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Abstract [System

This paper present a novel interface synthesis approach
based on a one-sided interface description. Whereas most
other approaches consider interface synthesis as optimizing
a channel toexisting client/server modules, we consider & Protocol
the interface synthesis as part of the client/server module [System

synthesis (which may contain the re-use of existing mod- s ——
ules). The interface synthesis approach describes the basic @
transformations needed to transform the server interface

description into an interface description on the client side T

of the communication medium. The synthesis approach is Sj’mhesis Module

illustrated through a point-to-point communication, but is Library
Spec. Impl.

applicable to synthesis of a multiple client/server environ- System
ment. The interface description is based on a formalization
of communicatiomevents
Medila Media II
1 Introduction Synthesis Selection Library
System J,

System level design may be viewed as the process of Channel H S }
mapping a conceptual model into a physical structure of
cooperating components. In this view a system is considered
as a set of servers and clients that communicate via arigure 1: The communication synthesis flow for point-to-point
communication medium. communication.

In this paper we address the problem of automatically
obtaining a customized implementation of the interface
between client/server modules, termiaterface synthesis 2 Problem Formulation
The main motivation is to adapt the interface during system
implementation, rather than havindiged communication . : : I
architecture as is the case in most hardware/software code. OUr synthesis approach is described in figure 1. The

i h a. 1 hich i figure outlines the different steps involved in synthesizing
;c,rl]gr;pae%plr/(gc es, eg., [2,5, 6] which are using memorya point-to-point communication. After system partitioning,

The simplest system consists of a single client invoking Yhich also selects the high-level communication protocol
one operation from a server, i.e., a point-to-point com- between the client and server, we first synthesize the server
munication. This corresponds to the traditional view of @S this s the task to be speeded up. When synthesizing the
hardware/software codesign where we initially have an SErVerwe may use traditional hardware synthesis in order to
application which can not fulfill some given timing re- Créaté a new implementation or we may re-use an existing
quirements. In order to meet these timing requirements, amedule. Having synthesized the server, the next step is to
subtask suitable for speedup is identified and moved to ansylnthesme the channel from ﬂ;]e selﬁptedénema. The mdedla
other module (hardware or software) capable of achieving S€lection may be guided by the achieved server speed-up

the required speedup. I.e., the original application becomesdNd the system timing requirements, or it may be guided

a client which has to invoke the server in order to complete [T0M the system partitioning. Finally, we may synthesize
its computation. the client to complete our system.

We present a general interface model and an approaci’boThiS approach is different from the ones in [3, 7] where

to interface synthesis which allows for communication op- 2oth client and server are assumed implemebtgfdrein-
timization during client/server synthesis. terface synthesis. In [3] both modules may, however, be

rescheduled to fulfill timing requirements. In[7]the focusis

*This research has been sponsored by the Danish Technical Researck® Optimize the channel utilization by interleaving different
Council under the “Codesign” programme. point-to-point communications on the same medium, re-
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quiring extra wires for channel identification, i.e., a channel

a b
alwayscontains separate wires for data, synchronizationand \ / —

identification. Others, e.g., [1], have addressed the prob-

lem of interfacing standard components with incompatible 2 —
protocols. ; ;

The protocol selected during the partitioning phase pre- i v v
scribes how and when to provide operands and pick up ’ ‘ SN s AR
results from the server in order to execute a particular server - N . J SYNC
operation. From the protocol description we may extractthe ! |
interface of the server, i.e., a one-sided interface describing Y v
how the client has to interact with the server in order to @ S e
perform the server operation. The interface synthesis is e
defined in terms of this interface description. Two interface c
synthesis tasks may be identified;

a b

1. Server implementatiowhich transforms the abstract

interface description into.ar.‘ implementation defining Figure 2: The Protocol Flow Graph for a fixed point multiplier: a)
the exact sequence and timing of transfers. Abstract view, b) Implementation view.

2. Channel synthesiwhich maps the server interface to
the client-end of the channel, i.e., describing how t0 pafinition 1 Lete be a basic event defined as:
transfer data and control to the server using the interface '
of the channel. This task is also referred to as channel

mapping [9].
. . , wherev is avalue to be transferred, artd and!v prescribes
In this paper we are focusing ehannel synthesise., how input and output values respectively.

to obtain a physical implementation of the channel. Thus,

we assume that the server has already been implementeds an interface protocol prescribes the order of value trans-
and that the medium (or set of media) has already beenfers, we define the following temporal relations between
selected. events;

e 2 2 |lv

Definition 2 Letopdenote a temporal relation between two
events, i.e.¢; ope,. There are four relations; two serial
3 Interface Protocol Representation and two parallel:
. . y op = sa|o" | i |[]

The interface protocol to a module is specified as a |
Protocol Flow Graph (PFG) which prescribes how and when Serial (%) o
to provide input andeceive output from a odule. A PFG ei >4 ¢ 6i§”d6j are executed sequentially in any
may represent both abstract and concrete interface protocols; ~ ,, ~ order - :
An abstract interface protocol corresponds to an interface ¢ © € \(j\l/it%ng K 1ar(e:3 géic?;ege?\fvgléﬁngaﬂy fnd
at the specification level, i.e., before module synthesis. is denotedDyand indicates co'nse?:utive
The abstract PFG is extracted from the protocol description cycles. The case where any number of
obtained during partitioning. A concrete interface protocol cycles' mav_elapse in between the two
corresponds to an interface at the implementation level, e¥/ents is d)e/note%*
i.e., after module synthesis (scheduling and allocation). A parallel (G9)
detailed description of the implementation of functional e;the; ¢ ande; may be executed in parallel or
modules and the relation to PFGs may be found in [4]. in any order.

Fi_gqre 2a iIIustrates the abstract PFG for a fixed _point ei || ¢; e ande; has to be executed in parallel.
multiplier (FMULT) with data dependent execution time.
The PFG prescribe that the client has to send the values . . o
andb to the server, and when the fldgs raised the resuit In this contexiparallel means simultaneously within the
may be received by the client. same cycle,_ where a cycle is deflned_as phe perlod between

The interface protoco| Speciﬁed by a PFG may forma”y tO ponsecutlve events on a SynChronlzatlon Slgnal, e.g., the
be described in terms of communicatevents Throughout ~ 'ising edge of a synchronous clock. o
this paper we will use the notation based on communication A set of value transfers which has to be transferred within
events to describe our interface synthesis approach, and givenfixednumber of cycles, is denotedianed eventi.e,
:)hrgt%rca(ljplg based PFG notation to visualize various interfacepefinition 3 A timed event is an event defined as:

t
where,

. _ . . 0 >
A basic communication event is concerned with the P #
transfer of a single value; i.e., an event in whichorelation of typer* occurs.

. ?v |lv | e ope
3.1 Interface Protocol Notation

*



Example 1: At the implementation view, a timed event
relates values to be transferred actual cycles. This
means that in some cycle® values are to be transferred.
Considering the example of a 4 cycle adder; in the first cycle
the two operands andb are transferred to the adder and in
cycle 4 the result is transferred from the adder. This may
result in the following timed event:

taoD ((?a || 2) 5> 1c)

Synchronizationis obtained through spesiaichroniza-
tion events. A synchronization event blocks the communi-
cation until some condition becomes true. The condition is

1 req
v

a— | '
—] ;e
‘ ack<=-{__ ] \ i
v o
a b

Figure 3: The WRITE PFG of; a) a synchronous medium; b) an
asynchronous medium.

evaluated on values obtained through a set of value trans- ) ) ) )
fers. This scheme corresponds to a generalization of theAs previously stated, this paper is concerned with channel
implementation of handshaking as described in e.g., [7]. WeSynthesis assuming that the server has been synthesized.

define the synchronization event as;
Definition 4 A synchronization event is an event whichis

repeated until some boolean expression expr becomes true

(e :expnt
the event is always executed once.

w

the ezpr is evaluated by the client on data obtained fram
i.e., a synchronization event implements a polling mecha-
nism.

We can now give the complete definition of an event;

Definition 5 Lete be an event recursively defined as:

e 2 1o | eope | (e: exppt

If an event describes the complete interface protocol to agperation

module, we will denote this event a PFG in order to relate
the two notations, i.e., PF& e.

3.2 Server Interface

Thus for the rest of this paper we are concerned with the
implementation view of PFGs, i.e., PFGs where-op>-" |

-

3.3 Medium Interface

The communication mediumy, takes care of the phys-
ical data transport. Examples of communication media are
on-chip data busses, collections of wires or a VMEbus.
On an abstract level each medium provides the possibil-
ity of sending and receiving data. On a lower level each
medium specifies the protocol to send and receive data,
e.g., 4-phase handshake or fixed-delay, and the data size
to be transferred. In our representation each medium pro-
vides a READ £!) and a WRITE ¢?) operation for which
the low level interface is described by a PFG; RFEG
and PFG, . respectively. Figure 3a shows the WRITE
for a synchronous medium; the implementation
view (7« >?) specifies that the next data value cannot
be transferred until at least 3 cycles have elapsed. Fig-
ure 3b shows an example of an asynchronous medium;
PFG, v = ((?req || 2a) o* (Yack : ack = 1)T) specifies
a handshake protocol where the valuegsanda are send,

The interface to the server is described as a PFG. Afterand where the next data value cannot be transferred until
server synthesis, detailed information about the sequence:ck has been received.

and timing of data and control transfers have been deter-

mined. This may be reflected in the PFG as illustrated
in figure 2b. Each timed event is now associated with an
instruction, which must be invoked in order to perform the
actual data transfer. The implementation view of the PFG
is an extended version of the protocol description used in
AMICAL [8].

Example 2: As an example, the PFG of figure 23, i.e., the
specification view, may formally be expressed as:

PFGemuLt
and the PFG of figure 2b, i.e., the implementation view, as:

PFGemuLt ((?iTRF || ?a || ';b) B* (?iTEST || Id :
d=1% o (Zres ||!¢))

((Patp ) »* (Md:d=1)" " 1c)

Notice the introduction of instruction invocations in the
implementation view.
O

4 Channel Synthesis

A channel is an adaptation of a medium (or set of media)
to a client/server configuration. The channel is thus the
outcome of interface synthesis. The need for a channel
representation arises from the need to map the server PFG
to the client-end of the medium. In this context the channel
provides the necessary access operations in order for the
client to be able to invoke an operation in the server.

The adaptation of a medium to a client/server configura-
tion requires control logic and memory at the server-end of
the medium.

The mapping of the server PFG to the client-end is done
in two steps:

1. Expand the server PFG according to the bit-width of
the medium. This involves the possible expansion of



both timed events and values.

2. Substitute the sendfteive events with the corre- W%E\V/j réd:]

sponding medium WRITE/READ PFGs; PEG, and ‘ |

PFG, ,. ; ;
Example 3: Consider the server timed event (?a > %)
and a synchronous medium = (?w »2) (see figure 3a) a b

with a bit-width of 8, then table 1 shows the stepsinvolvedin

mapping the server PFG to the client-end for three different Figure 4: Medium PFGs for a synchronous 8-bit bus; a) REG
bit-width of « andb. In the second mapping, we have to b) PFG,, ;.

segment: andb in step 1, as they are both 16 bits wide and

the medium can only transfer 8 bits at a time. In the third

mapping,a andb may be combined in step 1 as they are wheren = [¢(v)].

both 4 bits wide and thus, fits into a single transfer.

O Data combination:

The example illustrates data and eveegmentatioas well N

as datacombination In order to identify these situations, 3vi 0pv; € eefi : o(vi) + o (v;) < L1wvi0pvy ~+ v; || v;

we need a way to deduce the bit-width of values, events and

the medium.

Definition 6 Let 3(X) be the number of bits necessary to !f v is a combined value we have to consider the original
represent the data contained }, whereX may be anevent ~ Values ofv when doing the segmentation. _

(e), a value ¢), or a medium#): The transformation of step 2 is straight forward:

Axiom 2 (Substitution)

B(v) £ number of bits needed to represent value
A Vv, loy €Ee:
B(20) = Bv) 2
N Vi~ ’Ul/' = PFGmyw[’w/’Ui],
Bllo) = B(v) 2 v = PFG,
Sleiope,) 2 1 maxle).Ble)) forope o, v 0y = PRGlr/v)]
: J (es) + Bley) forop e @,
#(m) = number of bits available in medium.

Definition 7 The density of a transferin the context of a 5 Hardware Generation
mediumm is defined as:
The original server PFG still specifies how to perform
a  Blv) the wanted operation at theerver-endof the medium.
o(v) = 3(m) Thus, hardware is needed to store data at the server-end,
and to control when enough data has been transferred in
. tates h h of th di int f bit order to execute the server operation. To explain the
i.e., a(v) states how much of the medium, in terms of bits, parqware generation, consider a simple case where the
that has to be used in order to fulfill the required transfer communication media is a synchronous 8-bit bus able of
of valuev. Thus,s(v) indicates whether a transfer has to transferring data within a single clock cycle. In this case
be segmenteds(v) > 1) or may be used in combination the READ and WRITE operations take 8-bit arguments and
with other transfers {(v) < 1). These are the basic the corresponding PFGs consists of a single timed event as
transformations involved in step 1. shown in figure 4. The operation we want to invoke is the
As two or more values transferred in a single cycle may FMULT?! operation of figure 2b which has two 8-bit input
be viewed as a singkffectivevalue, we define theffective arguments and one 16-bit output argument. The first timed

eventas: eventty = (Zitre || 72 || %) of PFGemuct Specifies that the
_— . . . : two input arguments andb should be transferred in the
Definition 8 An effectiveeventee is an event inwhich,  same cycle, along with a control code that must be assigned
to the server control portin order to execute instructigs.
P e[vi || vj/viv;] However, as:
the new value;v; is denoted a&ombinedvalue. tierf = (itrRrab) ,  o(itreab) = 1—89 >1

From the definition ofs(c) we can now formulate the  {he media only allows one argument to be transferred in

transformation of step 1, i_ee,«ﬂ e each cycle. To encompass this limitation we need a buffer

. ) and a control unit (FSM) on the server-end of the channel.
Axiom 1 (Expansion) The control unitwill examine the output of the medium until
Data segmentation:

1A detailed discussion of this and other examples may be found in a
dv Eeeffio(v)>1 @ v~ v1 B V2> ... DV, full version of this paper.



bit-width
m | a ] b serverPFG client-end PFG
8| 8] 8| (%) & (2uv) (Zap?) b (p2)) = (ap® Bp?)
8|16 |16 (ac?) & (201> 2u2) & (1o Pbo)) (Pa152 2553 %103 Mo p?)
8| 4] 4| (we?) X (2| ((Pav?) || (B12)) = (% || %)p?)

FNENEN

Table 1: Steps involved in mapping a server PFG to the client-end for different bit-width of data values and medium.

FSM Server which means that we have to expand.; into

[o(iresc)] = 3 transfers. Asz only contains 2 values,
R both expansion and data segmentation has to take place,

DATA . 3 16
Buffer o(ires) = 8 <1l , o(c)= 3= 2>1
— R

R ; ;
BUF[BUF i.e.,c has to be segmented into 2 value transfergndc,.
Result segmentation is controlled by the server-end FSM.
A synchronization event specifies a test to be performed
a) by the client. As the values necessary to evaluate the
synchronization condition have already been acquired by
means of transfers, the actual synchronization is unaffected
by the choice of media. The actual implementation of a syn-

Media
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) chronization event depends on wheter a part of the medium
\MED'A'DA“" free) can be allocated synchronization, as assumed in [7].
TRF

-

bee =

) Example 4: Figure 6 shows the resulting client-end PFG
b —=s and implementation of the FMULT example. Formally the
client-end PFG may be written as:

N

BUF, := MEDIA.DATA
SERVERR =1

SERVERP, := BUF, @ ' . +
SERVERR, := BUR l PFGwmuer = ((Zitre> 2a> ) o (Zitest>!d 1 d = 1)

BUF, := MEDIA.DATA .
! [>* (?ZR|53> !Cl > !Cz))

b) c)

Figure 5: Channel hardware: a) overview, b) control unit FSM, c) 6 Conclusion and Future Work
client-end PFG.
We have presented an approach to interface synthesis
based on a one-sided interface model. In the context of this
it recognizes a control code signifying that it should buffer model, transformations involved in solving the interface
a number of arguments and execute a server instructionsynthesis problem has been presented. In particular we
Figure 5a shows the buffer and control unit that handle have focused on channel synthesis, i.e., the process of
execution of theérgrr instruction. Figure 5b shows the FSM transforming the server PFG into a client-end PFG, as a
that controls the buffering and server execution. Seen fromdirect mapping. However, interface synthesis consists of
the client-end, thérgr instruction has now been changed both transformations anmptimizations
so as to execute in three cycles as shown in figure 5c¢. If the medium is able to transfer data within a single
This example illustrates the main principle of the hardware cycle (as is the case in figure 6, one buffer and a state for
generation. each instruction may be saved as the instruction execution
The output of data from the server, as in thesrt may take place in the same cycle as the last value transfer.
instruction, requires that the client sends an appropriate Even-though the sequence of data transfers to the server
control code to the server-end FSM. The FSM will then js fixed, data may be send amy order over the medium,
execute the server instruction, buffer the results and Se”(#ncreasingthe possibility of data combination, and/or giving

them to the client in the following cycles. If a result is ihg client synthesis the freedom to select the order. These
wider than the media it must be segmented at the server-en re topics for further investigation.

and reassembled at the client-end. For the third timed even X .
{3 = (?ires || 2) we have: Finally, our approach may be used to solve the traditional

interface problem in which both client and server has been
, , 19 implemented prior to interface synthesis. In this case we
taet = (1Res) , o(iresc) = 8~ 1 need to introduce hardware (i.e., FSM and buffers) on the
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©

l BUFR, := MEDIA.DATA
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l BUR := MEDIA.DATA

©

SERVERR,, :=1
SERVERR, := BUR,

SERVERR,:= BUR,

ERVERR =2
UR, := SERVER.R

::W(ﬂ.g

MEDIA.DATA := BURy

Server-end FSM

Figure 6: Client-end PFG and implementation of the FMULT example.

clientside in order to transform the client-end PFG back to [5]
the original server PFG, i.e., introducing an extra step in the
channel synthesis.
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