
Data Memory Minimisation for Synchronous Data Flow Graphs Emulated on DSP-FPGA Targets

Marleen Adé, Rudy Lauwereins, J.A. Peperstraete
Katholieke Universiteit Leuven, ESAT Department, ACCA Laboratory

Kard. Mercierlaan 94, B-3001 Heverlee, Belgium
email: Marleen.Ade@esat.kuleuven.ac.be

Abstract

The paper presents an algorithm to determine the close-to-
smallest possible data buffer sizes for arbitrary synchronous data
flow (SDF) applications, such that we can guarantee the exis-
tence of a deadlock free schedule. The presented algorithm fits in
the design flow of GRAPE, an environment for the emulation and
implementation of digital signal processing (DSP) systems on
arbitrary target architectures, consisting of programmable DSP
processors and FPGAs. Reducing the size of data buffers is of
high importance when the application will be mapped on Field
Programmable Gate Arrays (FPGA), since register resources are
rather scarce.

1. Introduction and motivation

GRAPE (Graphical RApid Prototyping Environment) is an
environment, developed at our laboratory, which facilitates the
real-time emulation and implementation of synchronous DSP
applications on heterogeneous target platforms consisting of DSPs
and FPGAs [1]. Many aspects of GRAPE resemble the environ-
ments Ptolemy of UC Berkeley [2] and COSSAP of RWTH
Aachen [3], currently further developed by Synopsys; the main
distinction is that GRAPE is targeted at real-time execution
whereas the other environments mainly target simulation.

GRAPE’s design flow consists of four phases. In the specifi-
cation phase, the application is described using an extended data
flow model, called cyclo-static data flow (CSDF) [4], which is an
extension of Lee’s Synchronous Data Flow [5]. In short, the ap-
plication is represented as a directed graph G=(N,E), where the
nodes N represent computation tasks, and the edges E the com-
munication of the results (called tokens) from a producing to a
consuming task. The functionality of the nodes is specified in a
conventional high level language like C or VHDL. The number of
tokens a task produces respectively consumes during an execution
phase of a task is known at compile time, allowing for a compile
time analysis of the graph in the next phases of GRAPE’s design
flow and leading to highly efficient run-time code. Still in
GRAPE’s specification phase, the target architecture is specified
as a connectivity graph, with an indication of the amount and type
of resources each processing device possesses [6]. In the second
phase, the amount of resources required by each of the tasks when
executed on each of the processing devices, is estimated. Next, the
application is mapped onto the target hardware. In this phase,

each task is assigned to a specific processing device, a communi-
cation path is established for each edge in the application’s graph
and a compile time schedule order is determined per device that
minimises the total makespan. In GRAPE’s fourth and last design
phase, code in C or VHDL is generated for each of the processing
devices, consisting of a main program and communication primi-
tives. Note that a single design flow is used for software targets
(DSPs) as well as for hardware targets (FPGAs) [7].

The number of tokens produced by a task on an edge may be
different than the number of tokens consumed by a task from that
edge in SDF as well as in CSDF. Buffers are hence required on
the edges to temporarily store the tokens that are produced but not
yet consumed. The size of those buffers is left undetermined at
specification time and hence cannot be taken into account in the
resource estimation phase. When buffer sizes are still not fixed
during scheduling, as is currently done in GRAPE, the scheduler
has the highest possible freedom in ordering the task to obtain a
small input-to-output latency, but the size of the buffers needed to
implement the resulting schedule can be quite large and may ex-
ceed the available resources on the target. Resource limitations
are of different nature for software targets (DSPs) than for hard-
ware targets (FPGAs).

For DSPs, data buffers as well as program code and data vari-
ables are all stored in memory. The sum of these three memory
requirements hence has to fit the available memory resources on
the DSP device. Bhattacharyya [8] presented a method for a sin-
gle processor target, which first reduces the amount of program
and data memory by employing a single appearance schedule, and
by then ordering the tasks in the single appearance schedule such
that buffer memory is minimised.

For FPGAs, the implementation of a task requires combinato-
rial logic and routing resources, and to a lesser extent registers to
store intermediate data variables. Data buffers on the other hand
only require registers, a type of resource that is very scarce on
FPGAs. To let a schedule fit within the severe resource limitations
of an FPGA, it is important to limit the buffer sizes, already be-
fore scheduling, to the smallest values for which no deadlock will
occur, even when this reduces the scheduling freedom. The in-
creased latency caused by this limited scheduling freedom is more
than compensated for by the fact that each task on an FPGA runs
on a separate execution thread, i.e. concurrently with all other
tasks assigned to the FPGA, where all tasks on a DSP run se-
quentially on a single thread.

This paper presents the algorithm to determine the close-to-
smallest possible data buffer sizes for SDF applications for which
we can guarantee that a deadlock free schedule exists. Due to
space limitations, no proofs will be given and the algorithm will
be explained for acyclic graphs only; the proofs and the extension
to cyclic graphs may be found in [9]. Preliminary results, with
proofs, for only a few of the simplest cases have been published in
[10] and [11]. The algorithms do not consider the multiplexing of
registers between buffers, since this is too expensive on FPGAs.

Permission to make digital/hard copy of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial ad-
vantage, the copyright notice, the title of the publication and its
date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee.

DAC 97, Anaheim, California
© 1997 ACM 0-89791-920-3/97/06..$3.50



In the next section, the equations are presented to determine
the minimum buffer sizes for basic graph entities consisting of
single chains or single cycles. In the fourth section, it is shown
how arbitrary graphs can be broken down in basic graph entities
and how their mutual influence can be taken into account.

2. Simple case: basic graph entities

Any arbitrary graph can be decomposed into chains and cy-
cles. We define a chain as an open path of edges and nodes inde-
pendent of the orientation of the edges, for which only one path
exists between any pair of nodes in the chain. A cycle is defined
as a closed path of edges and nodes in which each node occurs
only once, with the last node equal to the first node. When all
edges originate from a node, we call the node a source of the cy-
cle. When all arrive at the node, we call it a sink of the cycle. A
cluster is a graph in which every pair of nodes is interconnected
by at least two distinct paths. As a consequence, a chain can never
be part of a cluster, nor partly nor completely. A cluster hence is
composed of cycles solely. Figure 1 shows an example of an arbi-
trary graph. The dotted lines highlight its chains, the solid lines
highlight the cycles and clusters.

Figure 1. 3 chains ({ABC}, {EF}, {GHJI}) and 9 cycles in 2
clusters ({DCE}, {DEG}, {DCEG}, {JKM}, {KLN}, {KMN},
{JKNM}, {KLNM}, {JKLNM} ) in an arbitrary graph.

2.1. Single chain

The simplest chain we can construct, has one edge and two
nodes, as in Figure 2. Node n1 produces pk and node n2 consumes
ck tokens at each firing of the node. A FIFO data buffer bk of
depth lk stores the tokens on the edge that have been produced but

not yet consumed (called the live tokens); tk
i denotes the number

of initial tokens present in the buffer before the first node in the
graph is fired. Initial tokens implement delays in the graph and as
such can make cyclic graphs live, i.e. they can run forever.

Figure 2. Simplest chain, with pk and ck production and con-
sumption numbers respectively.

Implicitly, we will assume a uniform token size over the whole
graph as well as a uniform buffer cost. As a consequence the
buffer cost is only influenced by its length. Therefore all theory
concentrates on minimising the buffer lengths for all edges of the
graph, such that the total buffer length of the application is mini-
mised, and still a deadlock free schedule can be found. Different

token sizes and costs can be incorporated very easily into the
algorithms: it is sufficient to multiply the production pk, the con-

sumption ck and the number of initial tokens tk
i of the buffer bk by

the size of the token on edge k and by the relative cost to imple-
ment bk (which will be cheaper for buffers implemented on DSP
processors than for buffers realised on FPGAs, as explained
above). By substituting all production and consumption numbers
and all numbers of initial tokens in the equation that follow by the
newly computed ones, the presented algorithms are still capable
of minimising total buffer cost.

The minimum length lk
min of buffer bk for which no buffer

overflow will occur, may be computed using Equation m. Note
again that no proofs are given due to space limitations, but that
they can be found in [9].

( )

if t p c d then l t

if t p c d then l p c d

d p c

t d

k
i

k k k k k
i

k
i

k k k k k k k k

k k k

k k
i

k

≥ + − =
< + − = + − +

=

min

min

gcd ,

mod

δ

δ
with

and =

m

As an example, let us take the simple chain of Figure 2 with
p=3 and c=5 and with 4 initial tokens. Intuitively, one would ex-
pect that the minimum required buffer length equals the least
common multiple of p and c (i.e. lmin=15) possibly increased by
the number of initial tokens (i.e. lmin=19). According to Equation
m, a buffer of length lmin=7 is sufficient.

In a graph with  N nodes in series (Figure 3), the minimum

buffer length lk
min  of buffer bk  is still given by Equation m.

Figure 3. A feedforward chain of N nodes.

2.2. Single cycle

Consider the 4-node cycle of Figure 4, without initial tokens.
When a cycle is traversed counterclockwise, some (directed)
edges follow the traversed path and others are opposite to the
traversed path. We call the set of edges pointing in the traversed
direction the up-edges (marked with u) and the set of edges
pointing in the opposite direction the down-edges (marked with
d). By using Equation m on each of the buffers, we would obtain

l d
1 2min( ) = , l d

2 6min( ) = , l u
1 3min( ) =  and l u

2 4min( ) = . We will

however show that these sizes for the data buffers would lead to a
deadlock, and hence that Equation m may not be used to compute
the minimum buffer lengths in cycles.

Figure 4. Example of a 4-node cycle.
To reduce the sum of all buffer sizes in the graph, it is best to

have as much tokens as possible leaving the sink before the
source is executed again. Figure 5 shows on each row the actual



number of tokens tk in the buffer bk when the nodes indicated at
the top of the figure are fired. At the position surrounded by the
rectangle, neither n4, neither n2 or n3 can be executed, although n3

has sufficient tokens on one of its inputs but not on the second
one. The only possibility to continue the schedule is to fire n1, but

this would cause an overflow of buffer b d
1
( )  since t ld d

1 1
( ) min( )> ,

as is seen in the last column.
n1 n4 n1 n1

t1
(d) 0 2 0 2 4

t2
(d) 0 0 4 4 4

t1
(u) 0 1 1 2 3

t2
(u) 0 0 0 0 0

Figure 5. Evolution of the number of tokens in the buffers
when the indicated nodes are fired.

We will now indicate how the minimum buffer lengths for a
cycle should be computed. The presented method is valid for
every cycle which contains at least one source and one sink. Cy-
cles without sources and sinks, also called loops, have only down-
edges or only up-edges; they have to be treated in a slightly dif-
ferent way, as proven in [9]. We assume that the cycle is consis-
tent [12], i.e. that it can be implemented with buffers of finite
length. This consistency implies the relationship between the
actual number of tokens present in the buffers as expressed in
Equation n; the left hand side covers the down-edges and vice
versa. N(d) and N(u) are the number of down-edges and up-edges
respectively.

( ) ( )t t

p

c

p

t t

p

c

p

k
d

k
i d

k
d

j
d

j
d

j

k

k

N
k
u

k
i u

k
u

j
u

j
u

j

k

k

Nd u( ) ( )

( )

( )

( )

( ) ( )

( )

( )

( )

( ) ( )−











=
−









=

−

= =

−

=
∏∑ ∏∑

1

1

1 1

1

1

n

We call Equation n the cycle equation.

( )

( )

( )

one of the down edges needs larger buffers iff

one of the up edges needs larger buffers iff

−
− + −

⋅












≤

− + −
⋅













−
− + −

=

−

=

=

−

=

∏∑

∏∑

l p d t

p

c

p

c d t

p

c

p

c d t

p

k
d

k
d

k
d

k
i d

k
d

j
d

j
d

j

k

k

N

k
u

k
u

k
u

k
i u

k
u

j
u

j
u

j

k

k

N

k
d

k
d

k
d

k
i d

k
d

d

u

min( ) ( ) ( ) ( )

( )

( )

( )

( ) ( ) ( ) ( )

( )

( )

( )

min( ) ( ) ( ) ( )

( )

( )

( )

1

1

1

1

1

1

δ

δ

( )

⋅












≥

− + −
⋅





































=

−

=

=

−

=

∏∑

∏∑

c

p

l p d t

p

c

p

j
d

j
d

j

k

k

N

k
u

k
u

k
u

k
i u

k
u

j
u

j
u

j

k

k

N

d

u

( )

( )

min( ) ( ) ( ) ( )

( )

( )

( )

( )

( )

1

1

1

1

1

1

otherwise, no buffers need to be expanded

o

From Equation n, we can deduct a criterion to determine
whether one of the down-edges or up-edges of the cycle needs
buffers larger than computed using Equation m. We need larger
buffers in a down-edge if an extra firing of the source would

cause an overflow, i.e. when every buffer bk
d( )  already contains at

least t l p dk
d

k
d

k
d

k
d( ) min( ) ( ) ( )= − +  tokens. The reason why we

have to fire the source in the described situation is to be found in

the up-edges where each buffer bk
u( )  contains insufficient tokens

to make the sink fireable. This means each buffer bk
u( )  contains at

most t c dk
u

k
u

k
u

k
u( ) ( ) ( ) ( )= − + δ  tokens. Filling out these condi-

tions in Equation n, gives us the algorithm of Equation o.
Assuming that we know from Equation o that one of the di-

rections (say, the down-direction, called the expansion direction)

needs a buffer bk
d( )  larger than computed using Equation m, we

need to determine which buffer to increase the size of (we will
call this an expansion buffer, indicated with subscript e), and how

large this expansion ee
d( )  needs to be. We consider each buffer

bk
d( )  in the expansion direction in turn as the possible expansion

buffer and compute its necessary buffer length

l l ee
d

e
d

e
d( ) min( ) ( )= +  using Equation p. The buffer with the

smallest expansion ee
d( )  is selected as expansion buffer. Equation

p is derived using a similar worst case reasoning as Equation o

[9]. Note that the worst case conditions sometimes do not occur in

practice and that hence the buffers may be overestimated1.

e d
p

d

p

c

c d t

p

c

p

l p d t

p

c

p

e
d

e
d e

d

e
d

m
d

m
d

m

e

k
u

k
u

k
u

k
i u

k
u

j
u

j
u

j

k

k

N

k
d

k
d

k
d

k
i d

k
d

j
d

j

u

( ) ( )
( )

( )

( )

( )

( ) ( ) ( ) ( )

( )

( )

( )

min( ) ( ) ( ) ( )

( )

( )

( )

= ⋅ + ⋅ ⋅






− + −
⋅






















−
− + −

⋅

=

−

=

−

=

∏

∏∑

1
1

1

1

1

1

δ

( )

( )

d
j

k

k

N d

=

−

=
∏∑




























1

1

1

p

Applying this algorithm to the example of Figure 4, without

initial tokens (i.e. tk
i x

k
x( ) ( ),= =0 0δ ), Equation o for the down

edges becomes:
2 2 2 0

2

6 4 1 0

4

2

2
3 1 0 0

1

1 1 0 0

4

3

1

− + − + − + − ⋅ <
− + − + − + − ⋅

or 1.75<2; the down-direction is hence an expansion direction, as
we have seen already from the schedule of Figure 5. Using Equa-
tion p, we compute the possible extension for each buffer of the
two down-edges:

e d
1 2 1

2

2
1

3 1 0 0

1

1 1 0 0

4

3

1
2 2 2 0

2

6 4 1 0

4

2

2

( ) = + ⋅ ⋅

− + − + − + − ⋅



 −

− + − + − + − ⋅



























































,

e d
2 1 1

4

1

2

2

3 1 0 0

1

1 1 0 0

4

3

1
2 2 2 0

2

6 4 1 0

4

2

2

( ) = + ⋅ ⋅

− + − + − + − ⋅



 −

− + − + − + − ⋅



























































                                                                
1 This happens when the combination of production and con-
sumption numbers is such that not all buffers are filled with the
worst case number of tokens used to derive equations  o and p.



or e d
1 2( ) =  and e d

2 2( ) = . We may hence arbitrarily chose to

increase the length of either buffer b d
1
( ) or buffer b d

2
( ) with 2

compared to its length computed using Equation m.
A special type of cycle is depicted in Figure 6. It consists of a

single chain with a bridge from source to sink. For this type of
cycles, we can prove that the buffers in the chain may always be
computed using Equation m, and that an expansion, if needed,
will always be in the bridging buffer.

Figure 6. Special type of cycle: single chain with a bridge from
source to sink.

3. General case: arbitrary acyclic SDF graphs

In previous section, we indicated how the minimum buffer
sizes, for which a deadlock free schedule can be found, can be
computed for single chains and cycles. In this section, we will
indicate how an arbitrary acyclic graph can be broken down in
such basic graph entities and how the mutual dependencies be-
tween the basic graph entities can be taken into account. At the
end of section 2.1, we already indicated that the buffers in chains
do not influence neither are influenced themselves by any other
buffer in the graph, since each such buffer only belongs to one
chain. Cycles however can share buffers though which their buffer
lengths are coupled. By definition, two cycles belonging to a dif-
ferent cluster do not share and edge. They hence do not influence
each others minimal buffer lengths. These intuitively introduced
observations lead to following algorithm for computing the mini-
mal buffer lengths in any acyclic SDF graph; again, formal proofs
are given in [9].

Algorithm:
1. classify edges in chains and clusters
2. compute the chains : for each edge equation m applies. This

computation can be done irrespectively of all other buffers,
since buffers in a chain are not influenced by and do not influ-
ence themselves any other buffer. Remove the chains from the
graph.

3. compute each cluster. The buffer lengths in each cycle of the
same cluster may be influenced by the production and con-
sumption behavior of other cycles in the same cluster, but not
by cycles belonging to a different cluster.
1. for each edge in the cluster, compute an initial buffer length,

according to equation m.
2. detect all cycles
3. mark every cycle as uncomputed.
4. while uncomputed cycles remain

1. determine for each cycle the set of expansion candidate
buffers according to Equation o. If none of the inequalities
holds, the set of expansion candidate buffers is empty. If
the first inequality is true, the set of expansion candidate
buffers consists of all down-edges of the cycle. The set
contains all up-edges if the second inequality holds.

2. mark the cycles with an empty set of expansion candidate
buffers as computed

3. order the uncomputed cycles, according to the principle
that a cycle whose set of expansion candidate buffers is
completely contained by the set of another cycle is to be
computed before the other cycle. If several of such cycles
exist, the one with the smallest set is selected first. If cy-
cles have identical sets, then their ordering is random. For
the remaining cycles the ordering is random. The goal of
this heuristic rule for ordering the cycles is to ensure that
an expansion in one of the cycles is preferably done in a
buffer which is also an expansion candidate in another cy-
cle and hence also helps in reducing the expansion needs
in the other cycle; this reduces the total buffer require-
ments.

4. for the first cycle in the ordered list :
1. compute the expansion on every expansion candidate

buffer using Equation p
2. if only one buffer is present with smallest expansion,

update its length by adding the expansion. Mark the cy-
cle as computed

3. if more than one buffer is present with smallest expan-
sion, select the buffer that has the highest frequency as
expansion candidate in the uncomputed cycles. Update
its length and mark the cycle as computed. Again, this
heuristic rule aims at the maximum reuse of this expan-
sion in other cycles.

The computational complexity of this algorithm is ( )O ec max
3



 ,

where ( )ec max  is the maximum number of edges over all clusters.

Figure 7. Applying Steps 1 and 2 to the graph depicted in a)
yields one chain: b1. Its buffer length, computed using Equa-
tion mm, is indicated next to the edge. Picture b) shows the
graph after removing the chain-edge and the not-connected
node. It is the input for Step 3.



We will now apply the above algorithm to the example of Figure
7.
1. classify edges in chains and clusters. Figure 7.a shows the edge

belonging to a chain as a dashed line and the ones belonging to
clusters as solid lines.

2. compute the chains : use equation m for each edge. For exam-
ple, the length of buffer b1 equals

( )l p c p c1 1 1 1 1 4 6 2 8min gcd ,= + − = + − = . The resulting

buffer length is indicated in bold next to the chain edge. Re-
moving the chain from the graph, we obtain Figure 7.b.

3. compute each cluster. As depicted in Figure 8, there is one

clusters C1: { }C b b b b b b b b1 2 3 4 5 6 7 8 9= , , , , , , , .

Figure 8. Results of applying Step 3 on the graph of Figure
7.b.

1. For each edge in the cluster, we compute an initial buffer
length, according to equation m. This results in l2=5, l3=4,
l4=2, l5=10, l6=10, l7=4, l8=6, l9=8.

2. We determine all cycles. In the following list of cycles, the
down-edges are marked with a bar over the buffer name:

{ }r b b b b1 2 3 4 5= , , , , { }r b b b2 5 6 8= , , , { }r b b b3 6 7 9= , , ,

{ }r b b b b4 5 7 8 9= , , , , { }r b b b b b5 2 3 4 6 8= , , , , ,

{ }r b b b b b b6 2 3 4 7 9 8= , , , , , .

3. We mark every cycle as uncomputed .
4. As long as there are uncomputed cycles, we continue our

computations.
1. We determine for each cycle the set of expansion candidate

buffers according to Equation o. For cycle r1, the second
check of Equation o is true, meaning that an expansion of
an up-edge is needed. The set of expansion candidate buff-

ers for cycle r1 is hence { }E b b1 3 5= , . Analogously, the

sets of expansion candidate buffers for the other cycles are

determined, yielding: { }E b2 6= , { }E b3 6= ,

{ }E b b4 7 9= , , { }E b b5 3 6= , , { }E b b b6 3 7 9= , , .

2. None of the sets of expansion candidate buffers is empty.
Hence, none of the cycles can be marked as computed.

3. Since E E E2 3 5= ⊂ , r2 and r3 have to be computed be-

fore r5, since a possible expansion on b6 required in r2 or r3
can be used to reduce the needed expansion in r5. Simi-
larly, since E E4 6⊂ , r4 needs to be computed before r6.

The ordering rules yield no other restrictions. A possible
ordering of the set of uncomputed cycles is

{ }U r r r r r r= 4 6 2 3 5 1, , , , , .

4. For the first cycle in the ordered list, r4, we start computing
the expansion:
1. Using Equation p, we compute the expansion on each

of the buffers in the set of expansion candidate buffers
E4. This yields e7=8 and e9=10.

2. Only one buffer has the smallest expansion, namely b7.
The expanded length for b7 becomes l7=4+8=12. Cycle
r4 is marked as computed.

4. Since there are still uncomputed cycles, we restart our com-
putations with step 1.
1. We re-compute the set of expansion candidate buffers for

all uncomputed cycles containing the previously expanded
buffer b7, i.e. for cycle r6.  Equation o yields possible ex-

pansion in the up-edges: { }E b b b6 3 7 9= , , . Note that the

updated buffer length l7=12 in all equations!
2. Since E6 is not empty, r6 cannot be removed from the list

of uncomputed cycles.
3. The only remaining ordering rule requires that r2 and r3

have to be computed before r5, since E E E2 3 5= ⊂ . A

possible ordering of the set of uncomputed cycles is

{ }U r r r r r= 6 2 3 5 1, , , , .

4. For the first cycle in the ordered list, r6, we start computing
the expansion:
1. Using Equation p, we compute the expansion on each

of the buffers in the set of expansion candidate buffers
E6. This yields e3=6, e7=9 and e9=18.

2. Only one buffer has the smallest expansion, namely b3.
The expanded length for b3 becomes l3=4+6=10. Cycle
r6 is marked as computed.

4. Again, since there are uncomputed cycles, we restart our
computations with step 1.
1. We re-compute the set of expansion candidate buffers for

all uncomputed cycles containing the previously expanded
buffer b3, i.e. for cycles r1 and r5.  Equation o indicates
that no expansion is needed anymore in cycle r1, i.e. the
expansion of b3 needed in cycle r6 is also sufficient to re-
move the deadlock problem of cycle r1. The set of expan-
sion candidate buffers E1 is hence empty. Equation o ap-

plied to cycle r5 yields { }E b b5 3 6= , .

2. Since E1 is empty, r1 is removed from the list of uncom-
puted cycles.

3. The only remaining ordering rule requires that r2 and r3
have to be computed before r5, since E E E2 3 5= ⊂ . A

possible ordering of the set of uncomputed cycles is

{ }U r r r= 2 3 5, , .

4. For the first cycle in the ordered list, r2, we start computing
the expansion:
1. Using Equation p, we obtain e6=20.



2. Only one buffer has the smallest expansion, namely b6.
The expanded length for b6 becomes l6=10+20=30. Cy-
cle r2 is marked as computed.

4. Again, since there are uncomputed cycles, we restart our
computations with step 1.
1. We re-compute the set of expansion candidate buffers for

all uncomputed cycles containing the previously expanded
buffer b6, i.e. for cycles r3 and r5.  Equation o indicates
that no expansion is needed anymore in cycle r3 as well as
in cycle r5. The sets of expansion candidate buffers E3 are
hence empty.

2. Since E3 and E5 are empty, r3 and r5 are removed from the
list of uncomputed cycles.

4. No uncomputed cycles remain for cluster C1.
Figure 9 shows the finally required buffers lengths.

Figure 9. Results of applying Step 3 on the cluster of Figure 8.
The obtained buffer lengths are the absolute minimum for

which a deadlock-free schedule exists. The sum of the length of
all buffers equals 91. When each buffer length lk would have been
computed as the least common multiple of the production and
consumption numbers pk and ck, the total length would also have
been 95, but NO deadlock-free schedule exists in this case. To the
best of the authors’ knowledge, the only known method to deter-
mine the buffer length (without actually scheduling the applica-
tion) such that it is guaranteed that a deadlock-free schedule can
be found, computes the buffer length on an edge as the product of
the production number pk and the repetition rate of the producing
node, i.e. the number of times the node is executed before the
schedule is repeated. Applying this method to the example above
yields a total buffer length of 478, which is an order of magnitude
larger than the one obtained with the algorithm we present.

4. Conclusion

The paper indicated that it is important to determine the mini-
mal possible data buffer sizes for which a deadlock free schedule
can be found, when an SDF application is implemented on to-
day’s FPGAs that have severe register limitations. It first pre-
sented the equations to compute minimum buffer sizes for single
chains and single cycles. It then showed how arbitrary acyclic
graphs can be broken down into single chains and clusters and
how their mutual influence may be computed. These algorithms
where developed to fit into the design flow of GRAPE, a pro-

gramming environment facilitating the real-time emulation and
implementation of DSP applications on heterogeneous target ar-
chitectures consisting of DSPs and FPGAs.

5. Acknowledgements

Marleen Adé is a post-doctoral researcher of the K.U.Leuven.
Rudy Lauwereins is a senior research associate of the FWO
Vlaanderen. This project is partly sponsored by IUAP-50, 4/20,
4/24, by various Esprit, ESA, IWT, FWO and Texas Instruments
projects. K.U.Leuven-ESAT is a member of the DSP Valley™
network.

6. References

1 Rudy Lauwereins, Marc Engels, Marleen Adé, J.A. Peper-
straete, “Grape-II: A System-Level Prototyping Environment for
DSP Applications”, IEEE Computer, Feb. 1995, pp. 35-43.
2 J. Buck, S. Ha, E.A. Lee, D.G. Messerschmitt, “Ptolemy: a
Framework for Simulating and Prototyping Heterogeneous Sys-
tems”, Int. Journal of Computer Simulation, Vol. 4, April 1994,
pp. 155-182.
3 Synopsys Inc., 700 E. Middlefield Rd., Mountain View, CA
94043, USA, COSSAP User’s Manual.
4 Greet Bilsen, Marc Engels, Rudy Lauwereins, J.A. Peper-
straete, “Cyclo-Static Dataflow”, IEEE Transactions on Signal
Processing, Vol. 44, No. 2, Feb. 1996, pp. 397-408.
5 E.A. Lee, D.G. Messerschmitt, “Static Scheduling of Syn-
chronous Data Flow Programs for Digital Signal Processing”,
IEEE Transactions on Computers, Vol. C-36, No. 1, Jan. 1987,
pp. 24-35.
6 Greet Bilsen, Marc Engels, Rudy Lauwereins, J.A. Peper-
straete, “Compile-time Makespan-optimal Multi-resource Map-
ping for Hardware/Software Co-design”, KULeuven Technical
Report ESAT-ACCA 95-02.
7 Marleen Adé, Rudy Lauwereins, J.A. Peperstraete,
“Hardware-Software Co-design with GRAPE”, Proceedings of
the 6th Int. Workshop on Rapid System Prototyping, IEEE Com-
puter Society Press, Ed. R. Lauwereins, Chapel Hill, North-
Carolina, USA, June 1995, pp. 40-47.
8 S.S. Bhattacharyya, P.K. Murthy, E.A. Lee, “Converting
Graphical DSP Programs into Memory Constrained Software
Prototypes”, Proc. of the 6th IEEE Int. Workshop on Rapid Sys-
tem Prototyping, IEEE Computer Society Press, Ed. R. Lauwere-
ins, Chapel Hill, NC, June 1995, pp. 194-200.
9 Marleen Adé, “Data Memory Minimisation for Synchronous
Data Flow Graphs Emulated on DSP-FPGA Targets” , Ph.D.
Diss., KULeuven-ESAT, Oct 1996 (downloadable from
http://www.esat.kuleuven.ac.be/acca/reports/phd_marleen.html).
10 Marleen Adé, Rudy Lauwereins, J.A. Peperstraete, “Minimum
memory buffers in DSP applications”, Electronics Letters, March
17, 1994, Vol. 30, No. 6, pp.469-471.
11 Marleen Adé, Rudy Lauwereins, J. A. Peperstraete, “Buffer
Memory Requirements in DSP Applications”, Proceedings of the
5th IEEE International Workshop on Rapid System Prototyping,
Ed. N. Kanopoulos, IEEE Computer Society Press, Grenoble,
France, June 1994, pp. 108-123.
12 E.A. Lee, “Consistency in Data Flow Graphs”, IEEE Trans.
on Parallel and Distributed Systems, Vol. 2, No. 2, April 1991.


	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index


