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Abstract

This paper presents a new spectral partitioning for-
mulation which directly incorporates vertex size infor-
mation. The new formulation results in a general-
ized eigenvalue problem, and this problem is reduced to
the standard eigenvalue problem. Experimental results
show that incorporating vertex sizes into the eigen-
value calculation produces results that are 50% bet-
ter than the standard formulation in terms of scaled
ratio-cut cost, even when a Kernighan-Lin style itera-
tive improvement algorithm taking into account vertex
sizes is applied as a post-processing step. To evaluate
the new method for use in multi-level partitioning, we
combine the partitioner with a multi-level bottom-up
clustering algorithm and an iterative improvement al-
gorithm for partition re�nement. Experimental results
show that our new spectral algorithm is more e�ective
than the standard spectral formulation and other par-
titioners in the multi-level partitioning of hypergraphs.

1 Introduction
Previous spectral algorithms for partitioning

graphs and hypergraphs have been limited by the fact
that they implicitly assume that all vertices in a graph
are the same size. In some problems, such as the parti-
tioning of logic blocks for �eld-programmable gate ar-
rays, this assumption may be valid, however, in prob-
lems such as macro cell partitioning or partitioning
with hierarchical clustering, vertices are unlikely to
all have the same size.

In this paper, we present a new spectral parti-
tioning formulation which directly incorporates vertex
sizes. This formulation yields a generalized eigenvalue
problem that can be reduced to the standard eigen-
value problem. Thus, existing standard eigenvalue
computation code can be used with no modi�cations.
We present benchmarks to quantitatively show the ef-
fectiveness of the new method.

Multiple levels of bottom-up clustering reduce the
problem size and tend to produce superior results.
Multi-level algorithms have been developed using both
spectral [2], and iterative [9, 10] approaches. However
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after the application of hierarchical clustering algo-
rithms, the resulting graph may contain vertices of
di�erent sizes. An e�ective spectral partitioner must
take those sizes into account to produce good solu-
tions. Our spectral partitioner, MP (Multi-level K-
way Partitioner), does exactly that.

Spectral algorithms were �rst proposed for place-
ment and partitioning by Hall [8]. Fast bipartitioning
methods were developed based on a linear ordering of
the vertices using the eigenvector associated with the
second smallest eigenvalue of the Laplacian of a graph
in [11, 7]. A k-way spectral partitioning algorithm
and new k-way ratio-cut cost function was presented
in [4]. Other methods for spectral k-way partitioning
are presented in [1, 3].

A multi-level partitioning algorithm using recursive
applications of the ratio-cut metric to form clusters is
presented in [12]. The �rst spectral multi-level algo-
rithm was developed by [2], however, it did not include
iterative re�nement at successive levels. Hendrickson
and Leland implemented a multi-level spectral algo-
rithm with a k-way Kernighan-Lin style re�nement
algorithm [9]. An in-depth study [10] of various multi-
level contraction, initial partitioning, and re�nement
strategies on meshes concludes that all of the methods
tested perform nearly equally as well.

2 Spectral partitioning with vertex

sizes
We describe a new spectral method in this sec-

tion. We present the de�nitions and then formulate
the problem.

Given a graph with a set of n vertices, V , we wish
to �nd k partitions of this graph. A partitioning of
the graph is a division of the n vertices into k disjoint,
non-empty subsets P1; P2; � � � ; Pk such that V = P1 [
P2[� � �[Pk. The n�n adjacency matrix of the graph,
A, has entries aij which are the sum of the weights of
the edges between vertices i and j. The n�n diagonal
degree matrix, D, has entries dii equal to the sum of
the weights of all edges on vertex i. The Laplacian
matrix is de�ned as Q = D �A. Eh is the sum of the
weights of the edges which have exactly one vertex in
partition h. jjPhjj is the sum of the sizes of all vertices
in partition h. A partitioning can be represented by



an n � k assignment matrix Y where yih is 1 when
vertex i is in partition h and yih is 0 otherwise. Given
a partitioning, the n � k ratioed assignment matrix,
R, has as entry rih the value yihp

jjPhjj
. This de�nition

di�ers slightly from the one in [4]. M is the n � n
diagonal matrix whose mii entry is the size of vertex
i.

Among the many variations of the k-way partition-
ing problem, we focus on optimizing the k-way ratio-
cut cost function [4], that is, �nding a solution R such

that
Pk

h=1
Eh
jjPhjj

is minimized. Although it may ap-

pear to be the same cost function as presented in [4],
there is a subtle di�erence: the de�nitions of R and
jjPhjj include the actual vertex sizes rather than the
number of vertices in a partition.

As in the proof of Lemma 1 found in [4]: we can

show that the hth diagonal entry of RTQR satis�es:

(RTQR)hh =
1

2

nX

i=1

nX

j=1

aij(rih � rjh)
2 =

Eh

jjPhjj
(1)

Hence the trace of RTQR is
Pk

h=1
Eh
jjPhjj

.

Vertex sizes are implicitly incorporated into our
problem by our new de�nitions of R and jjPhjj. We
can show that by taking vertex sizes into account, the
constraint RTR = I is replaced by RTMR = I. Let
Dn;k be the set of n � k matrices which have a single
non-zero entry in every row and for each column, ex-
actly one non-zero value among its non-zero entries.
It is derived in [13] that:

R is a ratioed partition matrix if and only
if R 2 Dn;k and RTMR = I.

3 Relaxed Problem Formulation
Our objective is to �nd the matrix which minimizes

RTQR subject to the constraint RTMR = I and
R 2 Dn;k. This problem is equivalent to the ratio-cut
partitioning problem, and hence, there is no known op-
timal polynomial-time solution. We can, however, re-
lax the problem by removing the R 2 Dn;k constraint.
The relaxed problem turns out to be a quadratic place-
ment problem [8], which can be solved in polynomial
time. The relaxed problem is de�ned as:

minimize trace(XTQX) subject to XTMX = I:
(2)

In the spectral partitioning literature, it is typical to
use the constraint: XTX = I. The new constraint,
XTMX = I, is intended to utilize any vertex size
information that is available. This constraint reduces
to XTX = I when all of the vertices are unit size.
Because M is a diagonal matrix, we can transform
Eq. (2) into a standard eigenvalue problem. Let M =

STS.1 Assume that all vertices have positive size.

1
S is the diagonal matrix with

p
mii in the ii

th
entry.

By substituting Q̂ = S�1
T

QS�1 and X̂ = SX, we
transform Eq. (2) to a modi�ed problem,

minimize trace(X̂T Q̂X̂) subject to X̂T X̂ = I. (3)

Equation (3) has the same form as previous spectral

partitioning formulations, except that Q̂ is no longer
the Laplacian of the graph. By using the method of
Lagrange multipliers or Fan's Theorem as shown in
previous literature [8, 4], Eq. (3) leads to the standard
eigenvalue problem.

Q̂X̂ = X̂�: (4)

Theorem 1 Fan's Theorem [5]
Let the eigenvalues �i of a symmetric matrix Q be
so arranged that �1 � �2 � � � � � �n. For

any positive integer k � n, the sums
Pk

i=1 �i andPk

i=1 �n+1�i are respectively the minimum and maxi-

mum of
Pk

j=1 x
T
j Qxj when k orthonormal vectors xj

(1 � j � k) vary in the space.

There are many solutions for X̂ , but by applying
Fan's Theorem, we �nd that the eigenvectors asso-

ciated with the smallest k eigenvalues of Q̂ yield an
optimal solution to Eq. (3). This is due to the fact

that when X̂ is composed of the k eigenvectors asso-

ciated with the smallest k eigenvalues of Q̂, we have

X̂T Q̂X̂ = �, where � is the k � k diagonal matrix

composed of the smallest k eigenvalues of Q̂. Thus,
we now have an optimal solution for the quadratic as-
signment problem which incorporates vertex sizes. We
can obtain the answer to our original problem, Eq. (2)

using X = S�1X̂.

By substituting X̂ = SX and Q̂ = S�1
T

QS�1 into
Eq. (4), we obtain an alternative view of the problem:

QX = MX� (5)

which can be viewed as a generalized eigenvalue prob-
lem subject to the constraint XTMX = I. Of course,

we use Eq. (4) to solve for X̂, and then obtain the

eigenvectors X from S�1X̂ .

3.1 Lower bound on the cost function

By putting together Theorem 1 with Eqs. (1),(3),
and (6), we establish a lower bound on any partition-
ing.

kX

i=1

�i(Q̂) = min
X̂T X̂=I

ftrace(X̂T Q̂X̂)g

� trace
�
RTQR

�
=

kX

h=1

Eh

jjPhjj
(6)

where �i(Q̂) denotes the i
th smallest eigenvalue of Q̂.

The above expression provides a tie between the con-
tinuous solution and the feasible solutions (matrices
restricted to Dn;k), since continuous space solutions
which have a lower cost will produce a lower bound
on the optimal feasible solution cost.



3.2 Application

The results of the modi�cation to the eigenvalue
problem presented in Eq. (4) may be used directly in
any spectral partitioning algorithmwhich forms parti-
tions from the eigenvectors of the Laplacian. The KP
algorithm [4] forms k partitions by using the magni-
tude and orthogonality of the rows of the eigenvector
matrix. MKP implements the functionality of KP, as
well as supporting the use of the eigenvectors of the
generalized eigenvalue problem.

4 MP Implementation

MP(hgraph HG, int K, int Num levels,
algorithm Partition, boole Refine?)

f
HG0  HG

for (i = 1; i � Num levels; i + +)
HGi  Contract(HG

i�1)
PNum levels  Partition(HGNum levels, K)
for (i = Num levels; i > 0; i ��)
f If (Re�ne? == Yes) Pi  Improve(Pi , K)

P
i�1  Expand(Pi )

g
If (Refine? == Yes) P  Improve(P0, K)
else P  P0
return(P )

g

Figure 1: MP algorithm.

Our partitioner, MP, has been implemented in
C++. MP interfaces with the LASO library by
D.S. Scott, which performs the sparse matrix eigen-
value/eigenvector computation. Figure 1 illustrates
how MP integrates a k-way partitioning algorithm
with contraction and iterative improvement. The k-
way partitioning algorithms we implemented include
1) a reimplementation of the KP partitioning algo-
rithm [4] which uses actual vertex sizes in forming
the partitions and computing the ratio-cut cost, 2)
the MKP partitioning algorithm, which amounts to
our new KP modi�ed to use the eigenvectors from the
generalized eigenvalue problem, and 3) an algorithm
which generates a random k-way partition. The last
algorithmwas used to evaluate the bene�t of the spec-
tral partitioning algorithm when used in conjunction
with iterative improvement methods.

4.1 Contraction and Iterative Improve-

ment

We wanted to evaluate MP's performance in three
scenarios, 1) on graphs where vertices were of non-unit
size and with no hierarchical clustering, 2) on graphs
with non-unit size vertices and multiple levels of con-
traction, 3) and �nally, on graphs whose vertices were
initially unit size, but became non-unit size through
multiple levels of contraction. Our focus was not to
�nd the best contraction algorithm nor the best iter-
ative improvement algorithm, but rather to provide
a framework in which to test our size-aware spectral
algorithm. Other researchers have conducted more
detailed studies of di�erent contraction and improve-
ment algorithms and their relative e�ects [10].

In our contraction algorithm, the edges of the hy-
pergraph are clique expanded to obtain a graph. The

algorithm orders the edges of the graph using a heap
based on the weight of an edge. The n

2 edges of high-
est weight are removed one by one, and if either one of
the two vertices of the removed edge are not already
in a cluster, these vertices are merged.

Our iterative improvement algorithm is modeled af-
ter the two-way ratio-cut algorithm [12]. We have
extended it to perform k-way partitioning in the fol-
lowing way. In turn, we select each of the k parti-
tions as the SINK (resp. SOURCE) partition, and
the remaining partitions together form the SOURCE
(resp. SINK). Vertices are moved one by one from the
SOURCE to the SINK based on the gain of a vertex
(the total weight of the nets that would become uncut
if a vertex is moved to a partition). This process is re-
peated until there is no more improvement. The best
k-way ratio-cut solution encountered is retained. In
practice only a few passes of the outer improvement
loop are performed before a local minima is reached.
For our experiments, we terminated the improvement
step after three passes.

4.2 Implementation Issues

MP works directly with hypergraphs, only trans-
forming the hypergraphs into graphs for the contract
algorithm and eigenvector computation. Hypergraphs
are converted into graphs by performing a clique ex-
pansion on the hyperedges. Each edge of the clique

formed by hyperedge, ei is given a weight of (
2

deg(ei)
)
3

2 ,

as proposed in [6]. For the eigenvalue/eigenvector
computations, we chose to perform clique expansions
even on very large fanout nets, although in some cases
it may be more practical to set an upper threshold
on the nets chosen for clique expansion so that sparse
matrix computations performed on the graph can be
carried out e�ciently. For e�ciency, in the contraction
algorithm, we chose to only perform clique expansion
on nets of degree smaller than 100 since these nets are
unlikely to a�ect the clustering.

5 Results
We ran experiments using seven MCNC bench-

marks (number of vertices is shown in parenthesis):
p1 ga(833), p2 ga(3014), t2(1663), t3(1607), t4(1515),
t5(2595), and t6(1752). These benchmarks are netlists
with vertex sizes. A number of di�erent parameters
for the benchmarks were run to analyze the perfor-
mance of the new method. Results under the head-
ing MKP used the solution to the generalized eigen-
value while results under KP used the eigenvectors of
the Laplacian. (With unit-size vertices, no contrac-
tion and no iterative improvement this is equivalent
to the KP algorithm in [4].) In order to evaluate the
bene�t of using the spectral information in a multi-
level partitioning scheme we also used an algorithm
which generates random k-way partitions. The best
results out of 5 obtained from random partitions are
listed under the heading RND5. Partitioning results
were generated for 2; 4; 8; and 16-way partitions. The
results were reported using the scaled cost function

1
n(k�1)

Pk

h=1
Eh
jjPhjj

[4].

Tables 1 and 2 show the overall performance of the



# of Iterative Algorithm

levels Improvement? RND5 KP MKP

0 No 43.4 4.92 2.36

0 Yes 3.01 2.61 1.38

2 No 18.0 11.4 1.91

2 Yes 2.21 1.84 1.26

Table 1: Geometric mean of scaled cost multiplied by
108 over all tests with actual vertex sizes.

# of Iterative Algorithm

levels Improvement? RND5 KP MKP

0 No 163.0 17.3 17.3

0 Yes 19.3 13.6 13.6

2 No 69.2 29.0 16.2

2 Yes 13.3 14.5 12.1

Table 2: Geometric mean of scaled costs multiplied by
105 over all tests with unit-size vertices.

algorithms. We used the geometric mean of the results
over all seven benchmarks for k = 2; 4; 8; and 16. In
every test group, MKP gives the best answer. Table 3
lists a side-by-side comparison of the MKP partition-
ing results with DP-RP [1]. The results are compara-
ble but the time complexity of MKP, O(kn log(n)), is
lower than DP-RP's O(kn2). A much more detailed
presentation of the results is available as a technical
report [13].

6 Conclusions
In this paper we have presented a modi�ed eigen-

value formulation to account for vertex sizes, and
studied its use on circuits with varying vertex sizes
and within a multi-level spectral partitioning scheme.
The technique is general and can be applied to any
eigenvector-based partitioning algorithm.
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