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Abstract
We examine frequency-domain issues in the design and selection
of on-chip test generators for built-in self-test (BIST) of high-
performance digital filters. Test-generator/circuit compatibility is
identified as a significant factor in testing large filters. A fault-
injection experiment is used to show that when an incompatible test
generator is used, high fault coverage (over 99%) does not guaran-
tee that all serious faults will be detected. The frequency-domain
characteristics of some basic test generation schemes are examined,
and guidelines for test generator selection are proposed. Analyti-
cal techniques for identifying frequency-related testability problems
are discussed, and several test generation schemes are evaluated by
fault simulating them against lowpass, bandpass, and highpass fil-
ters. A mixed test generation scheme is shown to reduce the number
of untested faults by a factor of two to three over a standard linear-
feedback shift-register (LFSR) based test scheme, at little added
cost.

1 Introduction
Frequency-domain techniques, through measures like total harmonic
distortion, have long been used to characterize and test analog and
mixed signal devices [1]. While the applicability of frequency-
domain techniques to on-chip testing is less obvious, it nevertheless
plays a significant role in the design of self-testing digital signal
processing systems. Specifically, frequency-domain considerations
are an important factor in the selection of a test generator for high-
performance digital filter designs. A significant result is that com-
mon test pattern generators used for built-in self-test (BIST) can
be behaviorally incompatible with certain classes of filters. By
considering frequency-domain compatibility in the design of a test
generator, coverage of an important set of faults can be significantly
improved.

In digital filter datapaths, the bulk of the lower-order bits tends
to be easy to test, while a small kernel of hard-to-test faults are
typically found at the upper bits. The hard-to-test faults fall into
two broad categories: those that are likely to be activated during
normal operation, and those that are not. While not redundant, the
last set of faults are only activated when the filter input is over-
driven by a highly distorted signal, and thus fall outside the normal
operating conditions of the filter. We will refer to these faults as
near-redundant. These faults are naturally of less concern than the
hard-to-test faults that can be activated by signals that fall within the
filter’s operating parameters. The last set of faults will be referred
to simply as difficult.

Even taking the near-redundant faults into account, the small
number of faults missed by a standard LFSR test sequence may
include faults that correspond to serious flaws in the device. In
fact, the relative ease with which the vast majority of faults in these
devices can be tested tends to obscure the real testing problems, and
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dilutes the meaningfulness of fault coverage as an absolute measure
of test quality.

Despite these concerns, BIST remains a particularly attractive
approach for testing these designs for several reasons. First, large
portions of the design can be tested with basic pseudorandom tech-
niques requiring little additional chip area. Second, the high data
rates that these devices generally operate at can make at-speed test-
ing difficult using off-chip methods. Furthermore, such systems
require the use of extremely low overhead techniques; performance
is usually of the utmost concern, to the extent that many of the meth-
ods traditionally used to improve test access to the circuit-under-test
(CUT) must be restricted. Using frequency-domain techniques, we
can extend the effective range of a test generator, enabling the use of
very low overhead BIST approaches employing a single generator at
the input to the filter. Finally, by using frequency-domain analysis,
we can choose a test generation scheme that significantly reduces
the likelihood that a serious fault will escape detection.

Frequency-domain techniques are not the complete answer to
digital filter testing: redundant logic, correlation effects, and
random-pattern test resistance are some of the many test problems
that may be encountered [2, 3, 4, 5]. However, frequency-domain
considerations do rank as one of the most important issues in digital
filter BIST. To understand how frequency-domain behavior impacts
testability, we will first lay some groundwork by modeling the most
difficult-to-test faults. We will then see, through a fault-injection
experiment, how neglecting frequency-domain considerations can
result in difficult faults escaping detection despite deceptively high
single-stuck-at fault coverage. We will analyze a number of different
test generation schemes from the frequency-domain perspective, and
discuss their compatibility with some of the basic filter types. We
will then compare the actual performance of several test generation
schemes on three filters representing the basic lowpass, bandpass,
and highpass filter types. Finally, we will look at the advantages of
mixed test generation schemes.

2 Notation & Conventions
Signals are assumed to be represented using two’s-complement
arithmetic, where the value of an N -bit signal b0; b1; : : : ; bN�1 is
given by �b0 +

PN�1
i=1 bi2�i. To aid discussion, all signal values

are expressed relative to the bit width available at that point in the
circuit. For example, a 5 bit signal will be interpreted as a two’s-
complement number in the range �1 to 1, even though it might
actually represent the lower 5 bits of a 6-bit signal that is restricted
to the interval [�0:5; 0:5). In the fault simulation results, we assume
no aliasing in the response analyzer.

3 Application Domain
The circuits we will consider here are high-performance, reduced-
complexity digital filters. The circuit elements to be tested include
delay registers, adders, subtractors, and fixed-coefficient multiplica-
tion operators. The multiplication operations are implemented via
hardwired shift-and-add structures. We will assume that the adders
and subtractors are implemented via ripple-carry addition. Carry-
save adder arrays are a higher-performance alternative that come
at the cost of doubling the number of registers in the design. The
frequency-domain analysis that is described here applies to circuits
implemented using either ripple-carry or carry-save adders, although
the analysis is more complex in the case of carry-save arrays [4].
Consequently, we will focus on ripple-carry adders here. At the



widths
design adders regs in coef. out faults

LP 183 60 12 15 16 57148
BP 161 58 12 14 16 50650
HP 175 60 12 15 16 55042

Table 1: Design statistics.

register-transfer level, the designs can be represented as networks of
registers, adders, subtractors, fixed-shift, and sign-extension opera-
tors. The filters are implemented using a cascade of “tap” structures,
each of which corresponds to a constant-multiplication operation
and a delay register. Designs typically consist of anywhere from a
dozen adders and subtractors to several hundred. Further details on
the architecture of the filters may be found elsewhere [6].

Three basic types of filters are examined: lowpass, bandpass,
and highpass. Three representative designs were created using a
canonic-signed digit representation to convert multiplier coefficients
to a small number of add and subtract operations [6, 7, 8]. Statistics
for the designs are summarized in Table 1. The complexity of
each design is similar: the number of registers (corresponding to
the number of filter tap structures) was kept at or near 60, and the
number of adders in the most complex design is within 14% of the
number of adders in the simplest design. The input signal width,
maximum coefficient width, and the output datapath width are also
similar in all three designs. The number of adder faults modeled in
each design is shown in the rightmost column. Register faults are
not considered, since they did not pose any obstacle to full testing
of this architecture.

The use of scaling techniques to identify and remove redundant
sign bits is the first step towards obtaining a testable design. Once
this is accomplished, further optimizations can be performed on the
upper bits of many adders to eliminate redundancies that are induced
by signal constraints [2, 3].

4 Modeling the Difficult Faults
Out of the adder faults modeled in these designs, usually only 1% or
less are classified as difficult—those that lie well beyond the knee
of the fault simulation curve. In this section, we will look at a high-
level model of these difficult faults, which will enable us to relate
test signal variance to fault coverage. The two basic mechanisms
that result in random-pattern test resistance in digital filters will be
described, and we will discuss the problem of near-redundant faults.

Difficult faults will be addressed in terms of difficult tests;
whether or not all difficult tests are required will depend on the
gate-level fault model used. In the most conservative test model,
all difficult tests are considered essential. In other commonly used
models, not all difficult faults are essential; their faults can be han-
dled by easier-to-apply tests [5].

The hardest faults to test in the digital filters described here typ-
ically lie in the carry logic of the bits closest to the MSB. There
are two closely-related mechanisms at work: adder-input variance-
mismatch and excess headroom. The first occurs in adders where
one input (the secondary input) is usually much smaller in magnitude
than the other input (the primary input); for example, when adding a
4-bit signal to a 16-bit signal. The excess headroom problem occurs
when a signal does not use the full dynamic range available to it;
this occurs, for example, when a small signal is added to a larger
signal, requiring the datapath width to expand to hold the result. If
the resulting signal rarely uses the added dynamic range, a test prob-
lem results. Excess headroom is often associated with conservative
scaling techniques, where one or more upper bits effectively act as
redundant sign bits [5], making it extremely difficult to activate over-
flow conditions at the next-to-MSB adder. Some of these faults have
such a small probability of being excited during normal operation of
the filter that testing them may naturally take a lower priority—they
are considered near-redundant. Distinguishing between faults that
are near-redundant and those that are merely difficult usually relies
on some knowledge of the input signal’s worst-case parameters.

Test Input Output

T1a 0 � A < 0:5 A + B � 0:5
T1b A < �0:5 A + B � �0:5
T2a 0 � A < 0:5 A + B < 0
T2b A < �0:5 A + B � 0:5 (ovf)
T5a �0:5 � A < 0 A + B � 0
T5b A � 0:5 A + B < �0:5 (ovf)
T6a �0:5 � A < 0 A + B < �0:5
T6b A � 0:5 A + B < 0:5

Table 2: The four difficult test equivalence classes for an adder’s next-to-MSB
carry logic. ‘A’ refers to the value of the high-variance primary input, while ‘B’
refers to the low-variance secondary input.

The hardest faults to test are generally associated with ex-
cess headroom; for random-pattern testing, faults due to variance-
mismatch generally have expected test lengths of at most a few
thousand vectors, while excess headroom can account for expected
test lengths in the hundreds of thousands of vectors, or more. These
two types of faults are closely related in that a series of variance-
mismatched additions can lead to excess headroom when the datap-
ath width expands, and excess headroom in turn becomes a problem
when the sum is fed into a variance-mismatched adder. Through
bit-level analysis of variance-mismatched adders, it is possible to
identify the most difficult tests to apply to upper adder bits. By
translating these gate-level tests into behavior-level conditions on
the adder’s inputs and output, we can more easily identify test prob-
lems through analysis of the filter’s behavior. We will describe these
conditions in the following section.

4.1 I/O test conditions
At each full adder cell, eight tests are possible; we will identify
these as Tn. The test number, n, corresponds to the value of the
binary number abc, where a is the value of the primary input bit;
b, the secondary input bit, and, c, the carry input. Of these tests,
half are considered difficult in variance-mismatched adders. The
input-output conditions required to assert each of the four difficult
tests at the next-to-MSB adder are shown in Table 2 (the MSB logic
is less of a test problem since it does not contain any carry logic).
Each test can be asserted by two equivalent test classes, labeled a
and b. Two tests (marked ovf ) correspond to testing the overflow
behavior of the adder. Even if overflow cannot occur at the adder in
question, the other tests in the T2 and T6 equivalence classes may
be required, depending on the gate-level fault model used.

Excess headroom corresponds to a very low probability of an
adder output exceeding magnitude 0.5 (and possibly lower thresh-
olds, as well). This in turn constrains the primary input, making
tests T1 and T6 difficult. In some gate-level fault models, test T6 is
non-essential, in which case test T1 poses the greatest problem, as
it is generally considered essential [5]. An example of this will be
shown in Figure 3. Even in the absence of a severe headroom prob-
lem, tests T1 and T6 remain susceptible to reduced signal variance,
as will be seen in the next section.

4.2 Test zones
In variance-mismatched adders, the secondary input has much lower
variance than the primary input. Taken in conjunction with the input-
output conditions shown in Table 2, this places a tight constraint on
the values the primary input can take in order to activate the tests.
The location of these test zones is shown in Figure 1, where the width
of the test zones is proportional to the variance of the secondary
input. This test model shows the importance of achieving high test
signal variance throughout the datapath if the upper bits are to be
adequately tested, as tests T1 and T6 can only be activated by signals
near amplitude 0.5. This conclusion, while intuitively obvious, is
not always clear from fault simulation results, which can report high
fault coverage even when important faults have been missed due
to test signal attenuation. Tests T2 and T5, on the other hand, are
less susceptible to the effects of excess headroom. If these tests
are missed, it is usually due only to a variance-mismatch problem,
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Figure 1: A hypothetical probability density function for the primary input to an
adder. The shaded bars indicate the zones that the input must fall in for the
difficult tests to be asserted.

which is more easily solved by extending the test length.
A similar analysis is possible at bits below the next-to-MSB.

The test problem rapidly diminishes towards the lower bits, as the
number of equivalent tests doubles for each step down from the
MSB. Further details on the probability of asserting the difficult
tests using random-pattern testing can be found elsewhere [5].

5 When 99% Isn’t Enough
It is difficult to reach 100% single-stuck fault coverage on large
filters using only a single test generator at the input to the filter and
a compressor at the output. Despite very good observability of most
signals, controllability can be much more limited due to the difficult
and near-redundant faults described in the previous section. As
discussed, the most difficult of these faults commonly result from
the use of conservative design techniques, and can be considered
effectively redundant in many cases. For example, assuming some
knowledge of the input signal statistics, it may be possible to identify
adder outputs at which the probability of the next-to-MSB output
bit overflowing is less than 10�6 under worst-case conditions [4]. A
much higher probability of overflow is often considered acceptable
during the design of filter coefficients, but this information is not
usually used to eliminate near-redundancies.

Assuming less than 100% coverage, how much coverage is
enough to ensure that difficult faults will not escape detection?
While this question cannot be completely answered without some
knowledge of the input signal’s worst-case statistics, consideration
of the test model presented in the last section makes it clear that any
faults that are missed because a test signal is attenuated with respect
to the normal operating signal constitutes a serious test failure. A
test signal can become attenuated if the signal generator does not
place an adequate amount of power in the filter’s passband. In the
remainder of this section, we will show an example of a serious fault
that is missed due to test signal attenuation despite high overall fault
coverage.

A common BIST approach is to use an LFSR to generate a
test signal that is applied to the filter’s input. For the design in
question, a 60-tap lowpass filter, this approach results in 99.1% fault
coverage of the combinational logic; the fault coverage for the entire
design would be somewhat higher due to the complete testing of the
registers in the design. We might be tempted to stop testing at this
point, assuming the remaining untested faults to be near-redundant
due to conservative design techniques, i.e., the remaining faults can
only be activated by input signals that would never occur under
normal operating conditions. However, as we will see later, the
LFSR test signal becomes highly attenuated as it passes through the
filter. This results in upper-bit missed faults that have a relatively
high probability of being excited during normal operation of the
filter.

Injecting a fault missed due to test signal attenuation reveals the
severity of these faults; Figure 2 shows the output from the faulty
60-tap lowpass filter with a sine wave signal applied to the input.
The fault effect is visible as a spike (actually, a closely-spaced pair
of spikes) at the peak of the output sine wave. While somewhat
sensitive to the amplitude and frequency of the sine wave, this fault
should nonetheless be considered a serious flaw, as it can be excited
by a wide range of signals that fall within the filter’s normal operating

parameters. Figure 3 shows the location of the fault in question.

6 Test Generator Characterization
Common BIST test pattern generators exhibit a wide variation in
their frequency-domain characteristics. In this section, we will ex-
amine the frequency-domain behavior of several of the most com-
mon schemes, and look at their compatibility with different filter
behaviors. We will also look at some variations that can be used to
improve the compatibility of the test generator with the CUT.

The most common test generator that we will look at, the linear-
feedback shift-register, falls into two basic implementation schemes:
Type 1 with an external XOR-tree, and Type 2 with embedded XORs
[9]. Variations on these LFSRs include the use of a decorrelator cir-
cuit to reduce the linear correlation between successive test vectors,
and a maximum-variance version which uses one bit per test rather
than the entire contents of the LFSR. An entirely different type
of test generator, the Ramp generator, is based on counters rather
than LFSRs [10]. In all cases, the output of the test generator is
interpreted as a two’s-complement number in the interval [�1; 1).

Type 1 LFSR: These LFSRs exhibit reduced power at low fre-
quencies due to negative correlation between successive words. The
signal variance is 0.3333, giving an average power of �4:77 dB.
This LFSR’s power spectrum is not sensitive to the particular seed or
polynomial used as long as the bit stream generated has reasonable
properties, i.e., the probability of generating a 1 should be approx-
imately equal to the probability of generating a 0, and successive
bits should be uncorrelated. This is generally satisfied by choosing
a primitive polynomial. The curve labeled “LFSR-1” in Figure 4
shows the spectrum of a 12-bit Type 1 LFSR. The shape of the
spectrum is not particularly sensitive to the bit width of the LFSR,
nor is it sensitive to the direction of shifting (whether MSB-to-LSB
or LSB-to-MSB). It can be altered by some permutations of the out-
put bits; an interconnection network can be used at the output of the
LFSR to accomplish this.

Type 2 LFSR: Unlike the Type 1 LFSR, this LFSR’s frequency-
domain characteristics are dependent on the choice of polynomial
and shift direction. Generally, Type 2 LFSRs will have less low-
frequency rolloff than their Type 1 counterparts. Choosing a poly-
nomial that puts an XOR gate near the MSB can help flatten the
spectrum. The power spectrum of a 12-bit Type 2 LFSR with
polynomial 12B9h (shift direction LSB-to-MSB) is shown as curve
“LFSR-2” in Figure 4. In some cases, using the reciprocal polyno-
mial will help the frequency-domain characteristics by moving an
XOR gate closer to the MSB. Like the Type 1 LFSR, the signal
variance is 0.3333.

Decorrelated LFSR: One way of flattening the Type 1 LFSR
spectrum is to attach a decorrelator circuit to its output. This can take
a number of forms—in our experiments we used an XOR network
to invert all bits other than the LSB whenever the LSB takes a 1
value. In terms of gate count, this is not the most efficient way to
flatten the spectrum (we can do this with fewer gates using a Type 2
LFSR), but it does provide other desirable properties: the correlation
between all bits in two successive vectors is reduced, rather than
just a few bits. This can help eliminate some test problems, such
as structural dependencies [11, 2]. It retains some properties of
maximal-length shift-register sequences that may be desirable from
a testing perspective, such as no repeated vectors and a near-zero
mean value. As with maximal-length sequences, the variance of
the generated signal is approximately 0.3333. The curve labeled
“LFSR-D” in Figure 4 corresponds to the power spectrum of a 12-
bit decorrelated Type 1 LFSR. The signal provides essentially equal
power to all frequency bands.

Maximum-variance LFSR: The above three test generators all
have signal variances of 0.3333. A higher variance signal can be
generated from an LFSR simply by using the bit stream to select
between the most positive two’s-complement number or the most
negative, yielding a signal with variance 1 and a flat spectrum like
the decorrelated LFSR. Due to its high-variance, this test generator
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Figure 2: Despite reaching fault coverage over
99.1%, a standard LFSR-generated test sequence
misses this fault. The output of a lowpass filter is
shown corresponding to a sine-wave input signal.
The fault effect is visible as a spike train superim-
posed on the output sine wave.
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Figure 3: Location of the full-adder fault correspond-
ing to Figure 2. The fault is located three bits down
from the MSB of tap 20 of a 60-tap lowpass filter. This
fault is only detected by the difficult test T1.
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Figure 4: Power spectra of some common BIST test
pattern generators.

Lowpass Bandpass Highpass
LFSR-1 � � +

LFSR-2 � � +

LFSR-D + + +

LFSR-M + + +

Ramp + � �

Table 3: Frequency-domain compatibility of test generators and filter types.

is relatively good at exercising the upper bits in the datapath, but does
not effectively test lower bits in most adders due to the correlation
between adjacent bits. In the lower bits, tests T1 and T5 are missed
by this generator. The spectrum is shown as the curve labeled
“LFSR-M” in Figure 4.

Ramp: Since counters are frequently available on-chip as part
of a design, they are sometimes used as test signal generators [10].
In two’s-complement notation, the signal produced is a ramp or
sawtooth function. The frequency-domain behavior of this signal
is substantially different from the LFSR-based signal generators:
almost all of the signal’s power is concentrated at very low fre-
quencies. The spectrum of a 12-bit count-by-one ramp is shown in
Figure 4 as the curve labeled “Ramp”.

6.1 Frequency-domain compatibility
Based on the above frequency-domain characterization of test signal
generators, we can judge the compatibility of each generator with
the circuit to be tested. Following the discussion in Section 5,
some of the most serious missed faults correspond to those that are
due to the failure of the test generator to put adequate power into
the filter’s passband. Comparing the filter’s transfer function with
the test generator’s spectrum thus gives a quick indication of their
compatibility. Formally, we can estimate the output signal variance
as �2

y =
1
L

PL�1
k=0 jG[k]j

2
jH[k]j

2, where G[k] is the discrete power
spectrum of the pattern generator’s signal, H[k] is the Discrete
Fourier Transform (DFT) of the filter’s impulse response, and L is
the length of the DFT. A mismatch between the shape of G[k] and
H[k] results in reduced output signal variance, which impacts other
taps as well, especially those closest to the output. Variance-based
testability analysis will be revisited in Section 7.

The compatibility of each test generator with the three basic
filter types is shown in Table 3, where ‘+’ indicates good com-
patibility, ‘�’ indicates poor compatibility, and ‘�’ indicates that
the compatibility is dependent on the specifics of the design. The
LFSR-1 generator is compatible with bandpass filters as long as
the passband is far enough above the LFSR-1’s rolloff area. The
frequency-domain characteristics of LFSR-2 generators place them
between the LFSR-1 and LFSR-D generators, depending how flat
the spectrum is, which in turn depends on the polynomial selected.

7 Analyzing LFSR-based Testing
There are a variety of techniques that can be used to identify potential
test problems early in the design process, based on consideration of
the filter’s impulse response. In particular, it is possible (using
signal variance analysis) to identify points in the design where the
test signal’s standard deviation is small compared to the bit width

available. More advanced techniques are also available that are
based on computing the signal probability distributions at each adder
[5]. In this section we will show an example of how the linear model
of an LFSR can be used to identify test signal attenuation problems
through signal variance analysis. Simulation-based techniques will
also be used to examine the test problem introduced in Section 5, and
these results will be compared with a distribution-based approach.

7.1 Variance-based analysis
In a linear system, we can characterize the output of an adder by
the impulse response corresponding to the subsystem that outputs at
that adder. If the impulse response corresponding to the k-th adder
is denoted by hk, then the variance of the adder’s output in response
to a white-noise source of variance �2

x is

�
2
k = �

2
x

MkX
i=0

h
2
k[i]; (1)

whereMk is the order of the subfilter that outputs at adder k, assum-
ing a finite impulse response (or a finite approximation of an infinite
impulse response). This basic result has been used extensively in
analyzing roundoff noise in digital filters (see, for example, [12,
Eqn. 6.107]), and can be directly applied to finding the variance at
an adder’s output due to a decorrelated LFSR source. For the LFSR-
D generator, assuming perfect decorrelation, �2

x is 0.3333, while for
the maximum-variance LFSR (LFSR-M), �2

x is 1, neglecting any
overflow effects.

For other LFSRs, many correlation effects can be accounted for
using a linear model of the LFSR-generated signal. For example,
an MSB-to-LSB-shifting N -bit Type 1 LFSR can be modeled as a
0/1 white-noise source feeding a linear system characterized by the
finite impulse response [5],

g[n] =

8<
:

�1; n = 0;
2�n; n = 1; 2; : : : ; N � 1;
0; otherwise.

When this model of the LFSR is cascaded with the CUT, the re-
sponse due to an impulse at the LFSR model’s input is given by
the convolution of the model’s impulse response with the subfilter’s
impulse response: h0k[n] = hk[n] � g[n] =

PMk

i=0 hk[i]g[n� i]; for
n = 0; 1; : : : ; N +Mk � 1 (zero otherwise). The variance of the
adder’s output signal is then given by Equation 1, replacing hk with
h0k and setting �2

x equal to 0.25, the variance of a 0/1 white-noise
source with Pf0g = Pf1g = 0:5. A similar approach can be used
for Type 2 LFSRs, although this involves computing a response
due to each XOR gate embedded in the LFSR, and summing the
variances due to each.

The impulse response model of LFSRs also determines their
frequency-domain behavior; the power spectrum is the Discrete
Fourier Transform (DFT) of the aperiodic autocorrelation function
of the model’s impulse response, which is given by hk[n] �hk[�n].
For Type 2 LFSRs, the power spectrum due to each XOR gate is
added to compute the complete power spectrum.

To examine the effectiveness of the test generator, we can ex-
amine the variance at each adder’s output; a low signal variance
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Figure 5: A segment of the test sequence generated
by a 12-bit Type 1 LFSR. The standard deviation of
the maximal-length sequence is 0.577.
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Figure 6: Reduced variance test signal at tap 20 of
the 60-tap lowpass filter, corresponding to the LFSR-
generated test sequence. The four bits below the
MSB are not fully tested. Standard deviation: 0.036.
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Figure 7: Test signal at tap 20 with a decorrelator at-
tached to the LFSR. This time, only one bit below the
MSB is not fully tested. Standard deviation: 0.121.

Des. LFSR-1 LFSR-D LFSR-M Ramp

LP 519 331 1097 485
BP 201 193 1005 1230
HP 308 315 1030 1679

Table 4: Missed faults.

Des. LFSR-1 LFSR-D LFSR-M Ramp

LP 2.84 1.81 5.99 2.65
BP 1.25 1.20 6.24 7.64
HP 1.76 1.80 5.89 9.59

Table 5: Normalized missed faults.

Des. misses normalized

LP 148 0.81
BP 74 0.46
HP 137 0.78

Table 6: Missed faults for a mixed LFSR-
1/LFSR-M test (8k test length).

indicates the presence of a potential testing problem. This analy-
sis permits testability problems to be identified early in the design
process. Other approaches include simulation-based analysis, and
analytical techniques based on probability distribution analysis. In
the next section, we will take a look at how these techniques can be
used to identify reduced test coverage points.

7.2 Simulation-based analysis
Continuing the example from Section 5, we will next use simulation-
based techniques to look at how an LFSR-generated test sequence
fails to detect the fault described. The output of a 12-bit LSB-to-
MSB-shifting Type 1 LFSR is fed into the filter’s input; interpreting
this signal as a two’s-complement number results in the waveform
shown in Figure 5, a 300-sample segment of the test sequence.
The short exponential segments are characteristic of the correlation
properties of this LFSR. The filter is the 60-tap lowpass filter.

The response excited by the test signal at tap 20 is shown in
Figure 6. Clearly, the test signal is severely attenuated at this point
in the filter. Consequently, neither the adder in question nor the logic
dependent on it will be fully tested. In all, the carry logic of the four
consecutive bits below the MSB is not tested. This attenuation is
due to the low-frequency rolloff of the LFSR acting in combination
with the low cutoff frequency of the filter, and is predicted by the
signal variance analysis technique described in Section 7.1.

The low-frequency rolloff of the LFSR-1 generator can be elim-
inated by placing a decorrelator at the LFSR’s output. Although
this test signal has the same variance as the original test signal, the
standard deviation of the signal at tap 20 is now 3.4 times higher
than in the previous case. As can be seen from Figure 7, the signal
amplitude is much improved although still insufficient to test the
next-to-MSB bit; this corresponds to one of the more difficult tests
due to the conservative scaling used at this tap. This bit can be tested
by a long maximum-variance LFSR sequence.

While signal variance is useful in analyzing this kind of attenu-
ation problem, it is a very rough measure. More precise analysis of
the test problem is possible if the shape of the signal’s probability
distribution is known. This can be obtained by histogram analysis
of simulations, or can be found using analytical techniques when
a suitable model of the test generator is available. The latter ap-
proach can be used for the LFSR-based test generators; an example
is shown in Figure 8. This shows the predicted distribution at tap
20 for the LFSR-1 test signal, as well as the histogram estimate
produced through simulations. Comparing this with the test zones
shown in Figure 1 highlights the nature of the test problem.

A histogram corresponding to a decorrelated LFSR-1 generator
(LFSR-D) is shown in Figure 9. This figure also shows the expected
distribution for an idealized test generator, assuming statistically
independent vectors. The LFSR-D histogram, while not matching

as closely as the previous distribution, still matches fairly well,
attesting to the efficacy of the decorrelating circuit. Details of
distribution-based testability analysis can be found elsewhere [5].

8 Experimental Results
We will now look at the performance of four different test genera-
tors on the three designs described in Section 3, and compare their
performance with that expected from frequency-domain considera-
tions. Figures 10–12 show fault simulation results for the LFSR-1,
LFSR-D, LFSR-M, and Ramp generators described previously. A
12-bit version of each generator was used; for the LFSR-based gen-
erators it is easy to extend the test length by using a larger LFSR.
Table 4 shows the number of faults that remained undetected after
4k vectors; in Table 5 these numbers are normalized by the number
of adders and subtractors used in the design.

In the highpass and bandpass designs, the LFSR-1 and LFSR-D
generators give very similar performance. However, in the lowpass
design, the LFSR-1 generator clearly lags behind. This is as ex-
pected, due to the low-frequency rolloff of the LFSR-1 generator
which was shown in Figure 4. While the percentage difference in
fault coverage is very small (0.3%), this consists of faults that we
cannot afford to miss, for the reasons discussed in Section 5.

The maximum-variance LFSR (LFSR-M), lags all other test gen-
erators due to its poor coverage of faults in lower bits of adders.
However, it is usually more effective at testing upper bits than other
generators, and—due to its flat frequency response—gives similar
performance in all three cases. We shall see in Section 9 how this test
generator’s ability to test upper bits can be combined with another
test generation mode to reach very high coverage levels.

The Ramp generator is comparable to the best generators for the
lowpass filter, but—as expected—performs poorly on the bandpass
and highpass filters due to its extremely low power in the upper
bands. For the wide-band test generators (which includes all but
the Ramp generator), the bandpass filter is somewhat easier to test
than the other two filters partly due to its wider passband: less test
signal power is lost to stopband attenuation. The exception to this
is the LFSR-M generator, which encounters a higher percentage of
low-order bits that it is unable to test.

9 Mixed Test Generation Schemes
A low-cost pseudorandom BIST scheme that can offer good cov-
erage for many designs consists of an LFSR that is switched be-
tween normal and maximum-variance mode. The use of maximum-
variance mode not only helps exercise faults in upper bits through
its increased signal variance, but also compensates for the Type 1
LFSR’s low-frequency rolloff. While the maximum-variance test
signal has good signal strength in all frequency bands, it has poor
coverage of the lower bits in adders. Combining the two approaches
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Figure 8: Signal amplitude distribution at tap 20 due
to a Type 1 LFSR. The ‘theory’ curve uses the LFSR
linear model to predict the distribution, while the ‘ac-
tual’ curve shows the histogram estimate obtained by
simulation. The histogram estimate closely matches
the curve predicted by theory.
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Figure 9: Signal amplitude distributions at tap 20,
decorrelated tests. The theoretical curve assumes
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dependent vectors, while the ‘LFSR-D’ curve shows a
histogram corresponding to the use of a decorrelated
LFSR.
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Figure 10: Fault simulation results of four test
generators applied to the lowpass filter.
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Figure 11: Fault simulation results for the band-
pass filter.
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Figure 12: Fault simulation results for the high-
pass filter. Note that the vertical scale has been
changed to accommodate the Ramp curve.
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Figure 13: Fault simulation results showing the
advantage of combining test generators for the
lowpass filter. The curves correspond to a
Type 1 LFSR, a maximum-variance LFSR, and
the effect of switching the LFSR to maximum-
variance mode after 2k vectors.

results in much better test coverage than can be obtained by either
approach in isolation. This effect is shown in Figure 13, which
shows fault simulation curves for the lowpass filter design. The
LFSR is started in normal mode, and then switched to maximum
variance mode after 2k vectors. The fault coverage results for a 4k
normal-mode plus 4k maximum-variance mode Type 1 LFSR are
shown in Table 6. The quality of this test is very similar to that
of a mixed LFSR-D/LFSR-M test scheme, yet does not require a
decorrelating circuit.

10 Conclusion
In testing high-performance digital filters, adequate testing cannot
be guaranteed by high fault coverage alone; the significance of any
untested fault depends on the likelihood of fault activation during
normal operation of the filter. To be effective, a test generation
scheme should put a substantial amount of energy in the filter’s
passband. Use of an incompatible test generator, such as a Type 1
LFSR with a narrow-band lowpass filter, or a ramp with a highpass
filter, can lead to surprises, where important faults are missed despite
deceptively high fault coverage.

Combining a CUT-compatible test generator with an incompati-
ble test generator that has other important test properties can provide
higher fault coverage than either generator in isolation. Often, this
is enough to ensure good coverage of the most significant diffi-
cult faults, reducing the number of untested faults by a factor of
2.2 to 2.6 over the best single-mode approaches, and by as much
as a factor of 3.5 over basic LFSR-based testing. To provide an
even higher guarantee of coverage of difficult faults, some possible
approaches include: restructuring the design to improve its random-
pattern testability; use of longer test sequences (with larger LFSRs
to avoid input cycling); use of more specialized test controllers to
produce tests tailored to the specific filter (deterministic BIST); use
of more aggressive scaling techniques, when appropriate; and iden-
tification of near-redundant faults, excluding them from the fault
universe.

The intent of the last two points is to formalize the process of
deciding which faults (if any) will not be tested, with the aim of
reaching 100% coverage on the most critical faults. This typically
requires some knowledge of the worst-case input signal statistics.
Since this information is not always available, the test designer must
often rely instead on very-high-coverage techniques based on the use
of frequency-domain compatible test generators.
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