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Abstract

Reed-Solomon decoders are digital decoders that use
RS detecting and correcting of errors codes. RS codes
are widely diffused in the transmission and storage of
digital information and they are often used in concate-
nated encoding schemes to obtain great correction ca-
pabilities and good robusiness to burst errors. In this
study, ¢ perametrical approach was chosen for decoder
implementation at gate-level, based on the Berlekamp
algorithm. This means that the decoder structure de-
pends on two parameters: the bit number used for the
symbol representation (m), and the error correction ca-
pability (t). The obtained architecture is suitable for
a large number of different application (including high
definition digital TV) and can be quickly synthesised
using Synopsys for any required values of m and t.

1 Introduction

A (n, k) RS code is a block code [2] whose code words
are blocks of n symbols, including k& symbols of infor-
mation and n — k parity-check symbols. Each symbol
is m-bit-long. Hence, the calculations are performed in
a Galois field of 2™ elements noted GF(2™), defined
by a primitive monic polynomial f(x) over GF(2) of
degree m. The length of the block code is n = 2™ — 1.
The error correcting capability of the code is defined
by 2t + p < n — k, where ¢ is the maximum number
of erroneous symbols that can be corrected, and p is
the number of erased symbols, which are errors with
known locations.

Due their remarkable capability of combatting combi-
nations of random as well as burst errors, RS codes
have a lot of applications. The digital audio discs
and compact discs use RS codes for the error correc-
tion and error concealment. Other applications include
mobile data transmission systems and high-readability
communications systems. RS codes were also used in
NASA and ESA planetary exploration missions, for the
deep space transmission.

Sections 2 and 3 describe the encoding and decoding
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algorithms for RS codes used for our implementation
while section 4 presents the architecture obtained and
section 5 presents the estimates in terms of the RS de-
coder complexity.

2 Reed-Solomon Encoding Algorithms

Let the sequence of k data symbols in GF(2™) be
d = [do,dy,...dg-1]. The data vector can be repre-
sented by a polynomial as follows: d(z) = dp + d1z +
...+ dr_12*~1, RS encoding consists in adding n — &
extra-symbols to the k information symbols, obtaining
in this way a systematic code word. This is done by

adding the remainder of %{Q = p(z) to d(z), where
9(2) = T2 I(z + i) is the generator polyno-

£3

mial of degree n — k, « is the root of the primitive
polynomial f(z) and d(z) is the data polynomial. The
resulting code polynomialis c¢(z) = d(z)+p(z)-z"~*. It
is divisible by g(z), and g(e’) =0 for i = 1,2,...,2t.
There are also other methods for encoding the mes-
sage [6]. The code word polynomials could be formed
as d(z) - g(z), or an RS code can be generated in the
so-called frequency domain. But these codes are not
systematic because the k data symbols are not explic-
itly present in the code word. Hence, one extra step is
needed in the decoding process to extract the informa-
tion from the corrected code word.

3 Decoding Algorithms

The task of the decoder is to generate the syndrome

equations, depending on the additive noise, and to
solve them in order to find the locations and the values
of errors and erasures. The following main steps are
required.
Syndromes Generator The received code word is eval-
uated at the zero’s of the generator polynomial. In
this way we compute a set {Sz;} of non-linear equa-
tions called syndromes: S; = v(af) = S0y vjai, j =
1,2,...,2t.

Calculation of Erasure Locator Polynomial The era-




sures are detected outside the decoder. Therefore
the positions of the erased symbols are obtained at
the same time the data is being input. The result-
ing polynomial is I'(z) = []/_,(1 — zo’), where j;,
1=1,2,...,p are locations of p erasures.

Calculation of Error Locator Polynomial The coeffi-
cients are performed using Berlekamp-Massey algo-
rithm, makes use of the following set of recursive equa-
tions:

i-1
A = ZAy_l)Si_j,
i=0
Li = 6(i—Lici—p)+(i—6)Li_1,
A®(z _ 1 Az AC-D(g)
BO)(z) - A[lé (1-8)z BE-1)(g)

for i = 1,2,...,n — k. The initial conditions are
AP(z) = T(z),B®)z) = I(x),Lo = 0, and § = 1
if both A; # 0 and 2L;_; <i— 1+ p, otherwise § = 0.
Then A(®=*%)(z) is the resulting polynomial. Similar
equations give the error evaluator polynomial (z).
Chien Search Algorithm This algorithm consists in
finding the roots of the error locator polynomial and
then the errors positions [2, 1].

Forney Algorithm, used to compute the values to add
to correct the code word [2, 1].

4 The Parametrical Architecture of the
Decoder

The global decoder architecture is shown in Fig. 1.
It mainly consists on five processing blocks eachone
requiring computation in GF(2™), which can be per-
formed in either a bit-serial or bit-parallel fashion [1, 4].
In the following sections the gate-level implementation
of main blocks is described.

4.1 Syndromes Generator

The syndromes computation block can be built with
2t = n — k identical cells. The received code word en-
ters in bit-serial fashion and after a delay we obtain
at the output all the syndromes in bit-paralle]l fash-
ion. For implementing the T-cell, the triangular basis
multiplication is used [6]; then the rows of the Hankel
matrix are generated, the matrix-vector multiplication
is performed and an inverse transformation is made to
obtain the coordinates in the canonical basis. In Fig. 2
the T-cell implementation for GF(2%) is shown. At
any clock time we obtain at the output of the flip-flop
register SREGS a row of the Hankel matrix. Next we
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Figure 1. A general scheme

have to multiply the resulting Hankel matrix with of
vector. This is done in the Inner_product block which
has at each clock as inputs the four elements of a Han-
kel matrix row and the four elements of o® vector. This
block contains four AND gates, a XOR gate and a shift
register. After four clocks the result is transferred to
the SUM block.

4.2  Erasurestruct Block

This block computes the coefficients of the erasure-
locator polynomial and has as inputs the positions of
the p erasures. It includes three main subblocks: a
ROM having as inputs the locations of the erasures
and giving as outputs the inverses of the I'(z) roots; a
block giving at any clock the inverse of a root; a circuit
for computing the coefficients of the polynomial I'(z)
after any m clocks.



e

A(z), ©(z) and A(z) are loaded with the coefficients
of the polynomial I'(z); simultaneously, register S(x)
is loaded with syndromes values. During one iteration,
register A is shifted twice, first to compute delta, then
to be updated.

The error locator as well as the error evaluator poly-
nomials can also be obtained using the Euclidean algo-
rithm, a method for finding the greatest common divi-
sor of two polynomials. But, using shift registers, the
realization of the Berlekamp algorithm is straightfor-
ward and it does not involve polynomial multiplication
and division.

4.4 Chiensearch and Forney2 Blocks

Usiyng the Chien search method,
LA =1 Ala—2) AMa=C"=2\ are camnnted

NN -




shows the chosen realization. The err value obtained
is summed with the input data delayed by a LIFQ. The
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Figure 4. Realization of the Forney algorithm

summation is made by the SUMG block.

5 Complexity

The decoder complexity is now evaluated at the
functional level. The gate count of basic cells used
to write the block complexity are the following: 2
gates for AN D2 and OR2 functions, 8 gates for XORS
gates, 4 gates for XOR2 and MUX2, 9 gates for a D-
flipflop. In addition, 2™ bits are needed for the ROM
storing the inverse values of the GF elements. From
these figures, the following numbers of functional gates
needed by each block have been obtained: Coynar =
78mt + 64t + 9m, Copien = 48mt + 72t — 8, Cerier =
2m2™ + 90t +175m+ 160, CForney = 66m+m2™ 464,
Cbatatifo = 30m2™ — 35m, where ¢ = n — k is the
correction capability of the decoder. Imstead of the
Datalifo block previously described, a RAM as a LIFO
can be used: in this case the complexity of the block
becomes 2m(2™ + 4t). The resulting RS decoder com-
plexity is: Cge. = 182mt + 292¢ + 215m + 5m2™ + 208.
The formula calculated for the decoder complexity
should be multiplied by 1.3 to take into account the ex-
tra hardware needed by buffers, control and test. The
graph on Fig. 5 gives the gate complexity of the decoder
with parameter m varying from 4 to 8 and parameter
t varying from 1 to 10.

6 Conclusions

The architecture of a parametrical VLSI architec-
ture for the decoding of generic RS codes has been
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Figure 5. The Reed-Solomon Decoder Com-
plexity

presented. The design and testing of the described de-
coder has been performed in the Synopsys environment
for several codes. Future work includes the study of
different approaches for the inverse elements computa-
tion.

The decoder behaviour was simulated using the VADL
language and the Synopsys Simulator under the UNIX
environment. Our study also estimates the hardware
complexity of the RS decoder.
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