
Toward Formalizing a Validation Methodology Using Simulation Coverage

Aarti Gupta
CCRL, NEC USA

Princeton, NJ

Sharad Malik
Princeton University

Princeton, NJ

Pranav Ashar
CCRL, NEC USA

Princeton, NJ

ABSTRACT

The biggest obstacle in the formal verification of large designs is
their very large state spaces, which cannot be handled even by
techniques such as implicit state space traversal. The only viable
solution in most cases is validation by functional simulation. Unfor-
tunately, this has the drawbacksof high computational requirements
due to the large number of test vectors needed, and the lack of ade-
quate coverage measures to characterize the quality of a given test
set. To overcome these limitations, there has been recent interest in
hybrid techniques which combine the strengths of formal verifica-
tion and simulation. Formal verification-based techniques are used
on a test model (usually much smaller than the design) to derive a set
of functional test vectors, which are then used for design validation
through simulation. The test set generated typically satisfies some
coverage measure on the test model. Recent research has proposed
the use of state or transition coverage. However, no effort has been
made to relate these measures to the coverage of design errors. Fur-
thermore, the derivation of the test model remains largely ad-hoc,
with few formal guidelines.
We demonstrate that under a given set of assumptions, transition
tours on test models can be used for complete validation of an im-
plementation against a specification, for a large and important class
of designs that includes many programmable/hardwired, general-
purpose processors/DSPs. A by-product of this study is specific
guidelines for deriving the test model, motivated by the require-
ment of providing complete coverage of all errors. We illustrate the
application of our methodology on a pipelined implementation of
the DLX processor.

1 Introduction

An emerging paradigm in hardware validation is a hybrid methodol-
ogy which combines functional simulation and formal verification.
Formal verification-based techniques are used to derive a test set
(consisting of test vector sequences), from a relatively simple test
model of the design. This test set is then simulated on a functional
simulation model of the design. The test set is selected such that
it has certain coverage properties with respect to the test model
– for example coverage of each state [18], or coverage of each
transition [15]. While these techniques have been shown useful in
locating design errors, it is not clear how these measures on the
test model translate to coverage of design behaviors and errors, and
guarantees with regard to completeness of validation. Furthermore,
the derivation of the test model remains ad-hoc, with very few
formal guidelines provided for this task.

Design Automation Conference R
Copyright c 1997 by the Association for Computing Machinery, Inc. Permission to
make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.
0-89791-847-9/97/0006/$3.50 DAC 97 - 06/97 Anaheim, CA, USA

= ?

Behavior-level Description

RTL Description

Behavioral
Simulator

 RTL
Simulator

Function Test Set

Test Set
Generator

Test Model

switch (opcode) {
case ’add’:

r(dest) = r(src1) + r(src2);
break;

case ’or’:
r(dest) = r(src1) || r(src2);
break;

... }

module fetch_controller(...);
module decode_controller(...);
...
module interlock(...);

assign stall = load_stall | mem_stall;
always @(posedge CLK)
...

endmodule

Design Specification

Design Implementation

Implementation
Validation

Figure 1: Validation Methodology Using Simulation Coverage

This research attempts to fill these gaps by identifying classes of
designs for which we can use coverage measures on test models
to ensure complete coverage for design errors, under a reasonable
set of assumptions. Specifically, we demonstrate how a transition
tour (a test set that covers each transition) on a test model can be
used for covering all errors with respect to a given specification,
for many processors including programmable/hardwired, general-
purpose processors/DSPs. This result is the first to characterize
a subset of those designs which allow complete implementation
validation through such a hybrid methodology. A by-product of this
research is specific guidelines on deriving the test models for this
subset. We believe this is an important step towards formalizing the
use of validation techniques based on simulation coverage. On the
practical side, we demonstrate the application of this methodology
for the generation of test vectors for a moderately complex design
– a pipelined DLX processor (with interlock detection, bypassing,
squashing and stalling).

2 Overview: Simulation Coverage Methodology

Figure 1 shows the general framework of a simulation coverage-
based methodology for implementation validation. In this section,
we briefly describe the different components of this framework.
Since the design specification and the design implementation can
be at different levels of abstraction (e.g. ISA description of a
processor versus its RTL implementation), there may be no cycle-
equivalent specification to compare the implementation against.
The comparison between them is made at special checkpointing
steps, e.g. at the completion of each instruction. To enable this, the
implementation state used in this comparison is observable during
functional simulation. For processors this tends to be most of the
state of the datapath.
A test model can be derived either from the specification, or (as
shown in Figure 1) from the implementation . It usually involves
significant abstraction to reduce the state space complexity. For a
processor, the test model typically retains only the control portion

of the design. The datapath is abstracted out since its state is
observable during simulation. In a sense, the test model can be
viewed as the non-observable part of the design. Since the datapath
tends to be a large fraction of the total state, the test model is usually
much simpler than the entire design.
A test generator then uses formal verification techniques to appro-
priately traverse (implicitly or explicitly) the reachable state space
of the test model to provide the target coverage. In a transition
(state) tour, each transition (state) is visited at least once. State
space traversal and generation of transition/state tours tend to be
computationally expensive even with implicit BDD-based meth-
ods [5, 25]. The generated test set is then applied to the functional
simulation models of the specification and the implementation, with
a comparison of outputs.

3 Related Work

The work described in this paper most closely relates to, and is
indeed motivated by, the work reported in Ho et al. [15]. They use
a transition tour on the implementation control FSM to automate test
generation of corner cases, for validation of an embeddeddual-issue
pipelined processor. Their positive results highlight the practical
impact of such a hybrid methodology. However, the issue of error
coverage is not addressed. Our work attempts to formalize the
requirements on the test model such that a transition tour can catch
all transition/output errors with respect to the given specification.
Much of the interest in transition tours has arisen from the area of
conformance testing of protocols [10]. In particular, it is known
that a transition tour can catch all errors if there exists an input
which produces a unique output in each state, and causes the FSM
to stay in the same state [10]. This property has a similar flavor to
the property we use to motivate the completeness argument for our
test model.
In general, function test vector generation/evaluation using formal
models has been the subject of many efforts in specification valida-
tion. In contrast to implementation validation, there is no “golden”
specification here, and the goal is to cover the design space for
checking correctness. These techniques include – guaranteed cov-
erage of every statement in an HDL description [8], evaluation of
transition coverage of a given test set [16], abstraction of models
and semantic control over transition coverage [13], and a coverage
metric based on observability/error propagation [11]. Again, most
of these coverage metrics do not provide a measure of the design
error coverage.
In the more specific context of processor verification, the application
of formal verification techniqueshas been limited by the high design
complexity. Most automatic methods based on state-space explo-
ration handle it either by considering smaller designs [2, 3], or by ab-
stracting out the datapath to verify the pipelined control [6, 19, 20].
Formal verification attempts based on theorem-proving systems
have also been successful [9, 17, 23], but require significant man-
ual effort. At the simulation end of the spectrum, several efforts
have focused on generation of effective function test vectors. The
targets include architectural test sets [7], pipeline hazards [18], and
property-specific architectural test sets [21].

4 Test Set Generation Using Transition Tours

In this section we examine properties of the test model that are
needed for a transition tour to be sufficient for complete error cov-
erage. The actual derivation of such a test model is described in
Section 6.

4.1 Errors in Test Models

We consider the implementation to be a Mealy machine. The test
model is derived from the implementation by abstracting its state

1

3’ 3

54’ 4

a a

b c bc

Transfer
Error

2

Figure 2: Limitations of Transition Tours: An Example

and input space. Since multiple transitions in the implementation,
with possibly different outputs, may map to the same transition in
the test model, the test model may have non-deterministic outputs.
Let us now consider the possible errors in the implementation:

Definition 1 A transition t is said to have an output error in the
implementation if there is some sequence of inputs I that ends in t,
for which its output value o is different from that of the specification.

Definition 2 A transition t is said to have a uniform output er-
ror, if its output in the implementation is different from that in the
specification for all sequences of inputs I that end in t.

Definition 3 A transition t is said to have a transfer error if the
destination state for that transition is different from what it should
be in a correct implementation.

A transfer error is considered to be masked if there is another transfer
error for some subsequent transition that corrects the first one, i.e.
control returns to the state which would have been reached had
neither error been present. More formally:

Definition 4 Let < i1; i2; . . . ; in > be a sequence of inputs from
some starting state. Let < s1; . . . ; sj�1; sj; . . . ; sl�1; sl; . . . ; sn >

be the sequence of states visited in a correct implementation, and
let < s1; . . . ; sj�1; s

0

j; . . . ; s0l�1; sl; . . . ; sn > be the sequence of
states visited in an incorrect implementation. The transfer error
from sj�1 to s0j is said to be masked if the transition from s0l�1 to
sl is also a transfer error.

Note that any error in the implementation is modeled as an output
or a transfer error. This classification is motivated by the FSM fault
model used in protocol conformance testing [10]. We now examine
the coverage of these errors by transition tours.

4.2 Limitations of Transition Tours

Since a transition tour does not necessarily cover all sequences, it
is easy to demonstrate its limitation in exposing all errors. Figure 2
shows a fragment of the state space of a test model. Consider the
transition from State 2 to 3 on input a. Suppose that it is incorrectly
implemented to go from State 2 to 3’. Assume that the transitions
on input b, from State 3 to 4 and from State 3’ to 4’, are known
to result in different outputs during simulation. Also, assume that
the transition on input c, from State 3 to 5 and from State 3’ to 5
result in the same outputs. Therefore, if a transition tour covers
the transition on a from State 2 using the sequence < a; c >, as
opposed to < a; b >, the transfer error will not be exposed. This
illustrates the basic limitation of using transition tours – an error
may be exposedonly several transitions after it is excited only along
a specific path in the state graph. If this path is not selected in the
transition tour, it will not be exposed.

4.3 Complete Test Sets from Transition Tours

Let us now examine conditions under which a transition tour can
generate a complete test set, i.e. a test set that uncovers all errors in
the implementation. Since an error is associated with a transition
by definition, it follows that a transition tour will excite all errors.
The natural question that arises is: under what conditions can a
transition tour also guarantee that all errors get exposed, i.e. each
time an error is excited it is eventually exposed?
In this direction we now impose the following requirement:

Requirement 1 All output errors are uniform.

Intuitively, it hints at the right level of abstraction needed in the test
model, i.e. it provides guidelines for how much of the implemen-
tation state should be present in the test model. We elaborate this
point further in Section 6.
If Requirement 1 is satisfied, then for a transition which excites an
output error in a test model, there is a corresponding transition in
the implementation which exposes it. Thus, there is no dependence
on a sequence of transitions to expose it. However, as illustrated in
Figure 2, a transfer error may be dependenton a specific sequenceof
transitions for exposure. Therefore, to guarantee that it is exposed
by a transition tour, we need to ensure that it is exposed by all
sequences that follow it. More specifically, we need to ensure this
for all sequences of length bounded by some k, since the simulator
must also know how long to simulate in order to expose the error.
These observations motivate the following definition and theorem:

Definition 5 A state s1 in the test model is said to be8k-distinguishable
from a state s2, if all input sequences of length k can distinguish
them.

Theorem 1 If Requirement 1 is satisfied, and if all states in the
test model are 8k-distinguishable from each other for some fixed
k, then a transition tour of the test model is sufficient to expose all
errors through simulation.

Proof: The proof follows directly from the fact that an output error
on a transition must be exposed by that transition itself (since all
output errors are uniform), and a transfer error is exposed by any
sequence of length k that follows it in the tour.

While uniformity of output errors and 8k-distinguishability of states
are strong properties, they give us precisely the class of test models
for which a transition tour provides complete error coverage.
There is a subtle point that needs further elaboration. A test se-
quence for the test model needs to be converted to a test sequence
for the implementation simulation model since some of the inputs
may have been abstracted out in the derivation of the test model.
While Theorem 1 guarantees the existence of complete test se-
quences for the simulation model for the implementation, it does
not point out how they are derived from the test sequence for the
test model. This involves a careful selection of the inputs being
abstracted and is beyond the scope of current discussion.

5 Verification for Processors

We now examine the properties presented in Section 4 for a large
class of practically useful designs that fall under the general category
of processors. In the case of a programmable processor (e.g. general
purpose processor/digital signal processor) the input sequence may
be a sequence of instructions and data values. In the case of a
fixed program processor (e.g. a signal processing ASIC) the input
sequence is simply a sequenceof data values. After processing each
input, it outputs the result in some observable form. These outputs
may be values on ports of the design, or observable data state in
registers and/or other memory.

Both the processing function and the output actions are typically
specified as part of an architectural specification. What primarily
distinguishes this class of designs from other finite state machines
is that a large part of the implementation state is observable as
outputs, which can be compared with the architectural specification
during functional simulation. It is precisely this feature that makes
them attractive for simulation-based verification. Furthermore, the
large observable data state is effectively used for comparison during
functional simulation, but plays little role in flow of control, and
thus need not be considered in deriving the test model.
On the other hand, the differences in the levels of the specification
and the implementation permit a wide range of possible implemen-
tations. For example, an implementation may introduce parallelism
in the processing of instructions in the form of pipelined or su-
perscalar execution. Thus, there may be multiple instructions in
different stages of execution at the same time. This parallelism
makes the validation task for such designs difficult.
Consider the processing of a sequence of inputs < i0; i1; . . . ; in >.
Due to the available parallelism, several inputs may be processed
between the time when processing starts for input ij and when its
output is observable. We impose the following requirements on test
models of processors being considered.

Requirement 2 The processingrequired to generate the output for
each input completes in at most k transitions.

Requirement 3 Each unique input results in a unique output.

The bounded execution time imposed by Requirement 2 seems
reasonable for most contemporary processors. Requirement 3 can
be satisfied by appropriately picking data values that distinguish the
outputs for various instructions.

5.1 8k-Distinguishability for Processors

We now examine the 8k-distinguishability property for test models
for processor designs.
We regard the state s of the test model as being composed of two
parts: s = s1 � s2. The first part, s1, captures the state needed
for computing the outputs for all inputs being currently processed.
The second part, s2, captures the state needed by subsequent inputs,
i.e the potential interactions with inputs yet to be processed. (If
some part of the state qualifies for being in both s1 and s2, it is
considered as part of s2.) For example, in a pipelined processor,
s1 corresponds to all instructions currently in the pipe, while s2

may include (among other things) the zero flag of the Processor
Status Word, which might be needed by a subsequentbeqz (branch
when equal to zero) instruction. Some interactions arise due to
simultaneous processing of instructions also. For example, in a
pipelined processor, two successive instructions can interact if the
destination register of the earlier instruction is the same as a source
register for the following one. Therefore the destination register
address will also be part of s2.
We now use this partitioning of the state to examine the 8k-
distinguishability property for each pair of distinct states sm and
sn. Recall that this property was needed to expose a transfer error
in a transition on some input iq , where the transition goes to state
sn instead of state sm. There are two possibilities:

Case 1: s1
m 6= s1

n

We impose the following requirement on transfer errors:

Requirement 4 Transfer errors are not masked.

This requirement makes sure that the transfer error on iq does not
get rectified by subsequent inputs. Therefore, if the s1 part is cor-
rupted, it will show up in the observed outputs (by definition of the
s1 part). From Requirement 2, the processing of input iq can take

no more than k transitions through the test model. Also, from Re-
quirement 3 each unique input will result in a unique output. This
implies that at the end of all sequences of length k, the outputs will
be different starting from these two states, i.e. sm and sn satisfy
the 8k-distinguishability property.

Case 2: s1
m = s1

n, s2
m 6= s2

n

Since that part of the state which determines outputs is the same,
there is no guarantee that all following sequences of inputs will
expose the transfer error. In fact, the error may get exposed only for
a very specific input sequence. For example, consider a pipelined
processor where the destination register address is part of the s2

state. Let instruction iq use R0 as its destination register. Suppose
the transfer error causes the transition on input iq to go to a state
with s2 component corresponding to R1 instead of R0. The only
way to expose this error is to have the subsequent instruction use
R0 as a source register. However, this sequencemay not be selected
by the transition tour, thereby leaving the error un-exposed.
One solution for this case is to make the s2 component observ-
able, i.e. it is observable as an output of the functional simulation
model. With this solution, sm and sn are now directly distinguish-
able since the two states have different outputs. Thus they satisfy
the 8k-distinguishability property. We impose this solution as a
requirement on the design.

Requirement 5 The state associated with interactions between
processing of subsequent inputs is made observable.

The set of prescribed requirements now enables us the state the
following theorems.

Theorem 2 If Requirements 2, 3, 4 and 5 are satisfied, then the test
model satisfies the 8k-distinguishability property, i.e. any state can
be distinguished from any other state for all sequences of length k.

Proof: Follows from the discussion of the two cases.

Theorem 3 If Requirements 1, 2, 3, 4 and 5 are satisfied, a transi-
tion tour of the test model provides a complete test set.

Proof: Follows directly from Theorems 1 and 2.

Note that these results depend on the specific requirements being
satisfied. The onus of satisfying them rests on the test model. In
the next section we describe how a test model is derived from an
implementation, keeping these requirements in mind.

6 Guidelines for Derivation of the Test Model

6.1 Test Models as Implementation Abstractions

As pointed out earlier, our test model is an abstraction of the design
implementation. We use abstraction to remove those parts of state
which are directly observable for comparison against the specifi-
cation, and which do not influence the control flow. Consider the
example of a pipelined processor which has five pipeline stages.
The entire state in its implementation can be captured as:

Sc = fi1� i2� i3� i4� i5�p1�p2�p3�p4�p5�F�Rg (1)

Here ij is the instruction in stage j of the pipeline, pj is the addi-
tional state associated with stage j, F is the state associated with
various flags in the processor, and R is the state associated with
the registers. (For exposition purposes, we do not consider other
memory in the processor.) We refer to this as the concrete (non-
abstract) state space. We can abstract out components that do not
affect the control flow, e.g. contents of registers. Moreover, the
entire instruction may not be needed by each stage of the pipeline,
and we let the relevant parts be included within each pipeline stage

state p0j . Thus, it is possible to use the following abstract state
space:

Sa = fp01 � p
0

2 � p
0

3 � p
0

4 � p
0

5 � Fg (2)

In general, we use a homomorphic abstraction which is a many-to-
one mapping A from states in the set Sc (concrete states) to states
in the set Sa (abstract states). Furthermore, this mapping preserves
the transition relation, such that a transition tc between states s1

and s2 in the concrete state space maps to a transition ta between
A(s1) and A(s2) in the abstract state space. While A provides for
a general mapping over states, in practice, abstractions tend to have
the special form of a mapping over state variables. Note that such
an abstraction needs to examine state variables only, and not the
entire set of states. This logarithmic reduction in complexity is the
reason why this special form of abstraction is attractive and almost
universally used.
In practice, an abstraction over state variables can be implemented
by removing certain state elements from the concrete model, and
all of the logic associated with only that part – this is a simple
topological operation. Any communication signals between the
abstract model and the parts abstracted out are now considered as
input/output signals for the abstract model. The outputs are not
a problem, since they are not needed during test set generation,
but the inputs need special attention. For example, consider the
Processor Status Word of a processor. If the datapath is abstracted
out, these signals are modeled as independent inputs to the test
model. However, during functional simulation, they are generated
by the datapath and are no longer available as independent input
signals. We propose using the solution suggested by Ho et al.,which
is to take control of these signals during functional simulation also,
thus permitting the direct application of the generated test set.

6.2 Ensuring the 8k-Distinguishability Property

The state-merging and transition-preserving nature of the many-
to-one mapping A has an important consequence. If the concrete
test model has the 8k-distinguishability property, then so does the
abstract test model. Formally, let sa and sa

0 be two distinct states
in the abstract model, where sa = A(sc) and sa0 = A(sc

0
). Since

sc and sc
0 are distinguishable for all sequences of length k, due

to the transition preserving nature of A, these sequences will also
distinguish between sa and sa

0 .
Therefore, once this property is ensured for a test model, all subse-
quent abstractions inherit it. In Section 5, Theorem 2 described the
requirements needed to ensure this property. In the remainder of this
section we discuss practical ways of enforcing these requirements.
To start with, we need to assume that Requirements 2 and 4 hold
naturally. Next, Requirement 3 does not need special consideration
during derivation of the test model. Given a test model, it can be
enforced simply by picking appropriate data during simulation such
that each instruction gives a unique output. Requirement 5 involved
making observable the state corresponding to interactions between
inputs. It is useful to examine the practical issues here. In general,
capturing the state corresponding to input interactions requires an
understanding of the design. In fact, such information is typically
known to the designers, though not formally stated. Furthermore,
the designer (or the test model developer) does not need to examine
the entire state space of interactions. Rather, they just need to iden-
tify the state variables involved. This is linear in the size of the total
state vector. Therefore, we believe it is manageable in practice,
and are currently working on formalizing it in an effort towards au-
tomation. For example, in the case of the DLX processor described
in Section 7, the only state elements needed for this purpose are the
flags in the Processor Status Word and the address of the destination
register for register instructions. Note that the exact nature of the
hazard resolution is not relevant, just the fact that the address of the
destination register represents the state useful for interaction with
subsequent instructions.

6.3 Abstracting Too Much

Thus far the only restriction on the abstraction mapping is that it be
transition-preserving. If there were no restrictions on how much we
could abstract, we could abstract down to a single state! Obviously
this would not provide enough detail for the test model. Thus, we
need some measure on how much we can abstract without losing
critical information. Requirement 1 provides us with precisely
this measure. It states that for an output error on transition t, the
error must be exposed by all sequences that end in t, i.e. the
detection of this error must not be a function of any preceding
sequence. If it is indeed a function of the preceding sequence, then
this is an indication that the test model has not saved enough state
to distinguish between those preceding sequences that expose the
output error and those that do not.
As an example, consider the read-after-write interlock in a pipelined
processor. If the state in the test model does not store the address
of the destination register, then a transition will not expose an error
in the interlock mechanism for all preceding sequences. It will do
so only when the preceding instruction uses the same destination
register, say R0, as the current source register. Thus, the output
error on t is not uniform, in violation of Requirement 1. On the
other hand, if the destination register is made part of the test model
state, any transition from such a state on an instruction which uses
R0 will expose an interlock error (if it exists), regardless of what
preceded it. Thus an output error on this transition is uniform.
We have used the interlock mechanism example to illustrate two
major issues in derivation of test models, and it is important to
clarify the distinction between them. In Sections 5.1 and 6.2 we
stated that the address of the destination register must be made
visible. This was done to ensure the 8k-distinguishability property
of test model states. In this section, we have emphasized the need
for including it in the test model state to ensure that there will exist
a transition (and not a sequence of transitions) in the test model
that will detect the output error, i.e. to ensure the uniformity of the
output error as stated in Requirement 1.

6.4 Impact of Incorrect Implementations

We now examine the issue of how an incorrect implementation
might affect the previously stated requirements. As mentioned
earlier, Requirements 2 and 4 are regarded as assumptions. Also,
Requirement 3 is handled by picking appropriate data values during
simulation, and as such is unaffected by an incorrect implementa-
tion. Thus, only Requirements 1 and 5 may get affected when a test
model is derived from an incorrect implementation. As discussed
in detail, Requirement 1 deals with abstractions, and Requirement 5
deals with exposing interaction state to make it observable. Thus,
the only requirement on the implementation is that it have all the
state of a “correct" implementation. There is no requirement on the
correctness of the transitions, in fact, a transition tour will expose
both the output and the transfer errors on transitions. Ensuring that
the implementation has the correct states may not be a significant
burden – typically errors creep in on the transitions.

6.5 Generating Test Set from the Test Model

Once a test model is available, the remaining task is to perform
a transition tour on its state space to generate the test set. It is
known that the problem of finding a minimum cost transition tour
corresponds directly to the Chinese postman problem, which can
be solved in polynomial time [1]. For our implementation, we use
a BDD-based transition relation representation of the test model
within the SIS system [22]. A transition tour is generated by traver-
sal of this implicit representation, along with consideration of input
don’t-cares. Since the inputs to the test model are abstracted from
those for the actual design, appropriate input values must be filled
in before the generated test set can be used for simulation.

(b) Sequence of State Space Abstractions

160 118 22

no synchronizing
latches for outputs

4 registers
instead of 32

fetch controller
removed

remove outputs not
affecting control logic

1-hot to binary
encoding

remove interlock
registers

110 86 54 46
Initial
Model

Final
Model

Decode
Controller

Execute
Controller

Memory
Controller

Writeback
Controller

Control Signals to Datapath

Status Signals from Datapath

Instruction

Branch
Select

Stall

To Datapath

Interlock

(a) Initial Abstract Test Model

Fetch
Controller

From
Datapath

Instruction_to_DC

Figure 3: Abstract Test Model for a Pipelined DLX Implementation

7 Case Study: The DLX Processor

The DLX architecture was introduced by Hennessy and Patter-
son [14] to illustrate the basic RISC concepts. Though considerably
less complex than contemporary RISC processors, it incorporates
many advanced features that make it an interesting case study of
medium complexity. In this section, we report on our experiences
with deriving a test set for an implementation of this processor.
We used an RTL implementation in Verilog [24], provided to us by
Prof. Franzon at NSCU [12]. Undertaken as a class project, this
design implements the DLX instruction set (except the floating-
point and exception-handling instructions). It uses a standard 5-
stage pipeline and includes an interlock module for handling various
pipeline hazards.

7.1 Deriving the Test Model

We started by abstracting out all the datapath modules. This re-
sulted in the model shown in Figure 3 (a), consisting of individual
controllers for the 5 stages of the pipeline, the interlock unit and the
multiplexor used for selecting the branch test result. Note that in
this model, the signals from/to the datapath (including the instruc-
tion word) are modeled as primary inputs/outputs, respectively. As
discussed in detail in Section 5, our test model needs to capture
interaction between different instructions, other than those through
observable data itself. For the DLX architecture, such interactions
are captured by:

� addresses of destination registers from the current, and two pre-
vious, instructions

� the Processor Status Word

The destination addresses are already a part of the initial model,
and we only need to be careful not to abstract them out. As for the
Processor Status Word, these signals are modeled as primary inputs
to the test model since they arise from the datapath which has been
abstracted out. This suffices because test vectors are generated
for all possible values of the primary inputs. Finally, since the
test model does not require any state corresponding to actual data,
it is possible to remove all signals between controllers used for
transferring immediate data.
For our design, this initial model contained 160 state elements
(register variables), 41 primary inputs, and 32 primary outputs.

Since this was most likely beyond the capabilities of current state-
based tools, we focused on using abstractions that would preserve
completeness of our test model, while reducing the number of state
elements as well as primary inputs.

� Abstraction over State Space: The sequence of our state space
abstractions (with number of state elements) is summarized in
Figure 3 (b). Note that the first four abstractions we used are
quite general, and they can likely be applied to any pipelined
design. The last two are quite specific to the design we worked
with, and may not be even required for an implementation style
that is more efficient to start with. In both cases we use local
transformations that we assume are correct (or can be easily
proved) and make no assumption about the overall function of
the design. The final test model had 22 latches.

� Abstraction over Primary Inputs: For the standard DLX
architecture, the instruction format consists of 32 bits. However,
the instruction input for our test model differs from the standard
instruction in the following ways – all immediate data fields
can be removed, and only 2-bit address fields are required for 4
registers in the register file. This resulted in an 18-bit instruction
format for the test model. Note that this reduced format still
captures all the different instructions in the design.

7.2 Experimental Results

Our final model in Verilog contains 22 latches, 25 primary inputs
and 4 primary outputs. We used VIS [4] to convert the Verilog de-
scription to an FSM description, which was further used as input to
SIS [22]. Within SIS, the implicit transition relation representation
of the model was obtained in about10 secondson an Ultrasparc (166
MHz.) workstation with 64Mb. main memory. Though there are 25
primary inputs in the model, not all combinations are allowed due
to invalid instructions and relationships between datapath outputs
modeled as primary inputs. Of the 225 possible input combinations,
only 8228 are valid combinations. Taking input don’t-cares into ac-
count reduces the number of reachable states as well as the number
of transitions that need to be visited.
The model has 13,720 reachable states, much less than the possible
222. This observation is similar to that made by Ho et al. in their
experiments [15]. We determined the model to have 123 million
transitions, and a tour of length 1069 million transitions. This is
not an optimal tour, and we are currently working on generation of
more efficient tours.

8 Summary

This research was prompted by recent efforts in using hybrid tech-
niques combining simulation and formal verification for design
validation. These efforts leave unresolved two main issues – com-
pleteness of the test vector set, and guidelines for generating the test
model. This research examines these issues and highlights their re-
lationship. Specifically, we show that under a set of reasonable
assumptions, a transition tour of a test model provides a complete
test set for a large subset of designs classified as processors. We de-
scribe the requirements this imposes on the test model, and provide
specific guidelines for satisfying them.

REFERENCES

[1] A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar. An optimization
technique for protocol conformance test generation based on UIO
sequences and rural chinese postman tours. IEEE Tran. on Comm.,
39(11):1604–1615, Nov. 1991.

[2] D. L. Beatty and R. E. Bryant. Formally verifying a microprocessor
using a simulation methodology. In Proc. 31st ACM/IEEE Design
Automation Conf., pages 596–602.IEEE Comp. Soc. Press, June 1994.

[3] V. Bhagwati and S. Devadas. Automatic verification of pipelined
microprocessors. In Proc. 31st ACM/IEEE Design Automation Conf.,
pages 603–608, June 1994.

[4] R. K. Brayton et al. VIS: A system for verification and synthesis. In
Proc. Int. Conf. on Comput.-Aided Verification, volume 1102 of LNCS,
pages 428–432. Springer-Verlag, July 1996.

[5] R. E. Bryant. Graph-based algorithms for Boolean function manipu-
lation. IEEE Tran. on Computers, C-35(8):677–691, Aug. 1986.

[6] J. R. Burch. Techniques for verifying superscalar microprocessors. In
Proc. 33rd ACM/IEEE Design Automation Conf., June 1996.

[7] A. K. Chandra et al. Avpgen – a test case generator for architecture
verification. IEEE Transactions on VLSI Systems, 6(6), June 1995.

[8] K. Cheng and A. Krishnakumar. Automatic functional test genera-
tion using the extended finite state machine model. In Proc. 30th
ACM/IEEE Design Automation Conf., pages 86–91, June 1993.

[9] A. Cohn. A proof of correctness of the VIPER microprocessor: The
first level. In G. Birtwistle and P. A. Subrahmanyam, editors, VLSI
Specification, Verification and Synthesis, pages 27–71. Kluwer Aca-
demic Publishers, 1987.

[10] A. T. Dahbura, K. K. Sabnani, and M. U. Uyar. Formal methods
for generating protocol conformance test sequences. Proc. IEEE,
78(8):1317–1326, Aug. 1990.

[11] S. Devadas, A. Ghosh, and K. Keutzer. An observability-based code
coverage metric for functional simulation. In Proc. IEEE Int. Conf. on
Comput.-Aided Design, pages 418–425, Nov. 1996.

[12] P. Franzon. Digital computer technology and design: Fall 1994 project.
Private Communication, 1996.

[13] D. Geist, M. Farkas, A. Landver, Y. Lichtenstein, S. Ur, and Y. Wols-
fthal. Coverage-directed test generation using symbolic techniques.
In Proc. Int. Conf. on Formal Methods in CAD, Nov. 1996.

[14] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann, 1990.

[15] R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill. Architec-
ture validation for processors. In Proc. 22nd Annual International
Symposium on Computer Architecture, June 1995.

[16] Y. Hoskote, D. Moundanos, and J. A. Abraham. Automatic extraction
of the control flow machine and application to evaluating coverage
of verification vectors. In Proc. IEEE Int. Conf. on Comput. Design,
pages 532–537, Oct. 1995.

[17] W. A. Hunt, Jr. Microprocessor design verification. J. Automated
Reasoning, 5(4):429–460, 1989.

[18] H. Iwashita, S. Kowatari, T. Nakata, and F. Hirose. Automatic test
program generation for pipelined processors. In Proc. IEEE Int. Conf.
on Comput. Design, pages 580–583, Oct. 1994.

[19] R. B. Jones, D. L. Dill, and J. R. Burch. Efficient validity checking
for processor verification. In Proc. IEEE Int. Conf. on Comput.-Aided
Design, pages 2–6, Nov. 1995.

[20] J. Levitt and K. Olukotun. A scalable formal verification methodol-
ogy for pipelined microprocessors. In Proc. 33rd ACM/IEEE Design
Automation Conf., pages 558–563, June 1996.

[21] D. Lewin, D. Lorenz, and S. Ur. A methdology for processor imple-
mentation verification. In Proc. Int. Conf. on Formal Methods in CAD,
Nov. 1996.

[22] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Sequential circuit design using synthesis
and optimization. In Proc. IEEE Int. Conf. on Comput. Design, 1992.

[23] M. Srivas and M. Bickford. Formal verification of a pipelined micro-
processor. IEEE Software, 7(5):52–64, Sep. 1990.

[24] D. E. Thomas and P. Moorby. The Verilog Hardware Description
Language. Kluwer Academic Publishers, 1991.

[25] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Implicit state enumeration of finite state machines using
BDDs. In Proc. IEEE Int. Conf. on Comput.-Aided Design, pages
130–133. IEEE Comp. Soc. Press, 1990.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

