
the system using test programs executed by the PU. These test
programs are often generated by advanced code generators
using pseudo-random techniques[1, 2, 3]. The use of this
approach alone is no longer sufficient when the supporting
chips become more and more complex. Formal approaches
have been proposed for verifying the supporting chips. For
example, they are used to prove the correctness of the cache
updates and so on [4, 5]. However, the size of the circuits
which can be handled by such approaches is still too limited.

This paper is organized as follows: Section 2 reviews the
problem of verifying the bus controller ASICs for our multi-
processor system. Section 3, presents the incremental verifica-
tion approach used to verify our ASICs. In Section 4, the
CAD tools will be introduced as used for hierarchically speci-
fying the timing diagrams followed by the execution of the
timing diagrams, such that the design parts are verified by a
“controlled” random simulation. In Section 5, the results are
presented. Finally, in Section 6 our conclusions are given.

2. Verification of our Multiprocessor Systems
Figure 1 shows the basic structure of the processor module

of the third generation IBM S/390 CMOS processors. These
modules form the processor core of the “IBM S/390 Parallel

Enterprise Server - Generation 3” and the “IBM S/390 Multi-
prise 2000” systems. These systems are the successors to our
previous water-cooled high-end mainframes[6].

Fig. 1. S/390 CMOS Multiprocessor System Structure

IBM, S/390, IBM S/390 Parallel Enterprise Server - Generation 3,
IBM S/390 Multiprise 2000 and RS/6000 are trademarks of Interna-
tional Business Machines Corporation.

Cache
PU

Cache
L2

Cache#1..#12
max. 8Gbyte

STC DRAMsBSN
#1..#8 #1..#8

MCM

#1..#4Cards

(max. 256 channels)

MBA

.......

MBA

.......
to I/O subsystem

#1..#2

Abstract --- In this paper an approach is presented for the
hierarchical verification of the memory control units, I/O adapt-
ers and processor interconnect units as found in multiprocessor
computer systems. It is shown how such units could be verified
better and faster by the introduction of random executable tim-
ing diagrams and associated CAD tool support. Furthermore, it
is shown how the timing diagrams for the unit network verifica-
tion are easily derived from the timing diagrams specified for the
units. The multiprocessor hardware test showed the effectiveness

of the proposed verification approach.

1. Introduction
To keep pace with the processing performance growth of

75% per year, not only the complexity of the processor unit
(PU) with its caches will increase, but also that of the support-
ing units, like processor interconnect units, memory control
units and I/O adaptors. To reduce the time the PU waits for
data, many complex functions must be performed by such
units. These chips for example have to: (1) buffer and arbitrate
incoming requests, (2) handle multiple outstanding (for exam-
ple load/store) operations, (3) maintain the consistency and
coherency of the multi-level caches, (4) handle the complex
high speed bus protocols and so on. In the current multipro-
cessor systems so many tasks have been added to the support-
ing units that it becomes a very challenging and time-
consuming task to verify the overall logic behavior of these
units. While faults in the PU can often be circumvented by
microcode, such is generally not possible for these supporting
units. Therefore, it is vital for the time-to-market and develop-
ment cost of the complete project that such chips are fully
operational from first silicon.

 A number of verification approaches have been proposed
for the verification of multiprocessor systems. Widespread is
the use of the traditional late stage functional verification of

“Permission to make digital/hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear, and
notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.”

DAC 97, Anaheim, California
(c) 1997 ACM 0-89791-920-3/97/06 ..$3.50

 Hierarchical Random Simulation Approach for the
Verification of S/390 CMOS Multiprocessors

Jörg Walter, Jens Leenstra, Gerhard Döttling, Bernd
Leppla, Hans-Jürgen Münster

IBM Deutschland Entwicklung GmbH
 D-71032 Böblingen

Germany

Kevin Kark, Bruce Wile

IBM Corp.
 Poughkeepsie, NY

U.S.A

Our multiprocessor systems are built out of 2..12 PUs, asso-
ciated secondary caches (L2), processor interconnect units
(Bus Switching Networks, BSN), I/O adaptor units (Memory
Bus Adapter, MBA) and memory cards (Storage Controller,
STC).

In our previous multiprocessor systems we used the tradi-
tional late stage functional verification approach which was
preceeded by “unit simulation”, verifying more complex units
separately. The late stage verification tested the communica-
tion between the units and the overall logic behavior of the
units by executing test programs (called “test cases”) in the
PUs. Such a verification approach was possible since the BSN
was a relatively simple switching network and the design
changes in the STC and MBA were minimized through re-use
of large parts from our first generation CMOS designs.

Such a re-use did not lead to twice the performance in the
case of our third generation systems. This is because the mem-
ories become larger and do not decrease access time in the
same ratio as the logic chips. Therefore, all supporting units
had to be completely redesigned. A shared L3 Cache was
added to the BSN and the protocol had to be re-specified to
handle the consistency and coherency of the multi-level
caches. Furthermore, many sophisticated bus/cache line inter-
leaving schemes were added to reach the required data trans-
fer bandwidth on each interface. How the complexity of the
supporting units grew, compared to the PU, is indicated in
Table 1. The “ratio” numbers give the factor of increase
between the second and third generation systems. The “Ran-
dom Logic Complex Gates”, in particular, gives a good indi-
cation of the complexity increase of the supporting chips in
relation to the PU.

Table 1. Chip Characteristics

The new features of tightly coupled complex interfaces
between units make it no longer feasible to sufficiently verify
the overall behavior of the units by simply executing test
cases in the PU. The added functions in the support units and
the higher speed protocols resulted in a much larger number of
overall multiprocessor machine states.

The basic difficulty of verifying the supporting units is, that
a limited number of commands which store/fetch data from
the memory and update the caches control/data bits can gener-
ate a huge number of different execution sequences and cache/
memory update scenarios. Due to the required bandwidth
between PU, memory and I/O, all or multiple chip ports may
be active at the same time and all ports may execute one or
more (interleaving) different commands. Writing test cases for
all these different scenarios (to verify the behavior by simula-

#Transistors
Chip
Size
(mm)

Pins
Pin
Incr.
Ratio

Random
 Logic

Complex
Gates

Gate.
Incr.
Ratio

PU 7.185.512 14.6 744 1.7 164.056 1.8

BSN 16.617.686 14.6 758 1.8 68.176 8.9

STC 995.690 12.7 737 1.6 58.847 1.9

MBA 3.607.715 15.5 770 1.6 206.037 6.0

tion) is no longer feasible. Note further that the execution of
all these test cases in the system model would be very slow
due to the increased size of the system model. Therefore, a
new verification method was needed which could provides us
with a high quality and high-speed verification of overall
functionality of the supporting units, without the overhead of
generating the verification stimuli via the PU/L2 units.

3. The Verification Approach
As previously mentioned, the basic problem of verifying

the supporting units is, that “a limited number of commands
which store/fetch data from the memory and update the
caches control/data bits can generate a huge number of differ-
ent execution scenarios and cache/memory update scenarios”.
The following approach can provide a solution when writing a
test case for each such possible scenario is no longer feasible:

1) Write a test case for each basic command: During this
step the input and output patterns are given for each
basic command. In our case the basic commands are
“fetch data from memory”, “store data to memory”,
“store cache line & fetch memory line into cache”,
“fetch data from cache via cast-out” etc.

2) Select randomly when each test case is started during
the simulation: This step creates a random test program
for the simulation. By permitting that several of the
basic commands may be active at the same time, the
occurrence of very complex traffic situations on each
chip interface is enabled.

For example, in Figure 2 test case 1 describes a “fetch data
from memory” and test case 2 describes a “store data to mem-
ory”.

Fig. 2. Creating complex traffic from simple test cases.

The random selection process decides how both test cases
are started in relation to each other. This leads to an outcome
that (1) both commands are executed one after another or that
(2) the store command is executed between the start of the
fetch command and the return of the fetch data from memory.
Note that the number of cycles between the start of the fetch
and the start of the store command has to be varied before it
can be concluded that the protocol is implemented correctly,
since it must be verified that fetch data is not returned during

cycles

Test Cases

1. fetch data
from mem.

2. store data
to mem.

1 2....

fetch data

store data

Random Selection
and

Simulation

Cycle trace

fetch
cmd

store
cmd

fetch datafetch
cmd store datastore

cmddata_bus:
OR...

fetch datafetch
cmd

store datastore
cmddata_bus:

OR ...

(1)

(2)

Specification:

Results:

the store data transfer. So with just two simple commands sev-
eral scenarios exist. The number of scenarios even increases,
when the number of cycles between a fetch command and the
return of fetch data is not fixed. This may be caused by a
DRAM refresh, or by ‘shared’ or ‘exclusive’ states of data in
the L3 cache. Furthermore, faults like parity errors, uncorrect-
able memory errors and protection errors may be reported for
each command further, increasing the number of scenarios.

When using such a random approach it is never guaranteed
that all complex traffic scenarios of interest will really be cov-
ered. However, with the help of fault coverage analysis tools
and control parameters for the random selection process the
probability can be increased to a very high level.

During the development of the second generation S/390
CMOS processor chips we used such a random approach in
the unit simulation for the MBA. Thereby, the test cases, as
well as the randomizer, were implemented with help of a C
like behavioral modelling language. However, it was found
that such a behavioral model (coded by C or some other pro-
gramming language) has the disadvantage that the behavioral
model code is hard to re-use for testing the communication
between the units and that the randomizer is written newly in
each of the behavioral models due to the restrictions when
commands may start. Furthermore, such a model is quite com-
plex and hard to debug. Therefore, another method will be
proposed for entering the test cases and for controlling the
randomizing process.

The design of the protocols is usually started by specifying
them in the form of timing diagrams. On the system level,
timing diagrams specify in an easy to comprehend manner the
timing of the commands on the interfaces of each unit. Thus,
our preferred manner for specifying test cases was the use of
timing diagrams. An example of how a test case for the BSN
unit can be specified as a timing diagram is illustrated in Fig-
ure 3 by the timing diagram of a “fetch data from memory”.

Fig. 3. (a) Part of BSN and (b) timing diagram for “fetch data”.

BSN

req_mba
grant_mba

cmd_stcBSN

xfer_mba xfer_stc
stc_busmba_bus

I: req_mba
O:grant_mba
I:cmd_stc

I: mba_bus

O: stc_bus

O: xfer_stc

I: stc_bus

c0 c1* c2 c3

I: xfer_mba
O: mba_bus

%ci
%co

x
x

x
x

x
x

%di%di%di

%do%do%do

c4 c5 c6* c7 c8 c9 c10 c11

* Conditions:

x

[0:31] [0:31]

-
MBA
ports

BSN
-

STC
ports

BSN

C1: Loop till grant_mba = 1
C6: wait random 7..20 cycles

x

x

(a)

(b)

The BSN inputs and outputs which are needed to execute
this command are given in Figure 3(a). In Figure 3(b) the sig-
nal names preceeded by “I:” specify how the input and bi-
directional port have to be set at the beginning of each cycle,
the signal names preceeded by “O:” specify the state of the
output signals at the end of the clock cycle. For a bidirectional
bus (“mba_bus” and “stc_bus”) the input row “I:” specifies
when the bus has to be driven and the output row “O:” when
the data on the bus has to be verified. In the timing diagram of

Figure 3 there are two special cycles “C1*” and “C6*”
expressing a “recurring cycle” with associated waiting condi-
tions. For example, to start the execution of a “fetch data”
command first the “req_mba” has to be raised. The state of all
other signals except the “grant_mba” is “don’t care” since
another operation may be going on. Next, it will take an
unknown number of cycles before the BSN unit will allow the
start of the command by a “grant_mba” pulse. Therefore, the
timing diagram state will remain in “C1” until the condition
“grant_mba = 1” has been fulfilled.

After the request has been granted, the command data has
to be driven onto the bidirectional “mba_bus”. This is done by
calling a small C program as given by “%ci”. This C program
puts the data onto the “mba_bus” and later on the call “%co”
verifies that the correct command data has arrived at the
“stc_bus”.

In the same manner, fetch data is put on the “stc_bus” by
calling “%di” and the arrival of this data at the “mba_bus” is
verified by the call “%do”. When the data is put on the
“bus_stc”, it is accompanied by an active “xfer_stc” to tell
that valid data is on the “stc_bus”. Finally, by the predefined
timing, for “xfer_mba” it is verified that the “xfer_mba” fol-
lows the “xfer_stc” signal with a one cycle delay.

Once we have specified the timing of a command for the
simulation of an unit, it is basically very easy to convert such
a test case into a test case for the simulation of a connected
unit. For example, once we have the “fetch data” test case for
the BSN as shown in Figure 3(b), we can construct the test
case for the STC simulation by:

1) deleting the “mba_* and “*_mba” signals and some col-
umns

2) replacing “I:” by “O:” and “O:” by “I:” and
3) replacing the calls (or a parameter which defines the bus

on which the data has to be written or verified) and mod-
ifying the conditions.

In Figure 4 the resulting timing diagram for the STC simu-
lation is given. The “%ei” call now puts data into a memory
line and is called by introducing a “dummy” signal (i.e. signal
not present in the circuit). Furthermore, another parameter is
associated with the “%do” call (not shown in the Figure) such
that the called C program knows that it has to check the data
on the “stc_bus” instead of the “mba_bus”.

After the timing diagrams for the units have been con-
structed, they are used to verify each unit during simulations.
In our bottom-up hierarchical verification approach, the verifi-
cation will next continue by verifying the network of con-
nected units. Thereby, re-use is made of the timing diagrams

of the units. In other words, the timing diagrams for the larger
network are defined making simple changes to the timing dia-
grams for the units. Note that once we have written and
debugged the C routine for the calls in the unit simulation the
C routines for the overall simulation are the same except for
the signal names on which the data occurs/is checked. In our
approach the signal names are therefore simply made known
to the C program by calling the routine with a parameter
which defines the bus.

Fig. 4. (a) STC/MEM and (b) timing diagram for “fetch data”.

So far, we only discussed how we specify each command
by the use (and re-use) of timing diagrams. As discussed
before, to actually verify each unit and the network of units
the timing diagrams have to be randomly started such that
complex traffic situations are created from the simple timing
diagrams we just defined. How this is done will be discussed
in the next section by introducing the CAD tools for entering
the timing diagrams and for executing them randomly.

4. CAD Tools
We used an IBM CAD tool called TIMEDIAG which pro-

vides the possibility to enter simple test cases in the form of
timing diagrams. Furthermore, a tool called GENRAND was
used which enables the random execution of timing diagrams
specified using TIMEDIAG. These tools were basically devel-
oped to ease the verification of interface logic. However we
used them for the verification of our large chips. The problem
of using timing diagrams without supporting C programs is,
that the number of signals which have to be specified becomes
large (especially for data busses) and it becomes very time-
consuming to construct the timing diagrams. However, with
the introduction of calls to C routines, implementing data gen-
eration and data verification on the complex busses, we found
that we could use the same tools for the verification of very
large chips and even subsystems.

4.1 TIMEDIAG
TIMEDIAG is a graphical editor to create or modify timing

diagrams. The timing diagrams have the structure of a spread-
sheet as shown in Figure 3(b). Signals and variables are speci-
fied in rows and cycles in columns. Variables are global
variables in the sense of a programming language like C. The

cmd_stc

STCxfer_stc
stc_bus

I:cmd_stc
I: stc_bus

O: xfer_stc

I: dummy

c0 c1 c2 c3*

%ci

%ei

%do%do%do

c4 c5 c6 c7

* Conditions:

[0:31]

C3: Loop till xfer_stc = 1

x

x

(a)

(b)

O: stc_bus

MEM

value assigned to a variable is known in all timing diagrams
and can for example be used to control the duration of a recur-
ring cycle such that a timing diagram waits until another tim-
ing diagram has entered a specific cycle.

The content of the cell on the intersection of a row and a
column determines the value of the signal or variable in that
cycle. In this cell, a value, an equation, a call to a C routine, or
a “don’t care” condition can be specified.

In TIMEDIAG a so-called “limiter”, is used to control the
start of each timing diagram during the simulation. Using the
“limiter” it can be (and has to be) prevented that two timing
diagrams require to set the same input signal to opposite val-
ues. For example, if the “fetch data” timing diagram and
“store data” timing diagram use the same signals then the lim-
iter must prevent that both timing diagrams set the same sig-
nal at the same time.

Each limiter consists of a boolean equation which must
evaluate to “true” before the timing diagram can be started.
Furthermore, the limiter contains a variable field for the speci-
fication of a global variable name. This variable is incre-
mented when GENRAND selects the timing diagram to start
and it is decremented when the timing diagram execution is
ended. The simultaneous execution of the “store data and
“fetch data” timing diagrams can now be prevented as fol-
lows. In both timing diagrams the use of the same variable for
increment/decrement is specified. For example, lets us assume
that the variable is called “port0_busy”. This variable is set to
“1” as soon as the fetch or store timing diagram is selected to
be started. If the limiter equation of each timing diagram is set
to “port0_busy < 1” then no other timing diagram can be
started before the active fetch or store timing diagram has
ended.

4.2 The GENRAND Simulation Environment
The structure of the simulation environment is shown in

Figure 5.

Fig. 5. GENRAND simulation environment.

The timing diagrams created with TIMEDIAG are stored in
a database. Together with the compiled C routines for the calls
in the timing diagrams this database is the input for GEN-
RAND. It provides a graphical interface for the selection of:
• the set of timing diagrams to be executed.
• a timing diagram start probability; GENRAND tries to start

the timing diagram every cycle when setting the probability
to 100%.

• a seed number;the seed number is generated automatically
and it forms the starting point for the randomizer. The seed

TIMEDIAG

Timing

GEN-
RAND

moni-

simulator

C routines

Traces & defs.

Simulation
Model

Diagrams

tor

number will be entered manually if a simulation run has to
be recreated, for example, to verify that the logic fault found
by a particular simulation has been corrected in the design.

• run time control; for the selection of the number of cycles
which have to be simulated and so on.
GENRAND acts as a simulation driver for our simulator,

randomly starts timing diagrams and checks the outcome of
the execution. In case GENRAND detects an error, control is
passed to the monitor, which controls the output of trace files
and enables viewing of the state of all signals in the simula-
tion model. Furthermore, GENRAND writes into a result file
the characteristics of each simulation such as the number of
times a timing diagram was started, which timing diagrams
were concurrently active and so on.

4.3 C Routines
In addition to the routines implementing the calls in the

timing diagrams, a number of other small programs were writ-
ten for trace file analysis and for copying and (hierarchically)
modifying timing diagrams. For example, a small conversion
program was written which translates the timing diagram
defined for a specific PU/L2 port of the BSN unit into the tim-
ing diagram for all other PU/L2 ports.

5. Results

5.1 Creating the Timing Diagrams and C routines
As indicated in previous sections, we started by creating

timing diagrams for the MBA, BSN and the memory card
(STC unit and behavioral model for memory bank) such that
each unit could be simulated separately by unit simulation.
The MBA was only partially included since many of its parts
could be covered by the models developed for the random
MBA unit simulation in our second generation system. To
perform the unit simulation all C routines which were called
by the timing diagrams were written. There are 4 different
classes of these C routines:

1) Procedures to drive data and check data on the busses;
These routines were written such that the names of the
buses were defined globally and that a parameter speci-
fies, on which bus the data has to be driven or verified.
The introduction of such a parameter circumvents the
repeated use of signal names for busses and makes the
routines modular. The use of the same routine for the
simulation of another unit only requires the modification
of the parameter.

2) Procedures to set and check the L3 Cache contained in
the BSN;With these routines, the L3 Cache data and the
cache control bits can be set. Furthermore, these rou-
tines are used to check if L3 Cache lines are loaded and
the control bits set correctly.

3) Procedures to access the behavior model for the
DRAMs; Data in main memory and in the keystore array
can be set or checked by using these functions. Further-
more, these routines generate the error conditions which
can be reported by the memory, like “correctable mem-
ory errors”, “uncorrectable memory errors”, “key pro-
tection error” and so on.

4) Misc. procedures; These functions control the behavior
of the memory model with respect to access time,
refresh rate and so on.

For our unit simulation a total of 24 different C routines
have been implemented.

For the MBA, eight basic timing diagrams needed to be cre-
ated. After these basic timing diagrams were running, the tim-
ing diagrams were copied and error handling (parity errors,
uncorrectable memory errors and so on) was added. A total of
29 timing diagrams resulted. These 29 timing diagrams were
all translated into timing diagrams for the BSN, MBA and
STC subsystem model. For the BSN, only the command
started by the PU/L2 units was modelled, since timing dia-
grams of the MBA ports could easily be converted from tim-
ing diagrams discussed previously for MBA unit simulation.

For the BSN, twenty basic timing diagrams needed to be
created in order to cover the 41 commands in our system.
Note that many different operation codes have the same basic
timing and therefore we can simply randomly select the oper-
ation code when the command is put onto the bus by calling a
C routine. Inserting “error handling” and generating the tim-
ing diagrams for other PU/L2 ports, resulted in a total of 61
timing diagrams. All timings check the predicted data, L3
cache states and the compliance with the expected protocol.

The basic timing diagrams for the STC were composed by
extracting them from the BSN/MBA timing diagrams. 22 tim-
ing diagrams were needed.

The overall time which was needed for the creation and the
debug of these timing diagrams, as well as the units, was
about three months. This is very fast in comparison to the ran-
dom approach used for the MBA in our second generation
system. In the latter case, it took 6 months before our MBA
unit simulation was running stable.

5.2 Running the Simulation
The simulation was run on RS/6000 workstations. At the

start of the verification, each unit simulation was done on a
separate workstation. During the final regression runs, we
used 6 workstations to obtain the number of simulation cycles
which gave us confidence, that the design contained no logic
faults in all logic essential for the hardware test of our multi-
processor system. The unit simulation reached a performance
of 10 cycles/second. This was a factor of 5 faster than when
simulating the units connected together which ran at 2 cycles/
second. Note that this is still significantly faster as our tradi-
tional late stage simulation where the performance was lim-
ited to 0.25 cycle/second.

Furthermore, when comparing the traces of our simulation
with the traditional simulation, it was found that the number
of commands which was executed in the same number of
cycles was about a factor of 10 more. This results in a much
higher fault coverage, since the supporting units are “stressed”
in a way which was seldom achieved by the generated verifi-
cation code as executed by the PUs. Hence, to reach the same
fault coverage with the traditional functional verification
approach we would have needed more than a hundred work-
stations.

5.3 Verification Quality
The effectiveness of the presented simulation approach was

proven during the real hardware multi-processor system veri-
fication. Although the complexity of the BSN grew by a factor
of 8.9, the number of problems found in the hardware on the
test floor was the same as in the predecessor machine. Only 3
minor problems showed up in first silicon, which could have
been found by more unit simulation. For the part of the MBA
logic which was included into our model MBA, only a single
problem was found. This problem was easily circumvented by
setting the counter for a specific window to a particular value.
Finally, 3 STC problems were discovered. Two of these were
caused by an incomplete modelling of the DRAMs and there-
fore could not be discovered by our simulation. This is a
reduction of 60 percent as compared to the previous system.

These problems did not seriously hamper system test. All
problems were fixed by using spare gates on the chip and wir-
ing to existing gates (metallization change only). Hence, no
new silicon had to be produced and only masks for the metal
layers had to be changed. The overall result was a 6 month
period between first-silicon and first customer shipment.

5.4 Advantages of the Approach
We found that the timing diagram based approach has many

advantages compared to our previous approach, were the test
cases and the randomizer were implemented by writing mod-
els (in a C like programming language) for each interface:
• Timing diagrams result in a precise and easy to read specifi-

cation; The use of timing diagrams in contrast to implement-
ing the same behavior by using a programming language like
C is that the timing diagrams are a much easier to compre-
hend specification. Also in previous projects timing dia-
grams were used to specify the protocol for the command
execution of the supporting units. So the effort to convert the
timing diagram specification into models which randomly
stimulate each interface is no longer needed.

• Specification can be executed and remains up-to-date; By
entering the timing diagrams with the help of TIMEDIAG
each timing diagram can be directly used for verification.
Using the specification for verification of the logic behavior
keeps the specification up-to-date during the whole project.

• The randomizer is now a part of the GENRAND tool; In the
past each behavior model had its own code for generating
random patterns for the simulation. This is no longer needed
in the approach presented.

• Several persons can create and debug timing diagrams for
the same interface;The writing of programs for stimulating
an interface often has to be done by a single person, since he
is the only one who understands the main structure and parti-
tioning of his program. Especially in the case of faults, the
programmer is the only one who can correct his program. In
the new approach, everyone in our team could understand
the timing diagrams and could debug them without assis-
tance.

• Possibility to start very early with simulation; As soon as a
timing diagram has been created we could immediately start
the verification. In the old approach that was much more

complicated since many routines had to be ready before the
verification could start.

• Better verification of protocols as the state of a signal has to
be specified cycle by cycle; In a TIMEDIAG spreadsheet, the
state of each signal has to be specified for each cycle. In the
past, the behavioral model did not completely test for the
state of the output signals, due to the amount of extra code
needed to implement such features.

• Re-use of the timing diagram;Once we had the timing dia-
grams for a particular model, the timing diagrams for
another simulation model were created by modifying the
existing timing diagrams. Such a re-use was not possible in
previous projects, because a program written for a specific
interface requires an overall modification of the program
before it is suited to drive another interface.

• Hierarchical and incremental; The use of the approach pre-
sented here enabled us to start the verification for small
units. It enabled a fast debug of the logic, the timing dia-
grams and the C routines which were called. In previous
approaches we directly started to verify relative large circuit
parts since it was too time consuming to write a (not to re-
use) program stimulating each interface.

6. Conclusions
In this paper, we presented a new approach which uses ran-

domly executable timing diagrams for the hierarchical verifi-
cation of supporting units between processor, memory and I/O
channels. The use of timing diagrams has the advantage that
they are a precise and an easy to read specification. The pre-
sented approach supports (and is restricted to) the verification
of units in which the verification complexity is caused by the
concurrent execution of many relatively simple commands (or
timing diagrams). We found that timing diagrams constructed
for a unit could easily be re-used for the verification of con-
nected units, as well as the overall network, when calls to C
routines were introduced for driving and verifying data bus-
ses. With this approach, only three months were needed for
verification and a much better fault coverage was reached than
for previous systems. As a result of the better and faster verifi-
cation approach, no new silicon had to be produced and the
system could already be shipped six months after first-silicon.

References
[1] A. Aharon et. al.,Test Program Generation for Functional Verifi-

cation of PowerPC Processors in IBM, Proceedings 32th ACM/
IEEE Design Automation Conference, 1995.

[2] A. Hosseini, et. al.,Code Generation and Analysis for the Func-
tional Verification of Microprocessors, Proceedings 33th ACM/
IEEE Design Automation Conference, 1996.

[3] A. Chandra et. al.,AVPGEN-A Test Generator for Architecture
Verification, IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, June 1995, pp. 188-200.

[4] K.L. McMillan, Symbolic Model Checking, Kluwer, 1993.
[5] I. Beer, et. al.,Rule Base - an Industry Oriented Formal Verifica-

tion Tool, Proceedings 33th ACM/IEEE Design Automation
Conference, 1996.

[6] J. Young, Exploring IBM’s New Age Mainframes, Maximum
Press, 1995, 481 pages.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

