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Abstract
The importance of e�ective and e�cient accounting of

layout e�ects is well-established in High-Level Synthesis
(HLS), since it allows more realistic exploration of the de-
sign space and the generation of solutions with predictable
metrics. This feature is highly desirable in order to avoid
unnecessary iterations through the design process. In this
paper, we address the problem of layout-driven register-
transfer-level (RTL) binding as this step has a direct rele-
vance on the �nal performance of the design. By producing
not only an RTL design but also an approximate physical
topology of the chip level implementation, we ensure that
the solution will perform at the predicted metric once im-
plemented, thus avoiding unnecessary delays in the design
process.

1 Introduction
High-Level Synthesis (HLS) typically uses generic, ab-

stract models of hardware during the tasks of scheduling,
allocation and binding. The use of these models simpli-
�es HLS algorithms and standardizes the output of HLS
to a generic format so that it can then be implemented
in a particular technology through register-transfer-level
(RTL) synthesis (e.g., logic synthesis, technology mapping
and physical design).

However, experimental evidence indicates that there
is tremendous variation in hardware attributes based not
only on the target technology chosen, but also on the phys-
ical design of each implementation. BUD [1], Chippe [2]
and Fasolt [3] clearly indicated the signi�cance of intercon-
nect and other layout e�ects {traditionally considered as
second order in HLS{ on the overall implementation area
and delay. For HLS algorithms (e.g., scheduling, alloca-
tion and binding) to make e�ective decisions that eventu-
ally result in high-quality layouts, we need to incorporate
physical design information during HLS. We must account
for not only place and route e�ects, but also global consid-
erations such as RT wiring, component styles, aspect ratio,
oorplanning, and the combination of \all of the above".
Without such information, the RTL designs may produce
unpredictable results when implemented on silicon.

The work presented here proposes a paradigm to incor-
porate layout information into the tasks of HLS. As the
�rst step towards solving the problem, we turn our at-
tention to the task of binding. Binding is typically the
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Figure 1: (a)partial ow in a typical design methodology
(b) design ow in our layout driven binding techniques for
HLS

�nal task in HLS which follows scheduling and allocation.
In binding, there are three subtasks: (1) functional-unit

(FU) binding: operations are assigned to hardware mod-
ules, (2) storage binding: values are assigned to hardware
registers, and (3)interconnection binding: interconnections
are bound to speci�c buses or multiplexors.

Existing CAD systems treat binding and physical de-
sign independently. Figure 1(a) shows the ow of schedul-
ing, allocation, binding and physical design in a typical
design methodology of an automatic behavioral synthe-
sis system. This traditional ow su�ers from three ma-
jor drawbacks: (1) it is not known whether the design
will meet the constraints or not until the end of the time-
consuming phase of place & route; (2) when the constraints
are not met, it is di�cult to identify where the problem
comes from and at which level the design should be mod-
i�ed, and there is no way to identify the constraint which
leads to no feasible solution; (3) the three subtasks (FU,
storage, and interconnection binding) are tightly related
to each other, and the deadlock situation between them is



still an open problem in HLS.

In contrast with previous approaches, we incorporate
physical information into the task of binding as shown in
Figure 1(b). The main features of this work are the fol-
lowing: (1) the �nal result is evaluated without actually
going through the time consuming phase of place & route;
(2) when time constrains are met, the algorithm will out-
put not only a structural RTL netlist, but also it's corre-
sponding physical topology which can be carried through
silicon implementation in a predictable manner; (3) when-
ever time constraints are not met, our binding techniques
provide a means of exploring the design space in a realistic
and e�cient way, with this exploration, our binding tech-
niques will provide feedback to the previous tasks if the
constraints can not result in any feasible solution and out-
put the best implementation that can be achieved; (4) we
break the deadlock situation among FU, storage, and in-
terconnection binding by performing these three subtasks
simultaneously, and physical design information is taken
into account as well.

While our proposed approach is valid for any tech-
nology, we benchmark the results with respect to the
Field Programmable Gate Array (FPGA) design style
since the ability to shorten development cycles has made
FPGA an attractive alternative to standard cells and Mask
Programmed Gate Arrays for realization of Application-
Speci�c Integrated Circuits. Speci�cally, the Xilinx
XC4000 series is assumed to be the layout design style
for remainder of this paper.

2 Previous Work
3-D [4] presented an approach to the problem of binding

while simultaneously considering oorplanning. Operators
are assigned (and placed) as close as possible to their pre-
decessors in order to minimize the interconnection cost.
However, this approach didn't consider the cost and delay
of registers, multiplexors, and wiring space overhead.

GBA [5] and BITNET [6] also considered binding with
physical information. However, GBA applies only to one
dimension bit-slice design, and BITNET does not consider
interconnection delay.

Ewering [7] and ApplaUSE [8] addressed the binding
with physical information problem by moving placement
earlier before bus and register assignment, but no physi-
cal information is taken into account when FU binding is
performed.

SMB [9] presented an integrated approach for minimiz-
ing critical path delay by simultaneously performing FU
binding and oorplanning. But their approach has to start
with a �xed oorplan and does not account for the shape
and delay of multiplexors which a�ect the delay of the crit-
ical path. Furthermore, it is not clear whether SMB can
handle multi-cycled FUs or not.

On the other hand, our approach does not rely on any
particular oorplan and we take the shape and delay of
multiplexors into consideration. Furthermore, we consider
clock period (register-to-register delay) in the datapath as

our main process object rather than FU to register or reg-
ister to FU delay as the main concern as in SMB.

3 Architectural Model and Problem

De�nition
In high-level synthesis, an RTL system that consists of

FUs, storages, and interconnections is synthesized from
the behavioral description. In order to explore the impact
of physical design information in HLS, we need to de�ne
a target architecture. In our approach, we consider two
styles of target architectures: multiplexor-based and bus-
based architectures. Although our approach can handle
both architectures, we con�ne our scope to multiplexor-
based architectural model. We also assume FUs are 2-
input, 1-output combinational circuits, and registers are 1-
input, 1-output circuits. Operation chaining is supported
in this model by allowing connections from the output
ports of some FUs directly to the input ports of other
FUs. Moreover, operations can execute over several clock
cycles: multi-cycled operations are possible.

Our problem can be de�ned as follows:

Given (1) a scheduled data ow graph (SDFG),

(2) number of FUs, registers, input and out-
put multiplexor and (3) maximum clock period,

which is usually part of the system speci�cation,

identify whether there is a feasible RTL datapath
solution or not. If there is, after perform bind-

ing, generate RTL netlist and it's corresponding

oorplan; Otherwise, report it to previous tasks
in HLS and output the best solution that could be

achieved.
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Figure 2: An example illustrating the inputs and outputs
of the problem

The example in Figure 2 illustrates the problem. Given
are a scheduled data ow graph which consists of two con-
trol steps, and allocation resource which includes 2 adders
and 4 registers. The shape function and their correspond-
ing delay information of the components can be obtained
from the component library. Our algorithm will output
a RTL datapath netlist with all the binding information.
Meanwhile, a corresponding oorplan and the clock period



(register-to-register delay) which includes wire delay will
also be generated. We assume that the controller is imple-
mented as a Moore FSM with status and control registers.
This way, the clock cycle is determined by the worst case
register-to-register delay which will fall either completely
inside the datapath or completely within the controller.
Our work concentrates on the datapath area and delay
metrics.

4 Our Approach
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Figure 3: Layout-driven binding technique for HLS

The ow of our algorithm is shown in Figure 3. Given a
scheduled data ow graph, �rst, we construct a fully con-
nected netlist in which each FU is connected to every reg-
ister and each register is connected to every FU. Then, we
use our physical level estimation tools ChipEst-FPGA [11],
and CompEst-FPGA [12] to obtain an approximate topol-
ogy of the layout. CompEst-FPGA is a component esti-
mation tool which predicts the area and delay of a given
RTL component netlist. Given a speci�cation of a par-
ticular component as a set of Boolean equations, we use
CompEst-FPGA to predict the shape function of that com-
ponent. CompEst-FPGA predicts the e�ects of some logic
synthesis tasks such as technology mapping as well as the
e�ects of physical design. This shape function can be ob-
tained by estimating the dimensions of a component with
a varying number of rows. Additionally, CompEst-FPGA
estimates the critical path delay of each con�guration with
wiring delay as well as false paths being taken into account.
Benchmarking has shown that CompEst-FPGA can esti-

mate area with about 2.5% accuracy and static delay with
about 2-13% accuracy.

Once we have obtained a shape function for each com-
ponent, ChipEst-FPGA is used to generate an approxi-
mate topology of the overall design. ChipEst-FPGA em-
ploys a partial slicing technique to generate a highly ef-
�cient approximate topology of the design, and chooses
the most appropriate implementation of each component.
Experience has shown that component area and delay do
vary (and sometimes signi�cantly) with aspect ratio [13].
At this moment, we can get distance metrics between the
di�erent units and this step provides valuable feedback to
the binding task in HLS as described later.

The backbone of our approach is a branch and bound
search algorithm. We sequentially perform binding one
control step at a time. Within each control step, for each
operation in the step, FU and storage binding are per-
formed simultaneously by �nding a virtual binding for op-
eration �rst, then for it's output variables (Ovar), and �-
nally for it's input variables (Ivar). The actual binding
will not be executed until all the virtual bindings have
succeeded. The search space can be shown with a tree
having three levels of hierarchy as shown in Figure 4. The
�rst level is for FU, the second level is for Ovar and the
third level is for Ivar. At FU level, the depth of the tree
is equal to the number of operators (OPi: the ith opera-
tor) in the control step, and each path is a virtual binding
for all the previous objects (an object can be FU, Ivar, or
Ovar). For example, the path from root to node M means
OP1 is bound to FU1 and OP2 is bound to FU2. After
�nishing FU binding, the binding procedure proceeds to
the Ovar and Ivar level.

FU1 FU2 FU3

FU2 FU1

OP1

OP2

OPi

Ovar

Ivar

M
FU

Figure 4: (a) A 3-dimensional graph for paths

During the search, our algorithm can accept a seed to
start with a di�erent search order. Also, a backtracking
mechanism enables the algorithm backtracking up to the
higher level of virtual binding solution when the current
virtual binding fails and to resume the binding process. We
can see that the search space can be huge. It is unrealistic
to evaluate all the possible solutions. Thus, the layout
information from ChipEst-FPGA is used to con�ne our



exploration space to a subset of the possible solutions as
will be described in Section 4.2.
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Let's use a three dimensional graph to express paths of
register-FU-register as shown in Figure 5(a). For example,
the shaded square in Figure 5(b) stands for a path from r1
to ADD1 to r2 (for operation chaining, the FU plane stands
for chained operators). Using layout information, we can
calculate the delay for each register-FU-register path. We
also de�ne the number which decides whether the path
will be used or not as cut-o� point for binding. Only paths
with delay smaller than the cut-o� point can be used in
binding. Thus, by setting the cut-o� point for binding,
we can con�ne our search space to a subset of paths with
delay smaller than the cut-o� point. Furthermore, when
the cut-o� point is smaller than a certain number, there
may be no su�cient paths for binding. We call this limit
point the cut-o�-point threshold.

Details of each of the steps in the overall ow shown in
Figure 3 will be discussed in the following subsections.

4.1 Compute Path Delay
A typical datapath operation involves reading operands

from the registers, computing the result in the FUs, and
�nally writing the result back into a destination register.
The input multiplexors are at the input ports of FUs, and
the output multiplexors are at the output ports of FUs.
The path delay is determined by register-to-register delay.
Based on our architectural model, we can specify the path
delay by the following equation:

td(data path)=tpr +wrm + tim +wmf + tfu

=+wfm + tom + wmr + tsr (1)

where:

tpr and tsr are the propagation delay and the
setup time of the register, respectively,
tim is the delay of the input multiplexor,
tfu is the delay of the FU,
tom is the delay of the output multiplexor,
wrm is the wire delay from register to input mul-
tiplexor,
wmf is the wire delay from input multiplexor to
FU,

wfm is the wire delay from FU and output mul-
tiplexor, and
wmr is the wire delay from output multiplexor
to register

From the component library, we can get the component
delay. From the distance metrics, we can calculate the
wire length and use our estimation tool to get the wire
delay [10]. One example is shown in Figure 5(b)

4.2 Set Cut-O� Point for Binding
Knowing all the path delays, we can set the cut-o�

point to decide whether the path can be used for binding
(for multi-cycled operations, the partial path is identi�ed).
Let's denote the initial cut-o� point for binding as CTinit
and the cut-o� point for the current iteration as CTcurrent.
Let cr delayprev be the critical path delay of the previous
binding solution and � be the factor of choosing the cur-
rent cut-o� point. The user can decide whether � should
be equal to 10, 100, 1000... so that the tradeo� between
the time spent on exploration and the number of solutions
explored can be made.

The initial cut-o� point and current cut-o� point can
be obtained by the following equation:

CTinit = dMAX(Di;j;kji; k = 0; 1; :::r; j = 0; 1; :::f)e(2)

CTcurrent=bcr delayprev � �c (3)

where Delayi;j;k is the delay among the ith register, the
jth FU to kth register, r is the number of registers, and f

is the number of FUs.
Though the way of selecting the cut-o� point is quite

straightforward, the cut-o� point plays an important role
in our approach. By decreasing the cut-o� point gradu-
ally, we actually categorize the binding solution into sev-
eral groups. Once the cut-o� point is given, we try to �nd
a solution that meets the constraint instead of �nding the
best solution (i.e. the one with lowest clock cycle). Better
solutions can instead be found later by further lowering
the cut-o� point.

The delay of the longest path is reduced every time
CTcurrent is calculated. In this way, we can guarantee
that a di�erent binding solution will be generated each
time though the performance of the �nal layout may not
be necessarily better.

4.3 Feasibility check
During binding, a feasibility check is needed to deter-

mine if there are enough paths with delay less than cut-o�
point to perform binding. Feasibility check includes two
tasks: compatibility check and resource check.

The compatibility check in FU binding determines
whether the operator can be bound to the FU, and in
register binding, determines whether the variable to be
bound is compatible with all the variables already bound
to the target register by analyzing the life times of these
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Figure 6: Some feasibility check examples

variables. The other task is called resource check. Once
cut-o� point for binding is given, we can skip those paths
with delays exceeding the constraint. We can now com-
pute the number of FUs, input registers, output registers,
and input-output registers on the remaining paths. Then
we compare them with the required number of FUs, in-
put registers, output registers and input-output registers.
Then we can identify whether the available resources are
su�cient to succeed the following binding. Figure 6 shows
some examples where the number of resources is not su�-
cient. The shaded squares are the paths with delay smaller
than the cut-o� point. The feasibility check is carried out
every time a new object (FU, Ovar, or Ivar) has been vir-
tually bound. This speeds our search algorithm and will
stop the algorithm whenever the cut-o� point hits the cut-
o�-point threshold.

4.4 Binding
As we mentioned in Section 4, we use a branch and

bound search algorithm to search for di�erent binding pos-
sibilities one control step at a time sequentially. Within
each control step, the virtual binding is carried out in the
order of FU, Ovar, Ivar and multiplexors. The FU, Ovar,
and Ivar binding call the same recursive binding procedure
(which is outlined in Figure 7) to generate all the di�erent
possible solutions while the feasibility check in every step
prunes the infeasible solutions as early as possible.

The inputs to this algorithm consist of the source object
to be bound, a set of target object candidates, and the
allocation resources.

The algorithm either generates an actual binding so-
lution if it exists under the given cut-o� point or reports
that no feasible solution is available together with the best
result that can be achieved.

We need to mention here that, for the interconnection
from registers to FUs, there are two di�erent assignments
since each FU has two input ports. By assigning inter-
connections to the ports di�erently, the multiplexor cost

Procedure: Binding (Si, N , M , allocation resource)
Inputs: Si: the ith source objects
(1 � i � N where N is the number of source objects);
Tij: the jth target objects
(1 � j �M where M is the number of target objects);

/* objects = FU, Ovar, Ivar */
Output: Binding solution;

begin Procedure
for (j = 1 to M)
if (FeasibilityCheck(Si, Tij, allocation resource)) then

VirtualBinding(Si, Tij);
if (i+ 1 � N) then
success = Binding(Si+1, N , M);
if (success) then
return (True);

else

UnVirtualBinding(Si, Tij);
end if;

else

ActualBinding;
return (True);

end if;
end if;

end for;
return (False);

end Procedure

Figure 7: The binding algorithm

(i.e. size and number) will be di�erent. So our intercon-
nection binding not only includes the compatibility check
which checks whether two interconnections can share same
multiplexor, but also attempts to minimize the size of the
multiplexor and the number of interconnections. Basically,
we try two di�erent assignments for each interconnection,
check the multiplexor cost and select the one with less
cost. Once the FU and Ovar have been virtually bound,
the interconnection from FU to Ovar has also been bound.

4.5 Pruning
If the binding succeeds, the algorithm will proceed to

the next step: pruning. In this step, all the unnecessary
interconnections will be pruned, all the unnecessary mul-
tiplexors will be deleted and �nally, the size of the mul-
tiplexors will be shrunk according to the actual intercon-
nection information. When the multiplexors are changed,
new types of multiplexors may be generated. The algo-
rithm will then update the area and timing information
based on the component information in the library or by
invoking CompEst-FPGA [12]. At the end of this step, an
optimized RTL netlist will be generated.

4.6 Layout Adjustment
At this point, if the clock period exceeds the maximum

clock period, layout adjustment will be invoked to re-run
our ChipEst-FPGA on the pruned RTL netlist based on
new multiplexors and interconnection information. Usu-
ally this will minimize the waste layout area and improve
the performance of the �nal design.

After layout adjustment, if the cycle time still can not
satisfy the maximum clock period constraint, we need to



reset the cut-o� point and redo the binding. This iteration
will continue until the cut-o� point hits the cut-o�-point
threshold. This way, we only evaluate a set of possible
solutions to see whether a �nal solution can be found. Our
experimental results show that there is a big chance we can
�nd the solution if one exists although we only evaluate a
small subset of possible solutions.

5 Experimental Results
We have implemented our layout-driven RTL binding

techniques for HLS in C on the Sun SPARC workstation.
The designs used to test our binding techniques are from
some well-known high level synthesis benchmarks. These
are the 2nd order di�erential equation solver [14], the 5th

order elliptic wave �lter (EWF) [14] and the Discrete Co-
sine Transformer (DCT). The bit-width of all the exam-
ples is 4.

The datapath components can be obtained from our
library in which all the components' layout and timing
information are pre-characterized by using Synopsys and
Xilinx delay analysis tool, we generate a shape function
for each component similar to the one shown in Figure 2.

5.1 Results
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Figure 8: Experimental Result

Figure 8 shows the results for DCT, EWF, and HAL
examples.. The RTL constraints only include FU and reg-
ister delays since they have no interconnection and layout
information. We get the cut-o� point for binding by using
the formula 2 and 3, the clock period without pruning is
the cycle time after we perform the binding and can be
further used to get the next cut-o� point. If the binding
succeeds, we construct the actual RTL netlist and get it's
actual cycle time. If this still cannot satisfy the maximum
clock period constraint, we further optimize the cycle time
by layout adjustment. These results clearly indicate that:
(1) layout and interconnection delays are signi�cant since
they may contribute up to 50% of the overall delay; (2) by
varying the cut-o� point, we can explore a set of alterna-
tive binding solutions with varying clock cycle time. Our

algorithm are e�cient since each solution takes less than
a minute of CPU time for all the cases.

6 Conclusion
We presented a binding approach which simultaneously

binds FUs, registers and interconnections and also uses an
accurate layout estimator to simultaneously produce an
RTL solution and a corresponding oorplan. Future work
will incorporate the controller e�ects into HLS.
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