
Scheduling and resource binding for low power

E. Musoll and J. Cortadella
Department of Computer Architecture
Universitat Politècnica de Catalunya

08071-Barcelona, Spain

Abstract
Decisions taken at the earliest steps of the design pro-

cess may have a significant impact on the characteristics of
the final implementation. This paper illustrates how power
consumption issues can be tackled during the scheduling
and resource-binding steps of high-level synthesis. Algo-
rithms for these steps targeting at low-power data-paths
and trading off, in some cases, speed and area for low
power are presented.

The algorithms focus on reducing the activity of the func-
tional units (adders, multipliers) by minimizing the transi-
tions of their input operands. The power consumption of
the functional units accounts for a large fraction of the
overall data-path power budget.

1 Introduction
Current VLSI technology allows circuits with more and

more functionality to be integrated in just one chip. Nowa-
days, portable applications are not only wrist clocks or
calculators but multi-media terminals, mobile telephones
and other real-time systems. These new applications are
based on intensive data-path tasks such as video compres-
sion, speech recognition and other digital signal processing
tasks. The portable feature of these applications imposes
a limit on power consumption whereas the real-time char-
acteristic forces the designer to comply with the required
throughput.

Power consumption can be taken into account at differ-
ent levels in the design process [4]: technological, topo-
logical, architectural and algorithmic levels. High-level
synthesis (HLS) comprises techniques at the architectural
and algorithmic level. Design decisions taken in the HLS
process have a significant impact on the quality of the fi-
nal implementation. Traditionally, HLS has been applied
to obtain small and fast designs, but including power con-
sumption as one of the design parameters or constraints has
rarely been addressed.

Preliminary studies in the HLS steps of scheduling and
resource binding [9] targeting at low power reported in [14]
have guided the algorithms presented in this paper.

The main target for reducing power consumption is the
set of functional units (adders, multipliers) because its
power consumption accounts for a large fraction of the
overall data-path power budget. The algorithms attempt to
reduce the activity of the functional units by minimizing
the switching activity of their input operands.

Models derived from switch-level simulations of the
main data-path components (functional, interconnection

and storage units) [14] will be used to estimate the power
reduction achieved with the algorithms.

The paper is organized as follows: in Section 2, pre-
vious work on low-power circuits with special insight in
high-level techniques is briefly presented. Section 3 dis-
cusses how the functional units consume power in data-path
intensive systems. It briefly describes the scheduling and
resource-binding tasks along with the basic ideas behind
the algorithms presented in the paper. Sections 4 and 5 de-
scribe how the scheduling and resource-binding algorithms
for low power are implemented. Results are presented for
some benchmarks. Power reduction results are obtained
by comparing traditional scheduling and resource-binding
methods with ours targeting at low power. Section 6 con-
cludes the paper.

2 Previous work
Most of the efforts in HLS for low power propose models

and estimations of power consumption at algorithmic and
architectural level [12, 13, 2, 6, 15].

Few authors have addressed the set of transformations at
algorithmic and architectural level to obtain lower-power
designs. In [5],the power consumption of additions and
constant multiplications as a function of the operand ac-
tivity is studied. From this study, a data flow graph trans-
formation is derived for a typical operation in signal pro-
cessing applications. In [21], some memory transforma-
tions for low power systems are hinted. The aim of these
transformations is to reduce the number of off-chip ref-
erences. In [3], the traditional transformations for faster
and smaller circuits are applied in order to evaluate the
power-consumption savings. Whenever the resulting cir-
cuit is faster than the required throughput, power-supply
reduction can be applied to take advantage of its quadratic
impact on consumption.

High-level synthesis for low power has been addressed
in [17, 7, 14]. In [17], an allocation method that attempts
to reduce both the capacitance and switching activity of the
synthesized design is presented. In [7], a scheduling and
binding technique for reducing the activity in the buses is
described.

The algorithms presented in this paper are based on pre-
liminary results reported in [14], where high-level synthesis
techniques for reducing the activity of functional units are
also described and their potential benefits evaluated.

3 Power consumption of the functional units
Power consumption in the data-path accounts for a large

fraction of the overall system power budget. Among the



0

1

2

3

4

5

6

-128 -64 -32 0 32 64 127

nJ=
op:

Unchanged operand

8�8-bit Radix-4 Booth multiplier

(1)

(2)
(3)

7

O

*

8x8-bit Radix-4 Booth multiplier

2
4

6
8H(x)

2
4
6
8H(y)

0
2
4
6

8

nJ/op.

2
4

6
8H(x)

2
4
6
8H(y)

(a) (b)
Figure 1: Energy of a multiplier as a function of the (a) operand repetition and (b) operand activity.

Benchmark +/� 
;� idle

1 AR filter [11] 12/16 1 p. � (2 cycles) 27%
1
 (1 cycle)

2 4th-order Daubechies 12/16 1
 (2 cycles) 37%
Wavelet filter [16] 1� (1 cycle)

3 1-D 8-input 28/13 4
 (2 cycles) 40%
Lee DCT [18] 3� (1 cycle)

4 4� 4 matrix 4/8 2
 (2 cycles) 33%
multiplication 1� (1 cycle)

5 loop-unrolled low-pass 24/0 4� (1 cycle) 25%
image filter [14]

6 LMS adaptive 8/9 2
 (2 cycles) 45%
filter [19] 1� (1 cycle)

7 pixel 5/0 3� (1 cycle) 44%
interpolation [1]

8 5th-order Wave 26/8 1
 (2 cycles) 33%
filter [8] 1� (1 cycle)

Table 1: Idle time spent by the functional units for some
high-level synthesis benchmarks assuming a schedule with
the number of functional units in the third column. The
total number of operations for each benchmark is shown in
second column.

different types of units that compose a data-path, power
consumption is mainly considered in the functional units
due to their large contribution to the power consumption of
the data-path.

The power consumption of a functional unit depends on
the operand variability of its inputs. Figure 1 illustrates this
fact for an 8�8 radix-4 Booth multiplier [10].

In Figure 1(a), plot (3) represents the energy of the mul-
tiplier in nJ=operation when one operand remains un-
changed (x axis) with respect to the previous operation and
the other operand varies randomly1. Line (2) is the average
of plot (3) and line (1) is the average energy when both
operands vary randomly with respect to the previous op-
eration. Comparing lines (1) and (2), the average power
consumption of the multiplier is approx. 35% less when
one operand remains unchanged.

Figure 1(b) represents the energy in nJ=operation
as a function of the average Hamming distance
(AHD) of the operands defined as AHD(x) =

lim n!1

P
n

i=1
H(xi;xi�1)

n
, where H(p; q) is the Hamming

1Although data is correlated for some of the HLS applications, we fo-
cus on fairly compare the relative benefits of different circuit descriptions.

distance between p and q and xi is the value of operand x
in cycle i. Obviously, the power consumption tends to zero
when the AHD of both operands tends to zero. The power
consumption in the multiplier with an AHD of its operands
of 4 and 2 is approx. 25% less than with AHD values of 4
and 6.

A functional unit in a data-path consumes both useful
and useless power. It consumes useful power when it is
executing an operation and consumes useless power when
there is an input operand transitionwhile the functional unit
is idle. The control unit is usually synthesized using don’t
care values to minimize area or increase speed. Thus, an
idle functional unit may have input operand changes due to
the variation of the selection signals of multiplexers.

Useless power is specially important in data-paths syn-
thesized from sparse schedules. A schedule is said to be
sparse if its unit occupation is relatively low. Table 1
presents the functional unit occupation for some bench-
marks.

The power consumption of a functional unit (idle or
not) depends on the operand variability of its inputs. In
the sequel, we will distinguish between operand activity
and operand repetition. Both concepts are related to the
variability of the bit-pattern that represents the operand.
Operand activity relates to the variability of the bit-pattern
of one operand from one cycle to the next. Operand repeti-
tion relates to the coarse-grained variability of the operand,
i.e. the operand may or may not change between two con-
secutive cycles.

Figures 1(a) and 1(b) illustrate how the power con-
sumption of a multiplier can be studied as a function of
its operand repetition and operand activity respectively.

Simple power-consumption models have been derived
for each of the main data-path components as a function of
the operand repetition and operand activity [14].

Since we focus on data-path circuits, whenever we refer
to the power consumption of a design we mean the energy
per operation executed by that design. Data-path circuits
have a fixed throughput and, therefore, the energy/operation
is the best metric that quantifies the energy efficiency for
these type of circuits [2].

3.1 Scheduling and resource binding for low
power: basic ideas

The HLS process is divided in three basic tasks [9]: allo-
cation, scheduling and resource binding. The latter task is



itself decomposed into functional, storage and interconnec-
tion unit binding steps, all of them tightly related to each
other. They are usually ordered and executed sequentially
due to the high complexity of the resource-binding task.

Two traditional approaches for the scheduling and
resource-binding tasks have been modified to target at low-
power designs and their algorithms are presented in this
paper. Both algorithms attempt to reduce power consump-
tion only in the functional units. They do not address the
reduction of power in I/O, clocks or data transfers.

The scheduling algorithm for low power uses a list-
scheduling approach where the priorities of the operations
of the ready-operation queue are set in such a way that op-
erations sharing the same operand are scheduled in control
steps as close as possible. Thus, the potential for a func-
tional unit to reuse the same input value (and, therefore, to
decrease its input activity) is higher.

The resource-binding algorithm for low power is based
on a clique partition of a restricted variable-lifetime com-
patibility graph to obtain a register set that, for each func-
tional unit, reduces the power consumption during idle cy-
cles. Power consumption in functional units during non-
idle cycles is further decreased by taking into account the
AHD among the variables of the behavioral description and
the commutative property of some operations.

Although the scheduling technique will obtain better
improvements if applied to dense schedules (e.g. sched-
ules where the functional unit occupation is high) and
the resource-binding technique is more suitable to sparse
schedules, both techniques are compatible and complemen-
tary.

4 Scheduling for low power
The goal of the scheduling algorithm for low power is

to increase the potential for a functional unit (FU) to reuse
an operand. Henceforth, we will call operand reutilization
(OPR) the fact that an operand is reused by two operations
consecutively executed in the same FU.

1

2

3

4

cycle

1 A1

A1

A1

A1

2

3

4

5 A2

(a)

1

2

3

4

cycle

1
A1

A1

2

3

4 5 A1

A2

A2

(b)

Figure 2: (a) One possible schedule and FU binding with
no OPRs assuming two adders and (b) improved schedule
and FU binding with 2 OPRs.

Figure 2, where two schedule and FU bindings of a sim-
ple data-flow graph (DFG) are shown, illustrates the OPR
concept. There are some operations in the DFG whose re-
sult is the input for more than one operation. For example,
the result of addition 1 is input for additions 2 and 4. As-
sume that additions 2 and 4 are assigned to the same adder
A. Assume also that between the execution of addition 2
and 4 there is no other use of adder A. Then, one of the
operands of adder A will not change from addition 2 to
addition 4.

Figure 2(a) shows a schedule and an FU binding with
two adders obtained with a traditional list-scheduling algo-
rithm (LS) for the scheduling task and a clique-partitioning
approach with weights to minimize the number of inter-
connection units for the FU-binding task. None of the two
OPRs are achieved.

Figure 2(b) shows the schedule and FU bindingobtained
with the list-scheduling algorithm for low power (LPLS)
for the scheduling task and a slightly different approach to
the clique-partitioning for the FU-binding task. Now both
OPRs are achieved.

LPLS also trades off latency for OPRs. This idea is also
illustrated in Figure 2. If addition 5 happens to be in the
critical path, the schedule and FU binding in Figure 2(c)
has one more cycle of latency than the one in Figure 2(b).
4.1 LPLS key features

Some heuristics have been included in the traditional
list-scheduling algorithm (Figure 3(a)) to obtain its low-
power version (see Figure 3(b) for a simplified algorithm).
Algorithms in Figure 3 follow the notation in [9].

Those operations that share an operand are grouped
in operand-sharing sets (henceforth, SS) (CREATE ALL SS()).
All operations of a group (IS OSS()) can be executed on the
same FU. An operation of an SS is able to reserve the FU
where it is going to be assigned for the rest of its SS in
case it has not one reserved yet (RESERVE FU IN SS()). Given
an SS and its reserved FU, in the best case jSSj � 1 OPRs
can be obtained. All these consecutive OPRs on the same
FU are called an operand-sharing chain. LPLS attempts
to schedule as many operations as possible of the SS on its
reserved FU. It also attempts not to execute other opera-
tions on it in order to prevent breaking the operand-sharing
chain (OBTAIN FREE AND NOT RESERVED FU()). The scheduling
of the operations of an SS is guided by giving more priority
to the operations in the operand-ready queue whose SS has
already a reserved FU (UPDATE PRIORITIES()). The priority of
an operation is decreased (i.e. will be scheduled later) if
it is going to be assigned to an FU not reserved by its SS.
If the operation scheduled in a later cycle happens to be in
the critical path, the final latency is increased.

All the information about achieved OPRs gathered dur-
ing the execution of LPLS is transferred to the FU-binder as
a set of binding constraints. The FU-binder first complies
with all these constraints (i.e. achieves all OPRs already
obtained by LPLS) and after that proceeds as the tradi-
tional FU-binder with weights to minimize the number of
interconnection units (multiplexers).

LS has a complexity of O(n), where n is the number of
operations. LPLS has a complexity of O(n2m), where m
is the number of unit types.
4.2 Results

LS is compared with its low-power version LPLS over
some data-path benchmarks. With LS, many of the OPRs
are achieved because the FU binder already forces some
OPRs in its attempt to minimize the number of multiplexers.

Several results are shown in Table 2. The benchmarks
have been scheduled with the resources reported in Table 1.
To estimate power consumption, 12-bit-wide FUs are as-
sumed.

The effect of an OPR on the power consumption of an
FU has been evaluated by measuring the energy of the FU
as a function of the operand repetition (see Section 3). The



V is the set of operations.
PListtk is the priority list for each

operation type tk 2 T .
Cstep is the current control step.
m is j T j.
Ntk is the number of FUs performing

operations of type tk.
Scurrent is the current schedule.

INSERT READY OPS (V; PListt1
; PListt2

; : : : ; PListtm
);

Cstep = 0;
while ((PListt1

6= ;) or : : : or (PListtm
6= ;)) do

Cstep = Cstep + 1;
for k = 1 tom do

for funit = 1 toNk do

if PListtk
6= ; then

SCHEDULE OP (Scurrent; FIRST(PListtk
); Cstep);

PListtk
= DELETE (PListtk

; FIRST (PListtk
));

endif

endfor

endfor

INSERT READY OPS (V; PListt1
;PListt2

; : : : ; PListtm
);

endwhile

(a)

ASS = CREATE ALL SS (V );
INSERT READY OPS (V; PListt1

; PListt2
; : : : ;PListtm

);

Cstep = 0;
while ((PListt1

6= ;) or : : : or (PListtm
6= ;)) do

Cstep = Cstep + 1;
for k = 1 tom do

UPDATE PRIORITIES (PListtk
);

while PListtk
6= ; do

op = FIRST (PListtk
);

if IS OSS (ASS; op) then

ifnot SS HAS RESERVED FU (SS) then

funit = GET FREE AND NOT RESERVED FU (SS);
RESERVE FU IN SS (SS; funit);

endif

schedule operation = TRUE;
else

funit = GET FREE AND NOT RESERVED FU (SS);
if funit = ; then

schedule operation = FALSE;
else

schedule operation = TRUE;
endif

endif

if schedule operation = TRUE then

SCHEDULE OP (Scurrent; op;Cstep);
endif

PListtk
= DELETE(PListtk

;op);

endwhile

endfor

INSERT READY OPS (V; PListt1
;PListt2

; : : : ; PListtm
);

endwhile

(b)

Figure 3: (a) Traditional list-scheduling algorithm (b) list-scheduling algorithm for low-power.

(1) (2) (3) (4) (5) (6) (7)

1 20 20 4
 3
 4
 2%
2 20 22 10
 7
 10
 17%
3 14 15 11�/3
 5�/2
 5�/2
 0%
4 11 11 6
 0 4
 7%
5 9 9 9� 2� 9� 10%
6 17 17 3
 3
 3
 0%
7 5 5 2� 1� 1� 0%

Table 2: Latency and number of OPRs (for both type
of FUs) achieved. (1) benchmark; (2/3) latency obtained
with LS/LPLS; (4) max. OPRs; (5/6) achieved OPRs with
LS/LPLS and (7) power reduction in the functional units.

last column of Table 2 accounts for the savings in power
consumption in the FUs due to the increment of achieved
OPRs obtained with LPLS. The power consumption due to
an operation of the benchmark depends on the type of FU
where this operation is scheduled and on how many operand
changes that FU has when it executes the operation. A 17%
of power reduction is achieved in the Daubechies filter and
a 7% in the 4 � 4 matrix multiplication. The rest of the
benchmarks present a small or null power-consumption
reduction due to the following reasons: (a) the maximum
number of OPRs is too small compared to the number
of operations of the benchmark and (b) the null or little
increase in OPRs achieved by LPLS with respect to LS.

5 Resource binding for low power
The goal of the resource-binding algorithm for low

power (LPRB) is to reduce power consumption in the FUs
once the scheduling and FU-binding tasks have been done.
LPRB tackles both useful and useless power consumption
of FUs.

LPRB assumes that the control unit maintains, for each
FU, the same registers on its inputs during idle cycles.

The LMS benchmark (see Figure 4(a) for its DFG) will
illustrate how LPRB works.

5.1 Reducing useless power
LPRB addresses the reduction of useless power con-

sumption by building up a register set that minimizes the
number of input changes on the idle units. All this process
is represented in the first part of the algorithm in Figure 5.

A traditional approach for buildingup a register set (reg-
ister binding) is the clique-partitioning method. After ap-
plying this method to a lifetime compatibility graph for the
variables (CG), each clique of the partition corresponds to
one register. LPRB uses the same traditional approach but
applied to a different variable-compatibilitygraph (LPCG).
To build up the LPCG, the register-binding for low power
first constructs the CG (CREATE CG()). In a second step, a set
of edges of the CG are removed (REMOVE EDGE()). Each edge
removed from the CG connects two compatible variables
with the following property: should both be assigned to the
same register, an idle FU would have an input change.

Figure 4(b) illustrates this concept. It shows the schedule
and FU binding for the DFG of Figure 4(a). The shadowed
slots represent the cycles in which the FUs are idle. For
each FU, the variables in parenthesis in the shadowed slots
force the control unit to maintain the same registers on its
inputs during idle cycles. Let us consider what happens
with FU A0 in cycle 10. An input change will occur at the
inputs of idle unit A0 if, for example, variables v16 and
v21 are assigned to the same register because multiplier
M0 will modify the value of that register in cycle 9. The
same happens with variable pair (v20 � v21). But not all
the variables of these two pairs have compatible lifetime
between them. In this example, only the pair (v20 � v21)
does. Thus, for the FUA0 in cycle 10, this edge is removed
from the CG. If the same procedure is applied to all the idle
slots of Figure 4(b), 6 edges will be removed.

The drawback in removing edges is the possibility to
obtain a larger register set, as it will be confirmed later with
the results.

Not all the useless power consumption in the idle FUs



v3v0 v7 v4 v8 v11 v14v12

v1 v5 v9 v13

v18 v19

v20v16

v17c22

v21

v2 v6 v10 v15

m1 m2 m3 m4

a1 a2

a3

a4

m5

m6 m7 m8 m9

a5 a6 a7 a8

(a)

(v7) (v6)

(v7) (v6)

(v7) (v6)

(v1) (v5)

v9 v13
v19

v19 v18
v20

v16 v20
v17

(v16) (v20)

(v16) (v20)

(v16) (v20)

(v16) (v20)

v11 v10
v11

v12 v15
v12

v3 v2
v3

v7 v6
v7

(v7) (v6)

(v4) (v21)

v0 v3

v1

v8 v11

v9

(v8) (v11)

(v8) (v11)

(v8) (v11)

v17 c22

v21

v8 v21

v10

v4 v21

v6

(v4) (v21)

(v4) (v21)

(v4) (v21)

(v0) (v21)

v4 v7

v5

v14 v12

v13
(v14) (v12)

(v14) (v12)

(v14) (v12)

(v14) (v12)

(v14) (v12)

v14 v21

v15

v0 v21

v2

(v0) (v21)

(v0) (v21)

(v0) (v21)

v1 v5
v18

a1

a2

a3

a4

a7

a8

a5

a6

m1

m3

m5

m8

m7

m2

m4

m9

m6

cycle

FU

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A0 M0 M1

v1

v5

v18
a1

Operation a1
reads

variables v1 and
and writes variable v18

A0

v5

is executed

in unit A0 and 

1 2 3

(b)

Figure 4: (a) DFG of the LMS filter and (b) Schedule and FU binding with one adder (one cycle) and two multipliers (two
cycles).

= � reduce power consumption in idle functional units � =

CG = CREATE CG (V );
for c = 1 to MAX CYCLES do

for fu = 1 to MAX FUs do

if IDLE (fu; c) then
for each operation opwhoseresult

is in cycle (c � 1) MOD MAX CYCLES do

op source = OPERATION IN FU (fu);
REMOVE EDGE (CG;<VAR DEST(op source);VAR A(op) >);
REMOVE EDGE (CG;<VAR DEST(op source);VAR B(op) >);

endforeach

endif

endfor

endfor

REGISTER BINDING(CG);
= � reduce power consumption in non � idle functional units � =

for each FU fu do

OBTAIN BEST VARIABLE ORDER (fu;AHD);
endforeach

INTERCONNECTION UNIT BINDER();

Figure 5: Resource binding algorithm for low power.

is eliminated with this technique. As an example, let us
consider FU A0 in cycle 16 in Figure 4(b). Because the
previous operation executed in FUA0 has variable v7 as an
operand and as the result, FU A0 has in cycle 16 an input
change.

5.2 Further reduction of useful power
Once the register set has been derived, the useful power

consumption in FUs may be reduced if the commutative
property of some operations and the average Hamming dis-
tance (AHD) among the variables are taken into account.
The process to reduce the power consumption in non-idle
units is shown in the second part of the algorithm in Fig-
ure 5.

As an example, consider additions a1 and a2 of Fig-
ure 4(b). With the variable input order shown, the FU A0
has an AHD on one of its inputs of H(v1; v9) and on the
other input of H(v5; v13). Recall from Section 3 how the

power consumption of an FU depends on the AHD of its
inputs. If the AHD information among the variables is
available, the reduction in power can be evaluated if the
variable order in addition a2 is changed. The problem of
obtaining the best variable order for all operations requires
an exhaustive exploration. Thus, for simplicity, LPRB fol-
lows a greedy approach (OBTAIN BEST VARIABLE ORDER()).

By defining a variable order, the degrees of freedom
for the interconnection-unit binder are reduced because the
correct variable order (which implies the correct register
order) has to be satisfied. This implies that the number of
multiplexers will be at least equal to the number obtained
if no useful power is reduced.

5.3 Results
TRB is compared with its low-power version LPRB over

three data-path benchmarks for which we have representa-
tive input data. The AHD among the variables has been
obtained by means of profiling the benchmarks2. In all
of them, the scheduling and FU-binding tasks have been
done with the low-power methods described in Section 4.
The benchmarks have been scheduled with the resources
reported in Table 1.

By means of switch-level simulations [20] of the ba-
sic functional units, multiplexers and registers, power-
consumption models similar to the one in Figure 1(b) have
been obtained. 12-bit-wide FUs are assumed in the power
results.

For both resource-binding algorithms,useful and useless

2It is important to notice that the AHD among the variables highly
depends on the input data. The AHD of the benchmarks related to image
processing has been obtained using the well-known Lena benchmark. We
have observed that the AHD values converge fast (in approx. 500 iterations
of the algorithm).



Bench. LPLS and TRB LPLS and LPRB Power
(1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6) Red.

3 21 14.9 65 33.2 73.0/182.1 303.2 23 14.7 67 34.2 48.5/184.0 281.4 7%
6 12 4.6 23 13.3 1.4/104.3 123.6 12 4.5 24 13.9 0.2/98.4 117.0 5%
7 6 1.21 5 0.85 0.33/1.45 3.84 7 1.38 4 0.68 0.0/1.46 3.52 8%

Table 3: Comparison between the traditional resource-binding algorithm (TRB) and its low-power version (LPRB). All
power estimations are in nJ=iteration. (1) number of registers; (2) power due to registers; (3) number of multiplexers; (4)
power due to multiplexers; (5) useless/useful power of FUs and (6) total data-path power.

power consumption of FUs, and the number of registers
and multiplexers3 along with estimations of their power
consumption are reported in Table 3.

In the 1-D 8-input Lee DCT and pixel interpolation
benchmarks, no improvement has been observed when ap-
plying the algorithm for reducing the useful power con-
sumption in FUs. The greedy method used did not change
the variable order for any FU.

In the pixel interpolation benchmark, only two adders
are used. This implies that the power consumption due to
the registers and multiplexers plays an important role in this
benchmark.

It is worth noticing the area-power trade-off: in two
benchmarks the number of registers and multiplexers has
increased when applying LPRB. Although the total area has
increased, the power consumption has has been reduced.

6 Conclusions
Algorithms that reduce the activity of the functional

units by minimizing the switching activity of their input
operands have been presented for the high-level synthesis
tasks of scheduling and resource binding.

Significant power-consumption reduction is obtained in
the scheduling task with little increase or no increase at
all in latency. Further power reduction is achieved in the
resource-binding task by increasing the number of storage
and interconnection units and taking into account both the
commutative property of some operations and the average
Hamming distance among the variables of the data-flow
graph to be synthesized.

In this paper, the impact of the number of functional
units on the power consumption has not been addressed.
Our future work is devoted to the evaluation of this impact.

Acknowledgment
We would like to thank to Rosa Badı́a for her constructive

comments which were instrumental in improving this paper.
This work has been partially supported by CICYT TIC94-

0531-E and Dept. d’Ensenyament de la Generalitat de Catalunya.

References
[1] C. Brown and B. Shepherd. Graphics File Formats: refer-

ence and guide. Prentice-Hall, 1995.
[2] T. Burd and R. Brothersen. Energy efficient CMOS micro-

processor design. In Proc. 28th Hawaii Int. Conf. on System
Sciences, Jan. 1995.

[3] A. Chandrakasan, M. Potkonjak, J. Rabaey, and R. Broder-
sen. HYPER-LP: A system for power minimization using
architectural transformations. IEEE Trans. on CAD, pages
300–303, Nov. 1992.

3The equivalent number of 2-input multiplexers

[4] A. Chandrakasan, S. Sheng, and R. Broderssen. Low power
CMOS digital design. IEEE Trans. on SSC, 27(4):473–483,
Apr. 1992.

[5] A. Chatterjee and R. Roy. Synthesis of low power linear
DSP circuits using activity metrics. In Proc. of the Int. Conf.
on VLSI Design, pages 265–270, Jan. 1994.

[6] R. M. D. Marculescu and M. Pedram. Information theoretic
measures of energy consumption at register transfer level. In
Int. Symp. on Low Power Design, pages 81–86, Apr. 1995.

[7] A. Dasgupta and R. Karri. Simultaneous scheduling and
binding for power minimization during microarchitectural
synthesis. In Int. Symp. on Low Power Design, pages 69–
74, Apr. 1995.

[8] P. Dewilde, E. Deprettere, and R. Nouta. Parallel and
pipelined VLSI implementation of signal processing algo-
rithms, chapter 15, pages 257–264. VLSI and Modern Sig-
nal Processing. Prentice-Hall, Inglewood Cliffs, NJ, 1985.

[9] D. Gajski, N. Dutt, A. Wu, and S. Lin. High-level synthesis:
introduction to Chip and System Design. Kluwer Academic
Publishers, 1992.

[10] I. Koren. Computer Arithmetic Algorithms. Prentice-Hall,
1993.

[11] S. Kung. On supercomputing with systolic/wavefront array
processor. In Proc. of the IEEE, pages 867–884, July 1984.

[12] P. Landman and J. Rabaey. Black-box capacitance models
for architectural power analysis. In Proc. Int. Workshop on
Low Power Design, pages 165–170, Apr. 1994.

[13] P. Landman and J. Rabaey. Activity-sensitive architectural
power analysis for the control path. In Int. Symp. on Low
Power Design, pages 93–98, Apr. 1995.

[14] E. Musoll and J. Cortadella. High-level synthesis techniques
for reducing the activity of functional units. In Int. Symp. on
Low Power Design, pages 99–104, Apr. 1995.

[15] F. Najm. Towards a high-level power estimation capability.
In Int. Symp. on Low Power Design, pages87–92, Apr. 1995.

[16] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Nu-
merical Recipes in C: The Art of Scientific Computing. Cam-
bridge University Press, second edition, 1992.

[17] A. Raghunathan and N. Jha. Behavioral synthesis for low
power. In Proc. of the Int. Conf. on Computer Design, pages
318–322, Oct. 1994.

[18] K. Rao and P. Yip. Discrete Cosine Transform. Academic
Press, 1990.

[19] J. Treichler, C. Johnson, Jr., and M. Larimore. Theory and
Design of Adaptive Filters. New York: John Wiley & Sons,
1987.

[20] A. van Gerenden. SLS: An efficient switch-level timing
simulator using min-max voltage waveforms. In Proc. VLSI
89 Conf., pages 79–88, Aug. 1989.

[21] S. Wuytack, F. Catthoor, F. Franseen, L. Nachtergaele, and
H. D. Man. Global communications and memory optimizing
transformations for low power. In Proc. Int. Workshop on
Low Power Design, pages 203–208, Apr. 1994.


	Compendium95
	ISSS95
	Front Matter
	Table of Contents
	Session Index
	Author Index


