
Circuit Optimization via Adjoint Lagrangians

Andrew R. Conn, Ruud A. Haring, Chandu Visweswariah, Chai Wah Wu
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598

Abstract
The circuit tuning problem is best approached by means

of gradient-based nonlinear optimization algorithms. For
large circuits, gradient computation can be the bottleneck in
the optimization procedure. Traditionally, when the number
of measurements is large relative to the number of tunable
parameters, the direct method[2] is used to repeatedly solve
the associated sensitivity circuit to obtain all the necessary
gradients. Likewise, when the parameters outnumber the
measurements, the adjoint method[1] is employed to solve
the adjoint circuit repeatedly for each measurement to com-
pute the sensitivities. In this paper, we propose the adjoint
Lagrangian method, which computes all the gradients neces-
sary for augmented-Lagrangian-based optimization in a sin-
gle adjoint analysis. After the nominal simulation of the
circuit has been carried out, the gradients of the merit func-
tion are expressed as the gradients of a weighted sum of cir-
cuit measurements. The weights are dependent on the
nominal solution and on optimizer quantities such as
Lagrange multipliers. By suitably choosing the excitations of
the adjoint circuit, the gradients of the merit function are
computed via a single adjoint analysis, irrespective of the
number of measurements and the number of parameters of
the optimization. This procedure requires close integration
between the nonlinear optimization software and the circuit
simulation program.

The adjoint Lagrangian formulation has been imple-
mented in the JiffyTune tool [12]which optimizes delay, area,
slew (transition time) and power measurements by adjusting
transistor widths and wire sizes. Speedups of over 35x have
been realized in the gradient computation procedure by
using the adjoint Lagrangian formulation, leading to speed-
ups of up to 2.5x in the overall optimization procedure. Per-
haps more importantly, these speedups have rendered
feasible the tuning of large circuits. A circuit with 6,900 tran-
sistors was optimized in under two hours of CPU time.

1.0 Introduction and motivation
The push towards high-performance, low-power, custom

digital integrated circuits has led to a renewed emphasis on
circuit optimization (tuning). This problem is best
approached by means of gradient-based nonlinear optimiza-
tion. In the case of dynamic tuning[10,16], function and gra-
dient values are determined by means of a dynamic (time-
domain) analysis of the underlying circuit. In the case of
static optimization[11,15,17,18,19], a static timing analy-
sis[23] is relied upon to analyze new iterates produced dur-
ing the optimization process. If circuit blocks are modeled by
analytic delay equations, these equations can be differenti-
ated symbolically to determine gradients. Unfortunately, this

procedure is not applicable to custom circuits because of the
lack of availability of delay models for arbitrary transistor-
level circuits. This problem is overcome by running dynamic
simulations of each block of the design on the fly. In either
type of tuning, gradient computation is often the bottleneck
in the optimization procedure. Gradients are generally com-
puted by the direct[2] or adjoint[1,3] method. The direct
method requires as many simulations of the associated sensi-
tivity circuit as the number of tunable parameters. In the
adjoint method, the simulation of the adjoint circuit is
repeated as many times as the number of measurements.

In this paper, we present a method by which the gradi-
ents of a circuit for the purposes of augmented-Lagrangian-
based optimization can be obtained by means of a single
measurement-at-a-time adjoint analysis, irrespective of the
number of measurements and the number of tunable parame-
ters. Thus the gradient computation bottleneck is amelio-
rated. This method of gradient computation has been applied
in the context of a dynamic circuit optimization tool called
JiffyTune[12]. The enhanced gradient computation allows
additional constraints at a relatively low incremental cost,
which is particularly significant for tuning dynamic circuits.

JiffyTune adjusts transistor widths and wire sizes to
optimize power, area, delay and slews. Any combination of
objective function, equality and inequality constraints is
accommodated. JiffyTune uses SPECS[6,9] for fast simula-
tion and sensitivity analysis[4,5,14]. SPECS employs piece-
wise approximate device models and event-driven
simulation to gain an average speedup of 70x over AS/X[7,8]
with a relative inaccuracy of 5%. Hence JiffyTune can tune
at best to within 5% accuracy. However, simulation with
AS/X before and after tuning has been used to corroborate
the circuit improvements predicted by JiffyTune[12]. The
function and gradient values are fed to LANCELOT, a gen-
eral-purpose, large-scale nonlinear optimization pack-
age[13,21,22] which employs an augmented Lagrangian for-
mulation and a trust-region approach.

2.0 Demonstration by means of an example
The concept of the adjoint Lagrangian formulation is

first demonstrated using a simple example. Referring to
Figure 1(a), let us assume that the circuit of interest has just
one input, one output , tunable parameters

and that the optimization problem is to minimize , subject

to , where is the 50% crossing point of the falling

transition at the output, is the 50% crossing point of the

rising transition and is a constant target value. The output
waveform is shown in Figure 1(a). Let us assume that the
nonlinear optimizer builds an augmented Lagrangian[31,32]

v x1 x2 … xn, , ,

d1

d2 T= d1
d2

T

0-89791-993-9/97 $10.00  1997 IEEE

merit function of the following form:

, where is the

Lagrange multiplier corresponding to the constraint, and is
a penalty parameter used to weight the quadratic augmenta-
tion of the Lagrangian. At each iteration, the simulator is
required to compute , , and for all .

The quantities and are computed by a nominal tran-

sient analysis (Figure 1(a)). We will first describe how the
“measurement-at-a-time” adjoint analysis method is used to
determine the sensitivities. First, an adjoint circuit is formed
and configured as shown in Figure 1(b). The adjoint circuit is
excited by a current source with a unit Dirac impulse at time

, i.e., [34]. Time and control are reversed during
the analysis of the adjoint circuit and the nominal waveforms
are convolved with the adjoint waveforms to yield

, where is the output and

 represents the convolution between the appropri-
ate nominal and adjoint waveforms for each problem variable

. The required gradients are then computed using

, (1)

x1 x2 … xn, , ,
+-

v

x1 x2 … xn, , ,

x1 x2 … xn, , ,

(c) Adjoint analysis #2

x1 x2 … xn, , ,

d1 d2

v̇
t d1= v̇

t d2=

1

1

h1

h2

(a) Nominal simulation

(b) Adjoint analysis #1

(d) Adjoint Lagrangian analysis

Figure 1. Demonstration of the adjoint Lagrangian
formulation by means of an example.

Φ d1 λ d2 T– 
  1

2µ
------ d2 T– 

  2
+ += λ

µ

d1 d2 ∂d1/∂xi ∂d2/∂xi i

d1 d2

d1 δ t d1–()

∂v
∂xi

t d1=

conv xi() for all i,= v

conv xi()

xi ∂d1/∂xi

∂d1
∂xi

∂v
∂xi

∂v
∂t

-------–

t d1=

∂v
∂xi

t d1=
v̇

t d1=
-----------------------–

conv xi()
v̇

t d1=
------------------------–= = =

where is the slope of the nominal voltage waveform

 at time . Next, the adjoint analysis is repeated as shown

in Figure 1(c) to similarly determine the gradients

for all . Finally, the gradients are assembled by the opti-

mizer as follows: . The

method described above requires two adjoint analyses and
two sets of convolution integrals. Instead, the adjoint
Lagrangian method recognizes that the gradients of the
merit function are the gradients of a linear combination of

circuit measurements, i.e.,

where the coefficients and are known and can be
treated as constants once the nominal simulation has been
completed. Hence, a single adjoint analysis is enough to
determine the gradients of with respect to all the vari-
ables of the problem, as shown in Figure 1(c). Thus two

impulses of heights and

 are applied during a single

adjoint analysis. Note that the heights of the impulses are
functions of the nominal simulation results (,

and) and the optimizer variables and . The analysis
and convolution integrals are carried out as before to obtain

. Thus two adjoint analyses have

been replaced by one. Although the gradients of the compos-
ite merit function can be computed by this method (see also
[33,34]), the gradients of the individual measurements are
not computed and cannot be recovered. In general, if an opti-
mization problem involves measurements, the adjoint
Lagrangian method will obtain a speedup of over
regular (one-measurement-at-a-time) adjoint analysis. The
next section will describe how the gradients of any differen-
tiable scalar merit function of any number of circuit mea-
surements can be computed with respect to any number of
parameters by means of a single adjoint analysis.

3.0 Theory
This section will describe how the gradients of any merit

function can be computed via a single adjoint analysis. Sup-
pose the merit function of interest is

 where is any differ-

entiable function, the are objective functions and the

are constraints. Further, let these objective functions and
constraints be defined as differentiable functions

(2)

v̇
t d1=

v d1

∂d2/∂xi

i

∂Φ
∂xi

∂d1

∂xi
-------- λ

d2 T–()
µ

---------------------+
∂d2

∂xi
--------+=

∂Φ
∂xi

∂
∂xi
------- h1d1 h2d2+ 

 =

h1 h2

Φ

h1
1–

v̇
t d1=

----------------=

h2
1–

v̇
t d2=

---------------- λ
d2 T–()

µ
---------------------+=

v̇
t d1=

v̇
t d2=

d2 λ µ

∂Φ
∂xi
------- conv xi()= for all i,

m
O m()

Φ g f1 f2 … fF c1 c2 … cC, , , , , , ,()= g

fj cj

fj fj m1 m2 … mM, , ,()= j, 1 2 … F, , ,=

cj cj m1 m2 … mM, , ,()= j, 1 2 … C, , ,=

of the circuit measurements . Thus can be expressed as
a scalar differentiable function of the circuit measurements.
We are required to find the gradient of with respect to all
the parameters of the optimization. Now

(3)

Rearranging the summations,

. (4)

All the terms inside of the square brackets of the right hand
side of (4) are known once the nominal simulation has been
completed, since the analytic forms of , and and the

nominal values of the measurements , are known. The
terms within the square brackets can depend on the nominal
simulation results, as well as optimization parameters such as
slack variables, Lagrange multipliers, penalty parameters,
etc.,. Equation (4) can be written as

 since

the can be treated as constants after the nominal simula-
tion. So far, all we have done is to write the gradients of the
merit function as the gradients of a linear combination of
measurements, which is always possible provided , and

 are differentiable. Following the derivation of adjoint sen-

sitivities in[1], we will demonstrate how to pick adjoint cir-
cuit excitations so that the gradient of the merit function can
be efficiently computed.

Let each measurement be expressible as a time-domain

convolution integral of the form

where are voltages of independent current sources, are
the currents of independent voltage sources, is the start

time of the transient simulation, the end time,

denotes one of and and is a time-domain function
that will be used as the excitation in the adjoint circuit at the
measurement point. Without loss of generality, all measure-
ments can be written in terms of the voltages of independent
current sources and currents of independent voltage sources,
since a zero-valued current (voltage) source can always be
added in parallel (series) with the voltage (current) to be mea-
sured. For example, a measurement which is a voltage value

at any time is expressed as so

that is a unit Dirac impulse at time corresponding to . A

measurement which is a crossing time requires

mk Φ

Φ
xi i, 1 2 … n, , ,=

∂Φ
∂xi

∂g
∂fj

∂fj
∂xi

j 1=

F∑ ∂g
∂cj

∂cj

∂xi

j 1=

C∑+= i∀,

∂g
∂fj

∂fj
∂mk

∂mk

∂xi

k 1=

M

∑ 
 
 

j 1=

F

∑ ∂g
∂cj

∂cj

∂mk

∂mk

∂xi

k 1=

M

∑ 
 
 

j 1=

C

∑+ i .∀,=

∂Φ
∂xi

∂mk

∂xi
---------- ∂g

∂fj

∂fj
∂mk

j 1=

F∑ ∂g
∂cj

∂cj

∂mk

j 1=

C∑+
k 1=

M∑= i∀,

g fj cj

mk

∂Φ
∂xi
------- hk

∂mk

∂xi

k 1=

M∑ ∂
∂xi
------- hkmkk 1=

M∑= = for all i,

hk

g fj
cj

mk vI iV,{ } pk τ() τd
t0

tf

∫=

vI iV
t0

tf vI iV,{ }

vI iV pk

t mk vIk τ() δ τ t–() τd
t0

tf∫=

pk t

. A power measurement which inte-

grates the current through a voltage source from time
to can be written as

, where is the
unit step function. The Elmore delay of a signal[24] can also
be expressed as an integral. Expression of the measurements
as convolution integrals is essential to the computation of
sensitivities by the adjoint method.

Following[1], Tellegen’s theorem[28] is invoked on the
nominal circuit and an adjoint circuit with the same topology,
but arbitrary elements. Then Tellegen’s theorem is again
invoked on the perturbed circuit and the adjoint circuit. The
difference between the two sets of resulting equations is inte-
grated over the time period of simulation. Time is run back-
wards and appropriate choices of branch constitutive
relations (BCRs) are made in the adjoint circuit to yield the
expression

(5)

In writing (5), adjoint circuit quantities are represented with
a carat () symbol and is used to represent perturbations
in circuit values (not to be confused with the use of for
time-domain Dirac functions). The terms on the right hand
side have been shown only for the linear resistors and capac-
itors in the circuit, but the equation is valid only when

summed over all the elements of the circuit. Note that , the
current of independent current sources in the adjoint circuit
and , the voltage of independent voltage sources in the
adjoint circuit are the adjoint excitations that must be chosen
in order to express the sensitivity function of interest.

In general, (5) can be summarized as

(6)

by proper choice of adjoint circuit elements, where and
 represents the variation in the sensitivity parameters and

the corresponding convolutions respectively. We manipulate

the left hand side of (6) to the form by choos-

ing and to be ,

 and for a

power, voltage, and crossing time measurement respectively.
All other sources are set to zero. These are the current and
voltage excitations that would be appliedone at a time if we
were interested in finding the sensitivities of the individual
measurements. Instead, we weight each these waveforms by

pk τ()
δ τ tcross–()–

v̇
t tcross=

------------------------------------=

tstart
tend

pk τ() u τ tstart–() u τ tend–()–= u t()

δvI î I– 
  td

t0

tf∫
I

∑ δiVv̂V() td
t0

tf∫
V
∑+ δR iRîRdt

to

tf∫
R
∑=

Cv̂C t0() δvC t0() δC v̂Cv̇C td
t0

tf∫–
C
∑ …

other
elements

∑+ +

ˆ δ
δ

î I

v̂V

δvI î I– 
  td

t0

tf∫Is∑ δiVv̂V 
  td

t0

tf∫Vs∑+ βlδxll∑=

δxl
βl

hkδmkk 1=
M∑

v̂V î I v̂V τ() u τ tstart–() u τ tend–()–=

î I τ() δ– τ tcross–()= î I τ()
δ τ tcross–()
v̇I

t tcross=

--------------------------------=

the corresponding . Substituting them into (6), we obtain

. As , the

required sensitivities can be picked off as in the

course of a single adjoint analysis. Note that this result cannot
be derived from simple superposition, since the adjoint circuit
is a time-varying circuit.

4.0 Practical considerations
4.1 Features of JiffyTune

The adjoint Lagrangian formulation was implemented in
the dynamic circuit optimization tool JiffyTune. Some fea-
tures of JiffyTune are mentioned here. See [12] for more
details.
• JiffyTune permits area, delay (crossing time) and power

measurements. The objective function and weighted con-
straints are expressed in terms of these measurements. For
example, a slew function is written as the difference
between the 10% and 90% crossing times. If multiple
objective functions are defined, a weighted sum of these
functions is minimized. Both equality and inequality con-
straints are permitted. Inequalities are internally converted
to equality constraints in LANCELOT by the addition of
slack variables.

• Transistor widths can have simple bounds and can be
ratioed to one another. Similar structures can be grouped
so that in all instances of the structure, corresponding tran-
sistors have the same width, thus permitting a regular lay-
out. Sensitivities are computed with respect to all tunable
transistors and wires and then combined by chain-ruling
to obtain the composite sensitivities with respect to the
independent variables.

• Minimax optimization (e.g., minimizing the worst of
path delays, withouta priori knowledge of which delay is
the worst) is supported by converting

 to ,

where is a new variable of the problem. The variable

is initialized to after the first function eval-

uation, and the Lagrange multipliers corresponding to the
inequalities that include are initialized to where
is the number of minimax constraints, since the first order
Kuhn-Tucker conditions[26] require that these multipliers
sum up to unity at optimality.

• Each iteration of JiffyTune is expensive since it involves
one SPECS simulation and, if the step is accepted, one
gradient computation. To reduce the number of iterations,
the optimizer takes aggressive steps wherever possible.
Occasionally, such steps lead to circuit failures, wherein a
signal transition of interest does not occur. Such situations
are automatically detected and the trust-region radius of

hk

δΦ hkδmkk 1=
M∑ βlδxll∑= = δxl 0→

∂Φ
∂xl
------- βl=

n

min
x

max
i

fi x(){ } min
x z,

z subj. toz fi x()≥ i∀,

z z

max
i

fi x
0

 
 

z 1/n n

LANCELOT is reduced before making another attempt.
If a certain number (5 is the default) of consecutive fail-
ures is detected, the optimization is abandoned. In prac-
tice, automatic recovery is almost always successful. The
best results encountered during the course of the optimi-
zation are saved in all cases.

• If a circuit is tuned for optimal nominal performance, its
manufacturability[20] may have been adversely affected.
Therefore, two manufacturability modes are provided in
JiffyTune. In the first mode, the final tuned circuit is sim-
ulated at each of the specified process corners so that the
designer can obtain a quick idea of the performance
spread. In the second mode, the circuit issimultaneously
tuned at multiple process corners. Constraints are repli-
cated at each specified process corner. An objective func-
tion for the nominal problem is converted to a
corresponding minimax problem across the process cor-
ners. Similarly, a nominal minimax problem is mapped to
a new minimax problem wherein the constraints of the
nominal minimax problem are replicated at each process
corner of interest. Thus, in all cases, the nominal problem
is remapped into a new problem in a standard nonlinear
optimization form, which ensures that tuning is carried
out simultaneously at all the process corners.

• JiffyTune includes an easy-to-use graphical user interface
in the Cadence schematic framework[29]. Designers can
specify the optimization problem in a familiar “point-
and-click” CAD tool environment. The system guides the
designer through the specification procedure, suggesting,
for example, that slew constraints be added each time an
output delay measurement is added. The final tuned tran-
sistor widths as well as corresponding circuit delays can
be back-annotated onto the schematic. All the tuning cri-
teria are stored as attributes of the schematic, so that in
the event of a technology re-map, new device models,
new loading information or new timing requirements, the
circuit can be re-tuned at the push of a button, facilitating
design re-use.

4.2 Implementation
Some special considerations that were taken into

account during the implementation of the adjoint Lagrangian
formulation are listed in this section.

Sorting of pulses and impulses.Once the nominal simula-
tion has been completed, the values of the measurements are
known. Then the excitations for the adjoint circuit are cre-
ated. The pulses and impulses of the adjoint circuit are
appropriately scaled and sorted in reverse time order to be
applied to the adjoint circuit in an event-driven manner.
Event-driven techniques are used both to analyze the adjoint
circuit and to carry out the necessary convolutions. In
SPECS, the convolutions are typically between piecewise
linear and piecewise constant waveforms[4,5,14]. To speed
up the adjoint analysis, the time origin is shifted to the time
of the first externally applied excitation to the adjoint circuit.
Once all the excitations of the adjoint circuit have been

applied, a faster convolution algorithm is employed since all
waveforms are piecewise constant from that time onwards.

Multiple adjoint Lagrangian groups. SPECS allows multi-
ple “adjoint Lagrangian groups,” each of which contains a
weighted sum of measurements as the sensitivity function of
interest. The adjoint circuit is analyzed as many times as the
number of groups, and one set of gradients is reported for
each group. Multiple groups are necessary for Hessian com-
putation (see below).

Scaling of the adjoint circuit excitations.Once the transient
simulation has been completed in a new optimization itera-
tion, the measurement values from SPECS are fed to Jiffy-
Tune. LANCELOT uses the measurement values to update its
merit function and decides whether to accept the proposed
step. If the step is rejected, gradient computation is skipped.
If the step is accepted, LANCELOT provides to JiffyTune the
values of the slack variables, Lagrange multipliers, penalty
parameter and scale factors. It is important that these values
be providedafter any initializations, spacer steps[30] or two-
step updates[27] in the optimizer, since these updates can
change the optimizer variables which contribute to the merit
function whose gradients are desired. JiffyTune uses these
values to determine the scale factor to be applied for each

measurement which is in the form

where and are elements of a vector and sparse matrix
that are created as a result of all the chain ruling described in
Section 3.0.

Hybrid scheme for the computation of the Hessian.LAN-
CELOT builds a quadratic model of the merit function at each
iteration. The Hessian matrix is built up by low-rank quasi-
Newton update methods such as the SR1 or BFGS[25]
method. For a quadratic function we have, for any direc-

tion , . Analogously, the
quasi-Newton condition maintains an approximate Hessian
satisfying , where is the appropriate gradient dif-
ference. The idea of a low rank update is to modify with
new gradient difference information at moderate cost, while
maintaining the quasi-Newton condition.

In “minor iterations” of LANCELOT, only the problem
variables and slacks change. In “major” iterations terminated
by sufficient stationarity, either the penalty parameter or
the Lagrange multipliers change, depending on whether
sufficient feasibility has been achieved on the inner uncon-
strained problem. The merit function that LANCELOT builds

is , where is the

objective function and are the constraints. Hence the Hes-
sian is given by

. (7)

At each minor iteration and at the start of each major iteration
where s are changed, low-rank quasi-Newton updates are

hk

hk lk nkimii 1=
M∑+=

l k nki

f x()

d ∇2
f x() d ∇f x d+() ∇f x()–=

B
Bd γ= γ

B

µ
λ

Φ f x() λi ci x()
i∑ 1

2µ
------ ci

2
x()

i∑+ += f

ci

∇2Φ ∇2
f λi∇

2
cii∑ 1

µ
--- ci∇

2
ci ∇ci∇ci

T
+ 

 
i∑+ +=

λ

used on the approximation of . However, whenever a
major iteration begins for which is changed,

 is used to incre-

mentally update the Hessian approximation. Hence, in this
situation, the gradients of each constraint are required. Since
each constraint may in turn depend on multiple measure-
ments, multiple “adjoint Lagrangian groups” are used in
SPECS. Thus ahybrid scheme is employed wherein adjoint
Lagrangian gradient computation is used with just one group
at every minor iteration and at the start of every major itera-
tion where s are changed, but an adjoint analysis with as
many groups as the number of constraints is used at the start
of each major iteration when has changed. Although the
latter is more expensive, the reduction in iterations due to
starting such major iterations with a better Hessian approxi-
mation makes up for the added computational cost. As an ini-

tial approximation at the first iteration, and are

taken to be zero, and is computed explicitly from
the gradients of the constraints.

Hessian updates with respect to slack variables.By taking
advantage of the form in which slack variables occur in the
augmented Lagrangian, the Hessian entries with respect to
slack variables can be explicitly computed. However, using
explicitly computed values violates the quasi-Newton condi-
tion[25] when standard Hessian update formulas are used.
Hence, we have developed modified update formulas which
satisfy both the quasi-Newton condition and allow us to
assign explicitly computed Hessian entries. For example,
consider a problem with one inequality constraint and
objective function . The augmented Lagrangian function

is given by ,

where is the slack variable. Clearly . If this is

applied after the regular Hessian updates, the quasi-Newton
condition will be violated. Instead, in general, we use the
rank-two update

(8)

where at the iteration, is the Hessian approximation,

 is the change in , is the step and is a diagonal

matrix with a zero on the diagonal corresponding to each
slack variable and one otherwise. This update formula pre-
serves the quasi-Newton condition[25]. If the entries of the
Hessian approximation with respect to the slack variables are

∇2Φ
µ

Bk 1+ Bk
1

µnew
----------- 1

µold
---------– 

  ci ci
T∇∇ 

 

i
∑+=

λ

µ

∇2
f ∇2

ci

∇ci∇ci
T

c
f Φ

Φ f x() λ c x() s+() 1
2µ
------ c x() s+() 2

+ +=

s ∇s
2Φ 1

µ
---=

Bk 1+ Bk
1

vk
T
Esk

-------------- yk Bksk–() vk
T
E Evk yk Bksk–() T

++=

yk Bksk–() T
sk

vk
T
Esk 

  2
------------------------------------– Evk Evk() T

,

i
th

Bi

yi ∇Φ si E

correctly set in , then the update formula (8) guarantees
that they remain correctly set after each update. By choosing

 as one of , and , we obtain modified

SR1 (Symmetric rank-1), PSB (Powell-symmetric-Broyden)
and DFP (Davidon-Fletcher-Powell) Hessian updates, respec-

tively. By adding the term to the modified

DFP update where , we

obtain the modified BFGS (Broyden-Fletcher-Goldfarb-
Shanno) update[25]. Since the minimax auxiliary variables
also appear quadratically in the augmented Lagrangian, a
similar Hessian update can be derived to include them.

5.0 Results
JiffyTune has been used to tune a number of high-perfor-

mance circuits, as reported in[12]. First, results on gradient
computation are presented, followed by circuit optimization
results using the new method of gradient computation.

5.1 Gradient computation
The adjoint Lagrangian formulation was first tested on a

dynamic branch-scan-select circuit with 144 MOSFETs, an
actual circuit from a high-performance PowerPC micropro-
cessor. The number of measurements was varied from 1 to 36
and the number of tunable transistors from 1 to 104. Four
analyses were conducted for each resulting combination. In
the first analysis, the direct method of sensitivity computation
was used. The run time of sensitivity computation as a func-
tion of the number of measurements and parameters is shown
in Figure 2(a). The incremental cost of each additional sensi-
tivity parameter is quite high (see the arrow in Figure 2(a)), as
predicted by the theory. Figure 2(b) shows the run time using

B0

vk yk Bksk–() sk yk

sk
T
EBksk 

 
wkwk

T
–

wk E
1

yk
T
Esk

--------------yk
1

sk
T

EBksk

---------------------Bksk–
 
 
 

=

z

5
10

15
20

25
30

35

20

40

60

80

1000

5

10

15

20

25

measurements

parameters

S
e

n
s
it
iv

it
y
 r

u
n

 t
im

e
 (

s
)

5
10

15
20

25
30

35

20

40

60

80

1000

5

10

15

20

25

measurements

parameters

S
e

n
s
it
iv

it
y
 r

u
n

 t
im

e
 (

s
)

5
10

15
20

25
30

35

20

40

60

80

1000

5

10

15

20

25

measurements

parameters

S
e

n
s
it
iv

it
y
 r

u
n

 t
im

e
 (

s
)

5
10

15
20

25
30

35

20

40

60

80

1000

5

10

15

20

25

measurements

parameters

S
e

n
s
it
iv

it
y
 r

u
n

 t
im

e
 (

s
)

(a) Direct method

(c) Heuristic choice of method

(b) Adjoint method

(d) Adjoint Lagrangian formulation

Figure 2. Run time of gradient computation vs. number of
measurements and parameters.

parameters

parameters

measurements

measurements

measurements

measurements

parameters

S
en

si
tiv

ity
 r

un
 ti

m
e

(s
)

S
en

si
tiv

ity
 r

un
 ti

m
e

(s
)

S
en

si
tiv

ity
 r

un
 ti

m
e

(s
)

S
en

si
tiv

ity
 r

un
 ti

m
e

(s
)

parameters

the adjoint method, computing the gradients of individual
measurements. Again, as indicated by the arrow, the growth
of run time with each additional measurement is quite high.
In Figure 2(c), the run time of our previous production ver-
sion is shown, in which a heuristic is used to pick the sensi-
tivity analysis method. If the number of parameters is more
than three times the number of measurements, the adjoint
method is chosen. The figure shows a ridge where the pro-
gram switched from the direct to the adjoint method. Finally,
Figure 2(d) shows the run time of the adjoint Lagrangian for-
mulation wherein a single adjoint analysis was used to com-
pute the gradients of the merit function with respect to all
parameters. Figure 2 clearly demonstrates not only the
speedup obtained by the adjoint Lagrangian method, but also
the relatively slow growth of run time with respect to the
number of parameters and number of measurements.

The adjoint Lagrangian formulation was tested on a set
of 16 benchmark circuits, whose characteristics are shown in
Table 1. An adjoint sensitivity analysis was performed on
each circuit to compute the individual gradients of measure-
ments. Then the sensitivity analysis was repeated with an
adjoint Lagrangian formulation, using a set of weights to
form a linear combination of the measurements, as shown
earlier. The gradients of the former analysis were combined
in a post-processing step using the same weights, to compose
the gradients of the composite merit function. The two sets of
gradients were then compared. Across all the circuits, a total
of 707,081 gradients were compared with the worst inaccu-
racy among all these gradients between regular adjoint anal-
ysis and adjoint Lagrangian analysis being 5.8e-12 (in units
of either or), showing that the adjoint
Lagrangian formulation does indeed produce the same
results.

TABLE 1. Characteristics of benchmark circuits.

Name
#
MOS

#
Ind.
par.

#
Dep.
par.

#
Meas.

#Con-
stra-
ints

Obj.
func.
?

Min-
imax
?

lau 24 4 16 3 1 Y N
morrill 8 3 3 2 1 N N
davies 235 15 87 2 1 Y N
durham 204 11 2 4 2 N N
Novpow 17 4 0 3 1 Y N
fleischer 228 104 80 5 5 Y Y
clkgen 28 17 10 6 5 N N
Nov01 17 4 0 6 4 N N
nor_xor 15 9 2 16 8 Y Y
delay 70 16 48 33 17 N N
hot 70 16 48 33 17 N N
cold 70 16 48 33 17 N N
delay_minmx 70 16 48 33 17 Y Y
hot_minmx 70 16 48 33 17 Y Y
cold_minmx 70 16 48 33 17 Y Y
IOmux 6,900 60 4,068 82 41 Y Y

ns/µ mW/µ

The run times and speedups for gradient computation
alone and for simulation combined with gradient computation
per iteration are shown in Table 2 and graphically in Figure 3.
All CPU times in this paper are on an IBM RISC System/
6000 model 590 workstation. Unlike in Table 1, the number
of measurements in Table 2 and Figure 3 excluded delay
measurements on primary inputs whose gradients are known
to be 0. A speedup of up to 36x is observed on circuits with a
large number of measurements, which then leads to a speedup
of up to 4.2x per iteration of JiffyTune. Figure 3 shows the
speedup of simulation combined with gradient computation,
speedup of just the gradient computation and the number of
non-trivial measurements in each benchmark. From the dis-
cussion of Section 3.0, the number of measurements is an
upper bound on the practically achievable speedup. On some
of the smaller examples, a speedup higher than the theoreti-
cally predicted speedup is due to the granularity of CPU time
measurements.

5.2 Circuit optimization
The benchmark circuits of Table 1 were optimized using

the adjoint Lagrangian formulation and the new method of
Hessian updates. As indicated in Section 4.2, a hybrid scheme
was employed. The speedups shown in the last column of
Table 2 are eroded during the optimization procedure due to
an increased number of iterations and to various overheads
and tasks that are common to the old and new implementa-
tions. Furthermore, because of the hybrid scheme, a “group”
adjoint Lagrangian formulation is used for some major itera-
tions. However, some gains in CPU time were observed with
little loss in the quality of results. The real benefit of the
adjoint Lagrangian formulation is seen in large problems, par-
ticularly problems with a large number of measurements. The
results of optimizing the IOmux circuit of Tables 1 and 2 are
presented in more detail below.

The IOmux circuit tuning problem was formulated as an
area minimization with 41 timing constraints and a high
weight on the area objective function. The area (approxi-
mated by the sum of the transistor widths) began at

m. The measurement-at-a-time adjoint method
reduced the area to m in the course of 30 optimiza-
tion iterations. The total CPU time required was 270.7 min-

Figure 3. Histogram of total speedup, sensitivity
0

10

20

30

40

50

60

S
pe

ed
up

Number of measurements
Sensitivity computation speedup
Total speedup

31 128µ,
14 065µ,

utes, consisting of 83.4 minutes of transient simulation and
187.3 CPU minutes of gradient evaluation time. With the
adjoint Lagrangian formulation, after 30 iterations, the area
was m and the sum of the constraint violations is
reduced by 20%. The run time is reduced to a total of 108.3
minutes, consisting of 83.2 minutes of transient simulation
CPU time and 25.1 minutes of gradient evaluation time.
Thus, the overall speedup in the optimization was 2.5x, while
the speedup in the total gradient computation portion is 7.5x.
Thus the gradient computation bottleneck has been effec-
tively addressed, leaving the transient simulation as the dom-
inant portion of the total run time!

In the above example, the adjoint Lagrangian formula-
tion reduced the CPU time of the circuit optimization from

more than 4 hours to under 2 hours. This speedup is

expected to improve further as the method is applied to
larger circuits, thus rendering such optimizations feasible.
Further, the adjoint Lagrangian formulation allows addi-
tional constraints at a relatively low incremental cost. This
feature has a significant methodology impact, particularly for
self-timed and dynamic circuits in which the number of tim-
ing “checks” that have to be satisfied during tuning can be
very large.

6.0 Conclusions
An adjoint Lagrangian formulation for the computation

of circuit gradients was proposed. For the purposes of opti-
mization, the gradients of an augmented Lagrangian merit
function can be computed in a single adjoint analysis, irre-
spective of the number of parameters or measurements.

TABLE 2. Sensitivity computation and total speedups.

Name
#
MOS

#
Meas.

#Pa-
rs.

Sens.CPU
time(s)

Sens.
speed
-up

TotalCPU
time (s)

Total
speed
-up

Adj-
oint

Adj.
Lag.

Adj-
oint

Adj.
Lag.

lau 24 1 20 0.12 0.1 1.2 1.42 1.3 1.1
morrill 8 1 6 0.01 0.01 1.0 0.27 0.26 1.0
davies 235 1 102 0.58 0.48 1.2 12.4 12.8 0.97
durham 204 2 13 0.46 0.21 2.2 5.86 5.63 1.0
Novpow 17 3 4 0.05 0.02 2.5 0.47 0.43 1.1
fleischer 228 4 184 1.91 0.58 3.3 5.98 4.77 1.3
clkgen 28 5 27 0.31 0.07 4.4 1.3 1.05 1.2
Nov01 17 6 4 0.09 0.02 4.5 0.51 0.44 1.2
nor_xor 15 16 11 0.66 0.07 9.4 1.83 1.07 1.7
delay 70 24 64 6.2 0.35 17.7 8.15 2.32 3.5
hot 70 24 64 6.2 0.34 18.2 8.14 2.32 3.5
cold 70 24 64 6.19 0.36 17.2 8.12 2.32 3.5
delay
_minmx

70 24 64 6.2 0.34 18.2 8.14 2.33 3.5

hot
_minmx

70 24 64 6.19 0.35 17.7 8.12 2.34 3.5

cold
_minmx

70 24 64 6.19 0.33 18.8 8.13 2.33 3.5

IOmux 6,900 57 4,128 690 18.8 36.7 882 210 4.2

15 188µ,

1
2

Speedups of over 30x were demonstrated in the gradient com-
putation procedure, thus addressing the bottleneck in circuit
optimization programs. This gradient computation scheme
has been used in JiffyTune, a dynamic circuit optimization
tool, and circuits with up to 6,900 transistors have been tuned
in under two hours of CPU time. The low incremental cost of
additional constraints makes the optimizer amenable to tun-
ing dynamic circuits, which typically have a large number of
timing constraints. Improved methods for performing Hessian
updates and better stopping criteria are currently being inves-
tigated to enhance the efficiency of the circuit optimization.

7.0 Acknowledgments
The authors would like to thank Ali Sadigh, Abe Elfadel

and the reviewers for their suggestions on this manuscript.

8.0 Bibliography

[1] S. W. Director and R. A. Rohrer, “The generalized adjoint net-
work and network sensitivities,”IEEE Trans. on Circuit Theory,
Vol. CT-16, No. 3, August 1969, pp. 318-323.

[2] D. A. Hocevar, P. Yang, T. N. Trick and B. D. Epler, “Transient
sensitivity computation for MOSFET circuits,”IEEE Trans. on
CAD of ICs and Systems, Vol. CAD-4, No. 4, October 1985, pp.
609-620.

[3] R. K. Brayton and R. Spence,Sensitivity and optimization,
Elsevier Scientific Publishing Co., Amsterdam, The Nether-
lands, CAD of Electronic Circuits, Vol. 21980.

[4] T. V. Nguyen, P. Feldmann, S. W. Director and R. A. Rohrer,
“SPECS simulation validation with efficient transient sensitivity
computation,”IEEE Int. Conf. on CAD, November 1989, pp.
252-255.

[5] P. Feldmann, T. V. Nguyen, S. W. Director and R. A. Rohrer,
“Sensitivity computation in piecewise approximate circuit sim-
ulation,” IEEE Trans. on CAD of ICs and Systems, Vol. 10, No.
2, February 1991, pp. 171-183.

[6] C. Visweswariah and R. A. Rohrer, “Piecewise approximate cir-
cuit simulation,”IEEE Trans. on CAD of ICs and Systems, Vol.
10, No. 7, July 1991, pp. 861-870.

[7] R. D. Kimmel, “AS/X user's guide,” Tech. report, IBM GTD,
Hopewell Junction, NY, August 1989.

[8] W. T. Weeks, “AS/X theory manual,” Tech. report, IBM GTD,
Hopewell Junction, NY, September 1989.

[9] C. Visweswariah and J. A. Wehbeh, “Incremental event-driven
simulation of digital FET circuits,”Proc. 1993 Design Automa-
tion Conference, June 1993, pp. 737-741.

[10] W. Nye, D. C. Riley, A. Sangiovanni-Vincentelli and A. L. Tits,
“DELIGHT.SPICE: An optimization-based system for the
design of integrated circuits,”IEEE Trans. on CAD of ICs and
Systems, Vol. CAD-7, No. 4, April 1988, pp. 501-519.

[11] J. P. Fishburn and A. E. Dunlop, “TILOS: A posynomial pro-
gramming approach to transistor sizing,”IEEE Int. Conf. on
CAD, November 1985, pp. 326-328.

[12] A. R. Conn, P. K. Coulman, R. A. Haring, G. L. Morrill and C.
Visweswariah, “Optimization of custom MOS circuits by tran-
sistor sizing,”IEEE Int. Conf. on CAD, November 1996, pp.
174-180.

[13] A. R. Conn, N. I. M. Gould and Ph. L. Toint,LANCELOT: A
Fortran Package for Large-Scale Nonlinear Optimization
(Release A),Springer Verlag, 1992.

[14] T. V. Nguyen, “Transient sensitivity computation and applica-
tions,” Tech. report CMUCAD-91-40, Carnegie Mellon Univer-
sity, 1991.

[15] N. Menezes, R. Baldick and L. T. Pileggi, “A sequential qua-
dratic programming approach to concurrent gate and wire siz-
ing,” IEEE Int. Conf. on CAD, November 1995, pp. 144-151.

[16] J.-M. Shyu and A. Sangiovanni-Vincentelli, “ECSTASY: a new
environment for IC design optimization,”IEEE Int. Conf. on
CAD, November 1988, pp. 484-487.

[17] S. S. Sapatnekar and W. Chuang, “Power vs. delay in gate siz-
ing: conflicting objectives?,”IEEE Int. Conf. on CAD, Novem-
ber 1995, pp. 463-466.

[18] M. D. Matson and L. A. Glasser, “Macromodeling and optimi-
zation of digital MOS VLSI circuits,”IEEE Trans. on CAD of
ICs and Systems, Vol. CAD-5, No. 4, October 1986, pp. 659-
678.

[19] P. K. Sancheti and S. S. Sapatnekar, “Optimal design of macro-
cells for low power and high speed,”IEEE Trans. on CAD of
ICs and Systems, Vol. CAD-15, No. 9, September 1996, pp.
1160-1166.

[20] R. K. Brayton, G. D. Hachtel and A. L. Sangiovanni-Vincen-
telli, “A survey of optimization techniques for integrated-cir-
cuit design,”Proc. of the IEEE, Vol. 69, No. 10, October 1981,
pp. 1334-1362.

[21] A. R. Conn, N. I. M. Gould and Ph. L. Toint, “Global conver-
gence of a class of trust region algorithms for optimization with
simple bounds,”SIAM J. on Numerical Analysis, Vol. 25, 1988,
pp. 433-460, See also same J., pp. 764-767, volume 26, 1989.

[22] A. R. Conn, N. I. M. Gould and Ph. L. Toint, “A globally con-
vergent augmented Lagrangian algorithm for optimization with
general constraints and simple bounds,”SIAM J. on Numerical
Analysis, Vol. 28, No. 2, 1991, pp. 545-572.

[23] R. B. Hitchcock, Sr., G. L. Smith and D. D. Cheng, “Timing
analysis of computer hardware,”IBM J. of Research and Devel-
opment, January 1982, pp. 100-105.

[24] W. C. Elmore, “The transient analysis of damped linear net-
works with particular regard to wideband amplifiers,”J. of
Applied Physics, Vol. 19, No. 1, 1948, pp. 55-63.

[25] P. E. Gill, W. Murray and M. H. Wright,Practical optimization,
Academic Press, London and New York, 1981.

[26] R. Fletcher,Practical methods of optimization,John Wiley and
Sons, Chichester, 1987.

[27] A. R. Conn, L. N. Vicente and C. Visweswariah, “Two-step
algorithms for nonlinear optimization with structured applica-
tions,” Res. report, IBM T.J. Watson Res. Ctr., Yorktown
Heights, NY, 1997 (in preparation).

[28] B. D. H. Tellegen, “A general network theorem, with applica-
tions,” Philips Research Reports, Vol. 7, 1952, pp. 259-269.

[29] Cadence Design Systems Inc., “Design Entry: Composer Users'
Guide 4.3,” 1994.

[30] D. P. Bertsekas,Constrained Optimization and Lagrange Mul-
tipliers Methods,Academic Press, London, 1982.

[31] M. R. Hestenes, “Multiplier and gradient methods,”J. of Opti-
mization Theory and Applications, Vol. 4, 1969, pp. 303-320.

[32] M. J. D. Powell, “A method for nonlinear constraints in mini-
mization problems,” inOptimization,R. Fletcher, ed., Aca-
demic Press, London and New York, 1969.

[33] G. D. Hachtel, R. K. Brayton, and F. G. Gustavson, “The sparse
tableau approach to network analysis and design,”IEEE Trans.
on Circuit Theory, Vol. CT-18, No. 1, January 1971, pp. 101-
113.

[34] R. K. Brayton and S. W. Director, “Computation of delay time
sensitivities for use in time domain optimization,”IEEE Trans.
on Circuits and Systems, Vol. CAS-22, No. 12, December 1975,
pp. 910-920.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

