1A detailed discussion of this and other examples may be found in a
full version of this paper.



bit-width
m a b server PFG client-end PFG

8 8 8 (?a . ?b)
1
; (?a . ?b)

2
; ((?a .2 ) . (?b .2 )) � (?a .3 ?b .2 )

8 16 16 (?a . ?b)
1
; ((?a1 . ?a2) . (?b1 . ?b2))

2
; (?a1 .

3 ?a2 .
3 ?b1 .

3 ?b2 .
2 )

8 4 4 (?a . ?b)
1
; (?a k?b)

2
; ((?a .2 ) k (?b .2 )) � ((?a k ?b) .2 )

Table 1: Steps involved in mapping a server PFG to the client-end for different bit-width of data values and medium.
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it recognizes a control code signifying that it should buffer
a number of arguments and execute a server instruction.
Figure 5a shows the buffer and control unit that handle
execution of theiTRF instruction. Figure 5b shows the FSM
that controls the buffering and server execution. Seen from
the client-end, theiTRF instruction has now been changed
so as to execute in three cycles as shown in figure 5c.
This example illustrates the main principle of the hardware
generation.

The output of data from the server, as in theiTEST
instruction, requires that the client sends an appropriate
control code to the server-end FSM. The FSM will then
execute the server instruction, buffer the results and send
them to the client in the following cycles. If a result is
wider than the media it must be segmented at the server-end
and reassembled at the client-end. For the third timed event
t3 = (?iRES k ?c) we have:

t3;eff = (iRESc) ; �(iRESc) =
19
8

> 1

which means that we have to expandt3;e� into
d�(iRESc)e = 3 transfers. Ast3 only contains 2 values,
both expansion and data segmentation has to take place,

�(iRES) =
3
8
< 1 ; �(c) =

16
8

= 2 > 1

i.e.,c has to be segmented into 2 value transfers,c1 andc2.
Result segmentation is controlled by the server-end FSM.

A synchronization event specifies a test to be performed
by the client. As the values necessary to evaluate the
synchronization condition have already been acquired by
means of transfers, the actual synchronization is unaffected
by the choice of media. The actual implementation of a syn-
chronization event depends on wheter a part of the medium
can be allocated synchronization, as assumed in [7].

Example 4: Figure 6 shows the resulting client-end PFG
and implementation of the FMULT example. Formally the
client-end PFG may be written as:

PFGFMULT = ((?iTRF . ?a . ?b) .
� (?iTEST . !d : d = 1)+

.
� (?iRES. !c1 . !c2))

2

6 Conclusion and Future Work

We have presented an approach to interface synthesis
based on a one-sided interface model. In the context of this
model, transformations involved in solving the interface
synthesis problem has been presented. In particular we
have focused on channel synthesis, i.e., the process of
transforming the server PFG into a client-end PFG, as a
direct mapping. However, interface synthesis consists of
both transformations andoptimizations.

If the medium is able to transfer data within a single
cycle (as is the case in figure 6, one buffer and a state for
each instruction may be saved as the instruction execution
may take place in the same cycle as the last value transfer.

Even-though the sequence of data transfers to the server
is fixed, data may be send inany order over the medium,
increasing the possibility of data combination, and/or giving
the client synthesis the freedom to select the order. These
are topics for further investigation.

Finally, our approach may be used to solve the traditional
interface problem in which both client and server has been
implemented prior to interface synthesis. In this case we
need to introduce hardware (i.e., FSM and buffers) on the
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Figure 6: Client-end PFG and implementation of the FMULT example.

clientside in order to transform the client-end PFG back to
the original server PFG, i.e., introducing an extra step in the
channel synthesis.
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