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Abstract procedure is not applicable to custom circuits because of the

The circuit tuning problem is best approached by mearlack of availability of delay models for arbitrary transistor-
of gradient-based nonlinear optimization algorithms. Forlevel circuits. This problem is overcome by running dynamic
large circuits, gradient computation can be the bottleneck isimulations of each block of the design on the fly. In either
the optimization procedure. Traditionally, when the numbetype of tuning, gradient computation is often the bottleneck
of measurements is large relative to the number of tunabin the optimization procedure. Gradients are generally com-
parameters, the direct method[2] is used to repeatedly sohputed by the direct[2] or adjoint[1,3] method. The direct
the associated sensitivity circuit to obtain all the necessaimethod requires as many simulations of the associated sensi-
gradients. Likewise, when the parameters outnumber tHivity circuit as the number of tunable parameters. In the
measurements, the adjoint method[1] is employed to sohadjoint method, the simulation of the adjoint circuit is
the adjoint circuit repeatedly for each measurement to confepeated as many times as the number of measurements.
pute the sensitivities. In this paper, we propose the adjoii  In this paper, we present a method by which the gradi-
Lagrangian method, which computes all the gradients neceents of a circuit for the purposes of augmented-Lagrangian-
sary for augmented-Lagrangian-based optimization in a sirbased optimization can be obtained by means of a single
gle adjoint analysis. After the nominal simulation of themeasurement-at-a-time adjoint analysis, irrespective of the
circuit has been carried out, the gradients of the merit funcnumber of measurements and the number of tunable parame-
tion are expressed as the gradients of a weighted sum of cters. Thus the gradient computation bottleneck is amelio-
cuit measurements. The weights are dependent on trated. This method of gradient computation has been applied
nominal solution and on optimizer quantities such adin the context of a dynamic circuit optimization tool called
Lagrange multipliers. By suitably choosing the excitations cJiffyTune[12]. The enhanced gradient computation allows
the adjoint circuit, the gradients of the merit function areadditional constraints at a relatively low incremental cost,
computed via a single adjoint analysis, irrespective of thwhich is particularly significant for tuning dynamic circuits.
number of measurements and the number of parameters ~ JiffyTune adjusts transistor widths and wire sizes to
the optimization. This procedure requires close integratiooptimize power, area, delay and slews. Any combination of
between the nonlinear optimization software and the circuobjective function, equality and inequality constraints is
simulation program. accommodated. JiffyTune uses SPECSI6,9] for fast simula-

The adjoint Lagrangian formulation has been imple-tion and sensitivity analysis[4,5,14]. SPECS employs piece-
mented in the JiffyTune tool [12]which optimizes delay, areavise ~ approximate device models and event-driven
slew (transition time) and power measurements by adjustirsimulation to gain an average speedup of 70x over AS/X[7,8]
transistor widths and wire sizes. Speedups of over 35x hawith a relative inaccuracy of 5%. Hence JiffyTune can tune
been realized in the gradient computation procedure bat best to within 5% accuracy. However, simulation with
using the adjoint Lagrangian formulation, leading to speedAS/X before and after tuning has been used to corroborate
ups of up to 2.5x in the overall optimization procedure. Peithe circuit improvements predicted by JiffyTune[12]. The
haps more importantly, these speedups have renderfunction and gradient values are fed to LANCELOT, a gen-
feasible the tuning of large circuits. A circuit with 6,900 tran-eral-purpose, large-scale nonlinear optimization pack-

sistors was optimized in under two hours of CPU time. age[13,21,22] which employs an augmented Lagrangian for-
mulation and a trust-region approach.
1.0 Introduction and motivation 2.0 Demonstration by means of an example

The push towards high-performance, low-power, custor The concept of the adjoint Lagrangian formulation is
digital integrated circuits has led to a renewed emphasis first demonstrated using a simple example. Referring to
circuit optimization (tuning). This problem is bestFigure 1(a), let us assume that the circuit of interest has just
approached by means of gradient-based nonlinear optimizone input, one output , tunable parametersx,, ..., X,
tion. In the case of dynamic tuning[10,16], function and gra
dient values are determined by means of a dynamic (tim
domain) analysis of the underlying circuit. In the case cto d, = T, whered; is the 50% crossing point of the falling
static optimization[11,15,17,18,19], a static timing analyransition at the outputj, is the 50% crossing point of the
sis[23] is relied upon to analyze new iterates produced du

ing the optimization process. If circuit blocks are modeled bfSINg transition andr s a constant target value. The output
waveform is shown in Figure 1(a). Let us assume that the

analytic delay equations, these equations can be differen ; > ) )
ated symbolically to determine gradients. Unfortunately, thi"onlinear optimizer builds an augmented Lagrangian[31,32]

and that the optimization problem is to minimitg , subject
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d d Where\'/\t —d is the slope of the nominal voltage waveform
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, o in Figure 1(c) to similarly determine the gradierdd.,/dx.
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method described above requires two adjoint analyses and
two sets of convolution integrals. Instead, the adjoint
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(b) Adjoini analysis #1 Lagrangian method recognizes that the gradients of the
: : merit function are the gradients of a linear combination of
! ' - .00 0
1 o200 0
X Xoy oovy X0 : T circuit measurements, |.e.,6xi o Dh1d1+ h2d2D
% : ! where the coefficienth, antl, are known and can be
- ©) Ad'oin?t anal :sis #2 : treated as constants once the nominal simulation has been
J y ' completed. Hence, a single adjoint analysis is enough to
h : determine the gradients ab  with respect to all the vari-
X KXoy oo X 1 - ables of the problem, as shown in Figure 1(c). Thus two
%9 ! ' impulses of heights  h, = - s and
- = ' hle/ V‘t =d;
(d) Adjoint Lagrangian analysis -1

(dy,-T) . : :
Figure 1. Demonstration of the adjoint Lagrangian {)H i } are applied during a single

V], _
formulation by means of an example. = d

adjoint analysis. Note that the heights of the impulses are

merit function of the following form: . ) . : ) .
o 0. 1 o ? ) ) functions of the nominal simulation resultqt(: q, v\f: d,
d =d,+A -TU+ — —-TY, where A is the e . .
1 702 0 2u02 'O andd, ) and the optimizer variablés apd . The analysis

Lagrange multiplier corresponding to the constraint, @nd  iand convolution integrals are carried out as before to obtain
a penalty parameter used to weight the quadratic augmen j¢ ) o
tion of the Lagrangian. At each iteration, the simulator is3, = €onv(x),foralli. Thus two adjoint analyses have

. . i
required to computel; d, ad,/ox; ardtly/ox;  forall . ooh repiaced by one. Although the gradients of the compos-
The quantitiesd, andl, are computed by a nominal trarite merit function can be computed by this method (see also
sient analysis (Figure 1(a)). We will first describe how thd33,34]), the gradients of the individual measurements are
“measurement-at-a-time” adjoint analysis method is used ot computed and cannot be recovered. In general, if an opti-
determine the sensitivities. First, an adjoint circuit is formednization problem involvesm measurements, the adjoint
and configured as shown in Figure 1(b). The adjoint circuit iLagrangian method will obtain a speedup @{ m) over
excited by a current source with a unit Dirac impulse at timregular (one-measurement-at-a-time) adjoint analysis. The
d;, i.e.,d(t—d,) [34]. Time and control are reversed duringnext section will describe how the gradients of any differen-

the analysis of the adjoint circuit and the nominal waveformtiable scalar merit function of any number of circuit mea-
are convolved with the adjoint waveforms to yieldsurements can be computed with respect to any number of

av _ . parameters by means of a single adjoint analysis.
6_xi = conv(x;), forall'i, wherev is the output and 3.0 Theory

t=d, _ ~ This section will describe how the gradients of any merit
conv(x;) represents the convolution between the approprfunction can be computed via a single adjoint analysis. Sup-
ate nominal and adjoint waveforms for each problem variablpose the merit function of interest is

X, . The required gradien@d,/dx,  are then computed usin¢g® = g(f,f,, ..., fz, c;, C,, ..., ) whereg is any differ-

ov ov entiable function, thefj are objective functions and ctpe
adl _ 0x; _ 5—X_| _ conv (%) are constraints. Further, let these objective functions and
a_xi -7 v - t=d, =~ V‘t - q (@) constraints be defined as differentiable functions

ot t=d, V‘tzdl 1 fj:fj(ml, my,...My).j =1,2..,F o

¢ =¢ (mymy,....my),j =12..C



of the circuit measurements, . Ths  can be expressed J(1-t

a scalar differentiable function of the circuit measurementPx(t) = . A power measurement which inte-

We are required to find the gradient®@f  with respect to a rates the currecr;:stshrou h a voltage source from i
the X i =1, 2 ...,n parameters of the optimization. Now 9 9 9 . L
so  agf ¢ 2qdc to tond can be written as
ol zj ) 16—](96—)(1 + Zj : 1(%6_; Oi P (1) = u(T—tg,) —u(t—t,,9 . whereu(t) is the
[ I I 3) unit step function. The Elmore delay of a signal[24] can also
F O g M af. om0 c Oag M ac om0 be expressed as an integ_ral. Expre_ssion of the measurements
= Z Da—f z a—Ja—D+ Z = Z a—Ja—E 0Oi. as convolution integrals is essential to the computation of
iz 1Daj k=002 1560 = OMy 0% sensitivities by the adjoint method.

Following[1], Tellegen’s theorem[28] is invoked on the
om of ac nominal circuit and an adjoint circuit with the same topology,
0P _ M Tk ZF 097 . ZC 9975 | .(4) but arbitrary elements. Then Tellegen's theorem is again
0x; k=10x | &j=10f0m  £j=10c0m, invoked on the perturbed circuit and the adjoint circuit. The
All the terms inside of the square brackets of the right handn‘ference between the two sets of resulting equations is inte-

side of (4) are known once the nominal simulation has beegrated over the time period of .simulation. Time is run _bac_k—
wards and appropriate choices of branch constitutive

completed, since the analytic forms @f f;,  and  and thig|ations (BCRs) are made in the adjoint circuit to yield the
nominal values of the measurements, , are known. Trexpression

terms within the square brackets can depend on the nomir Y0 Svi LA _ LI
: ) S D—V|Ept+ di, v ) dt = §OR[, iLigdt
simulation results, as well as optimization parameters such Ito 'l g.[to (i %) ; -[to RR

Rearranging the summations,

slack variables, Lagrange multipliers, penalty parameter: ; )
etc.,. Equation 4) can be written as + Z [Cvc (ty) BV, (1) —ECIt’ Vc"’cdt] + %

om 0 other
0x; k=1 K0x  0X; k=1 In writing (5), adjoint circuit quantities are represented with

the h, can be treated as constants after the nominal simua carat ¢ ) symbol and is used to represent perturbations
tion. So far, all we have done is to write the gradients of thin circuit values (not to be confused with the usedof for
merit function as the gradients of a linear combination otime-domain Dirac functions). The terms on the right hand
measurements, which is always possible provided. , arside have been shown only for the linear resistors and capac-
) itors in the circuit, but the equation is valid only when
summed over all the elements of the circuit. Note that , the
cuit excitations so that the gradient of the merit function CacurreAnt of independent c?urrent sources in the adjoint C.IrCUIt
be efficiently computed. and ¥, , the voltage of independent voltage sources in the
Let each measurement be expressib|e as a time_domzadjOint circuit are the adjOint excitations that must be chosen

¢ are differentiable. Following the derivation of adjoint sen-
sitivities in[1], we will demonstrate how to pick adjoint cir-

o t, in order to express the sensitivity function of interest.
convolution integral of the forrrmk = J’t {v iy} p (D) dr In general, (5) can be summarized as
0
. . tf D o~ tf N _
wherev, are vo_ltages of independent current sourges, 8 le.[to D—6v|||%1t+ zVs[to E&Vvv%it = Zl BIESXI (6)
the currents of independent voltage sourdgs, is the st . o
by proper choice of adjoint circuit elements, whébg and

time of the transient simulatiorty,  the end tinfey), iy } B, represents the variation in the sensitivity parameters and

denotes one of; ang, amg is a time-domain functioihe corresponding convolutions respectively. We manipulate
that will be used as the_ excitation in the adjo_lnt circuit at th'the left hand side of (6) to the forEM h &m

measurement point. Without loss of generality, all measur¢ k=1 kK 'k
ments can be written in terms of the voltages of independeing U, andi; to bel, (1) = u(t—tg, ) -u(t—t,J .

by choos-

current sources and currents of independent voltage sourc S(T-t_..)

since a zero-valued current (voltage) source can always (1) = =B(T—t, o) andi, (1) = — cross  ¢or a
added in parallel (series) with the voltage (current) to be me: ' cros ' ‘

sured. For example, a measurement which is a voltage val t=1t0ss

. . d o d power, voltage, and crossing time measurement respectively.
at any timet is expressed ag = f v, (D8(1-0AT  SOA|| other sources are set to zero. These are the current and

that p, is a unit Dirac impulse at time corresponding to . Avoltage excitations that would be appliece at a timef we

measurement  which is a crossing time require VEe interested in finding the sensitivities of the individual
9 Ui easurements. Instead, we weight each these waveforms by



the correspondindy, . Substituting them into (6), we obtail

_ M _
oD = Zk: 1thSm|< = zlﬁléxl. As dx -0, the

required sensitivities can be picked off %;2 =B in the
|

course of a single adjoint analysis. Note that this result cann,
be derived from simple superposition, since the adjoint circu
is a time-varying circuit.

4.0 Practical considerations

4.1 Features of JiffyTune
The adjoint Lagrangian formulation was implemented ir

the dynamic circuit optimization tool JiffyTune. Some fea-

tures of JiffyTune are mentioned here. See [12] for mor

details.

¢ JiffyTune permits area, delay (crossing time) and powe
measurements. The objective function and weighted col
straints are expressed in terms of these measurements.
example, a slew function is written as the difference
between the 10% and 90% crossing times. If multiple
objective functions are defined, a weighted sum of thes
functions is minimized. Both equality and inequality con-
straints are permitted. Inequalities are internally converte
to equality constraints in LANCELOT by the addition of 4
slack variables.

¢ Transistor widths can have simple bounds and can t
ratioed to one another. Similar structures can be groupg
so that in all instances of the structure, corresponding tra
sistors have the same width, thus permitting a regular la
out. Sensitivities are computed with respect to all tunabl
transistors and wires and then combined by chain-rulin
to obtain the composite sensitivities with respect to th
independent variables.

* Minimax optimization (e.g., minimizing the worst of
path delays, withow priori knowledge of which delay is
the worst) is supported by converting

min { max {f: (x)}} to min z subj.toz=>f (x), Oi ,
X i | X, Z i
wherez is a new variable of the problem. The variable

Oo
is initialized to miaX [fiﬂx BJ after the first function eval-

LANCELOT is reduced before making another attempt.
If a certain number (5 is the default) of consecutive fail-
ures is detected, the optimization is abandoned. In prac-
tice, automatic recovery is almost always successful. The
best results encountered during the course of the optimi-
zation are saved in all cases.

If a circuit is tuned for optimal nominal performance, its
manufacturability[20] may have been adversely affected.
Therefore, two manufacturability modes are provided in
JiffyTune. In the first mode, the final tuned circuit is sim-
ulated at each of the specified process corners so that the
designer can obtain a quick idea of the performance
spread. In the second mode, the circugtilsultaneously
tuned at multiple process corners. Constraints are repli-
cated at each specified process corner. An objective func-
tion for the nominal problem is converted to a
corresponding minimax problem across the process cor-
ners. Similarly, a nominal minimax problem is mapped to
a new minimax problem wherein the constraints of the
nominal minimax problem are replicated at each process
corner of interest. Thus, in all cases, the nominal problem
is remapped into a new problem in a standard nonlinear
optimization form, which ensures that tuning is carried
out simultaneously at all the process corners.

JiffyTune includes an easy-to-use graphical user interface
in the Cadence schematic framework[29]. Designers can
specify the optimization problem in a familiar “point-
and-click” CAD tool environment. The system guides the
designer through the specification procedure, suggesting,
for example, that slew constraints be added each time an
output delay measurement is added. The final tuned tran-
sistor widths as well as corresponding circuit delays can
be back-annotated onto the schematic. All the tuning cri-
teria are stored as attributes of the schematic, so that in
the event of a technology re-map, new device models,
new loading information or new timing requirements, the
circuit can be re-tuned at the push of a button, facilitating
design re-use.

4.2 Implementation

Some special considerations that were taken into

account during the implementation of the adjoint Lagrangian
formulation are listed in this section.

Sorting of pulses and impulsesOnce the nominal simula-

uation, and the Lagrange multipliers corresponding to thtion has been completed, the values of the measurements are

inequalities that include are initialized 1dn ~ where

known. Then the excitations for the adjoint circuit are cre-

is the number of minimax constraints, since the first ordeated. The pulses and impulses of the adjoint circuit are
Kuhn-Tucker conditions[26] require that these multipliersappropriately scaled and sorted in reverse time order to be

sum up to unity at optimality.

applied to the adjoint circuit in an event-driven manner.

* Each iteration of JiffyTune is expensive since it involvesEvent-driven techniques are used both to analyze the adjoint
one SPECS simulation and, if the step is accepted, oicircuit and to carry out the necessary convolutions. In
gradient computation. To reduce the number of iterationsSPECS, the convolutions are typically between piecewise
the optimizer takes aggressive steps wherever possiblinear and piecewise constant waveforms[4,5,14]. To speed
Occasionally, such steps lead to circuit failures, wherein up the adjoint analysis, the time origin is shifted to the time
signal transition of interest does not occur. Such situatiorof the first externally applied excitation to the adjoint circuit.
are automatically detected and the trust-region radius ©nce all the excitations of the adjoint circuit have been



appllid, a faster .convc.)Iutlon altgortltfhm |s£her:1§)oned smcde 4used on the approximation ﬁfzdb . However, whenever a
waveforms are piecewise constant from that time onwards. ... jteration begins for which is changed,
Multiple adjoint Lagrangian groups. SPECS allows multi- 1 1 0 . )
ioi i i ins Brsq = Bt —US Fe.0 d
ple “adjoint Lagrangian groups,” each of which contains 2k+1 = Bk g — ) IdDZD GLc; O 1s used to incre-
new (o] ]

weighted sum of measurements as the sensitivity function
interest. The adjoint circuit is analyzed as many times as tt
number of groups, and one set of gradients is reported f
each group. Multiple groups are necessary for Hessian cor
putation (see below).

mentally update the Hessian approximation. Hence, in this
situation, the gradients of each constraint are required. Since
each constraint may in turn depend on multiple measure-
ments, multiple “adjoint Lagrangian groups” are used in

. L o ) SPECS. Thus hybrid schemés employed wherein adjoint
Scaling of the adjoint circuit excitations.Once the transient Lagrangian gradient computation is used with just one group

simulation has been completed in a new optimization iteréy eyery minor iteration and at the start of every major itera-
tion, the measurement values from SPECS are fed to Jiff:

tion whereA s are changed, but an adjoint analysis with as
-rl;]lgﬁ' fLﬁtlt%ELgnz ujscs.ézz miﬁﬁgr?gr:cvcaeluteiﬁg u?ga;i(many groups as the number of constraints is used at the start
It funct 1d dec whetl Pt € propost,¢ aach major iteration whep  has changed. Although the
step. If the step is rejected, gradient computation is skippe

. . ) latter is more expensive, the reduction in iterations due to
If the step is accepted, LANCELOT provides to JiffyTune thEstarting such major iterations with a better Hessian approxi-
values of the slack variables, Lagrange multipliers, penalt

parameter and scale factors. It is important that these valumatIon makes up for the added computational cost. As an ini-

be providedafter any initializations, spacer steps[30] or two-tial approximation at the first iteration) f  andc, are
step updates[2_7] n the optimizer, since these updates Ctaken to be zero, anEﬂc-Dc-T is computed explicitly from
change the optimizer variables which contribute to the mer h di fh o

function whose gradients are desired. JiffyTune uses thelN€ gradients of the constraints.

values to determine the scale fadmr  to be applied for eaHessian updates with respect to slack variableBy taking
advantage of the form in which slack variables occur in the

measurement which is in the forl =1, +% " n;m  augmented Lagrangian, the Hessian entries with respect to
wherel, andn,, are elements of a vector and sparse matSlack variables can be explicitly computed. However, using

. . . explicity computed values violates the quasi-Newton condi-
tSh:ét?orr? é:r(()aated as a result of all the chain ruling descrlbecjtion[25] when standard Hessian update formulas are used.

_ _ _ Hence, we have developed modified update formulas which
Hybrid scheme for the computation of the HessiarLAN-  satisfy both the quasi-Newton condition and allow us to
CELOT builds a quadratic model of the merit function at eacassign explicitly computed Hessian entries. For example,
iteration. The Hessian matrix is built up by low-rank quasiconsider a problem with one inequality constraint and

Newton update methods such as the SR1 or BFGS[2gpjeciive functiorf . The augmented Lagrangian function
method. For a quadratic functidiix)  we have, for any direc

tion d, sz(x)d = Of (x+d) —Of (x) . Analogously, the
qua.\si—l'\levvton condition mainFains an appro'ximate ersBiar) where s is the slack variable. CIearﬂSIZCD =1 . If this is
satisfyingBd = y , wherey is the appropriate gradient dif- S M
ference. The idea of a low rank update is to modify  wittapplied after the regular Hessian updates, the quasi-Newton
new gradient difference information at moderate cost, whilcondition will be violated. Instead, in general, we use the
maintaining the quasi-Newton condition. rank-two update

In “minor iterations” of LANCELOT, only the problem
variables and slacks change. In “major” iterations terminate
by sufficient stationarity, either the penalty paramgier o
the Lagrange multiplierss  change, depending on whethe

is given by ® = f(x) +A(c(x) +5) +§1ﬁ(c(x) +s)2,

_ 1 T T
Bys1 = Byt e [ (Y= BySid WE + EV (¥, Bysy) ]
k

sufficient feasibility has been achieved on the inner uncor (y, —B,s )TS (8)
strained problem. The merit function that LANCELOT builds _ kK k[? kEvk (Ev) T

aT
o 1 2 : E
is @ =f(x) +Y Nc (%) +2uZiCi (x) , wheref is the h MBSO
objective function and:i are the constraints. Hence the Hewhere at the’t iteratiorBi is the Hessian approximation,
sian is given by y; is the change ifl® s s the step aBd is a diagonal

qug = sz+ Z)\imzci + lz_ ECiDZCi + DCiDCiTE' (7)  matrix with a zero on the diagonal corresponding to each
o= H& o _slack variable and one otherwise. This update formula pre-

At each minor iteration and at the start of each major iteraticseryes the quasi-Newton condition[25]. If the entries of the
where A s are changed, low-rank quasi-Newton updates aHessian approximation with respect to the slack variables are



correctly set inB;, , then the update formula (8) guaranteethe adjoint method, computing the gradients of individual

that they remain correctly set after each update. By choosiiméasurements. Again, as indicated by the arrow, the growth
v, as one of(y,—-B,s) S ang, ,we obtain modified of run time with each additional measurement is quite high.

i . In Figure 2(c), the run time of our previous production ver-
SR1 (Symmetric rank-1), PSB (Powell-symmetric-Broyden, g (©) p p

. 4 'sion is shown, in which a heuristic is used to pick the sensi-
and DFP (Davidon-Fletcher-Powell) Hessian updates, respey;ivy analysis method. If the number of parameters is more

tively. By adding the termEﬁIEBksk%NkWI to the modified than thrge times the number of measurements, the adjoint
method is chosen. The figure shows a ridge where the pro-
- _ g gram switched from the direct to the adjoint method. Finally,
DFP update wherey, = Eg——y, T BiSd » we Figure 2(d) shows the run time of the adjoint Lagrangian for-
v Es. s EBs, U ; . ; = .

) B mulation wherein a single adjoint analysis was used to com-
obtain the modified BFGS (Broyden-Fletcher-Goldfarb-pyte the gradients of the merit function with respect to all
Shanno) update[25]. Since the minimax auxiliary variables parameters. Figure 2 clearly demonstrates not only the
also appear quadratically in the augmented Lagrangian, speedup obtained by the adjoint Lagrangian method, but also
similar Hessian update can be derived to include them.  the relatively slow growth of run time with respect to the
5.0 Results number of parameters and number of measurements
The adjoint Lagrangian formulation was tested on a set

L . . . —of 16 benchmark circuits, whose characteristics are shown in
mance circuits, as reported in[12]. First, r.esullts on grad.'e'TabIe 1. An adjoint sensitivity analysis was performed on
computation are presented, followed_ by circuit optimizatiorg o circuit to compute the individual gradients of measure-
results using the new method of gradient computation. ments. Then the sensitivity analysis was repeated with an
5.1 Gradient computation adjoint Lagrangian formulation, using a set of weights to

The adjoint Lagrangian formulation was first tested on form a linear combination of the measurements, as shown
earlier. The gradients of the former analysis were combined
in a post-processing step using the same weights, to compose
the gradients of the composite merit function. The two sets of
gradients were then compared. Across all the circuits, a total
of 707,081 gradients were compared with the worst inaccu-
racy among all these gradients between regular adjoint anal-
ysis and adjoint Lagrangian analysis being 5.8e-12 (in units
of either nsfu or mW/u ), showing that the adjoint
Lagrangian formulation does indeed produce the same

g1 1

JiffyTune has been used to tune a number of high-perfo

ASensitivity run time (s)

Sensitivity run time (s)

was used. The run time of sensitivity computation as a fun delay_minmx 70 | 16| 48 | 33 17
tion of the number of measurements and parameters is sho hot minmx (70 161 48 | 33 17
in Figure 2(a). The incremental cost of each additional seng_— ="

tivity parameter is quite high (see the arrow in Figure 2(a)), gcold_minmx| 70 | 16 | 48 | 33 | 17/
predicted by the theory. Figure 2(b) shows the run time usir]|Omux 6,900 60 | 4,068 82 | 41

(a) Direct method (b) Adjoint method results.
ézs é TABLE 1. Characteristics of benchmark circuits.
<. B b |1 #Con-|Obj. |Min-
2, >, # Ind. |Dep. |# stra- |func.|imax
% % Name MOS|par. |par. |Meas.lints |? ?
éo S | lau 24 |4 |16 |3 1 Y
morrill 8 3 |3 2 1 N N
davies 235| 15| 87 | 2 1 Y N
(c) Heuristic choice of methof) Adjoint Lagrangian formulation durham 204 11] 2 4 2 N N
Figure 2. Run time of gradient computation vs. number of |NOVPOW 17 |4 |0 |3 1 Y |N
measurements and parameters. fleischer 228|104 80 | 5 5 Y| Y
dynamic branch-scan-select circuit with 144 MOSFETSs, a clkgen 28 |17/10 | 6 > NN
actual circuit from a high-performance PowerPC micropro/NOV01 17 14 |0 6 4 N | N
cessor. The number of measurements was varied from 1 to|nor_xor 15 19 |2 16 | 8 Y 'Y
and the number of tunable transistors from 1 to 104. Fo{delay 70 | 16|48 | 33 17 N N
analyses were conducted for each resulting combination. [hot 70 |16 |48 | 33 17 N N
the first analysis, the direct method of sensitivity computatiof[cgiq 70 116 148 | 33 17 N N
Y| Y
Y Y
Y | Y
Y| Y




The run times and speedups for gradient computaticTABLE 2. Sensitivity computation and total speedups.

alon_e anq for S|mulat|on_ combined with grad_lent c'omp'utat|o’ Sens.cPU Total CPU
per iteration are shown in Table 2 and graphically in Figure 3 time(s) time (s)
All CPU times in this paper are on an IBM RISC System Sens Total
6000 model 590 workstation. Unlike in Table 1, the numbe # #  #Pa-Adj- )Ad). [speedAdj- Adj. speed
of measurements in Table 2 and Figure 3 excluded del{Name MOSMeasyrs. |oint Lag.-up pint Lag.-up
measurements on primary inputs whose gradients are knoyau 24 |1 ]20 [0120.1] 1.2] 14213 1.]
to be 0. A speedup of up to 36x is observed on circuits withmorrill 8 |1 |6  ]0.01/0.03 1.0 | 0.2f 0.26 1.0
large number of measurements, which then leads to a spee¢davies | 235 1 102| 0.58 0.48 1.2 12.4 12.8 097
of up to 4.2x per iteration of JiffyTune. Figure 3 shows thgdurham| 204 | 2 13 | 0.4 0.21 2.2 5.86 5/63 1.0
speedup of simulation combined with gradient computatiofNovpow 17 |3 4 0.05 0.02 25| 047 0.43 1.1
speedup of just the gradient computation and the number ffleischef 228 | 4 184 191 0858 3.3 5.08 4|77 113
non-trivial measurements in each benchmark. From the diclkgen (28 |5 27 (031007 4.4 13 1.05 12
cussion of Section 3.0, the number of measurements is [Novo1l 117 16 i 009 002 45| 051 044 1.2
upper bound on the practically achieva_ble speedup. On solgar~or 15 116 11 | 0.66 0.07 94| 1.83 1.07 1.V
Cally precictod speetp is due to the granciariy of GPU (mCcl®y |70 |24 | 64| 62/ 035 177 815 2,32 35
measurements. hot 70 |24 |64 [6.2] 0.34 18.2 8.14 2.32 3.5
cold 70 |24 |64 |6.19 0.36 17.2 8.12 2.32 3.5
60 ! Number of measurements | [delay [70 [24 64 [6.210.34 18.2 8.14 2.33 3.
- Sensitivity computation speeddip - :
50 Total speedup ] |_minmXx L]
hot 70 [24 |64 [6.19 0.35 17.7 8.12 2.34 3.1
| | minmx
Q_4O i i cold [70 [24 |64 [6.19 0.33 18.8 8.13 2.83 3.5
§30 i ] | minmx
2 [Omux [6,90057 | 4,128690 18|8 36.7 882 210 4
® 20+ _ utes, consisting of 83.4 minutes of transient simulation and
I ] 187.3 CPU minutes of gradient evaluation time. With the
10+ i adjoint Lagrangian formulation, after 30 iterations, the area
was 15, 1881 m and the sum of the constraint violations is
reduced by 20%. The run time is reduced to a total of 108.3

minutes, consisting of 83.2 minutes of transient simulation
L .. CPU time and 25.1 minutes of gradient evaluation time.
5.2 Circuit optimization Thus, the overall speedup in the optimization was 2.5x, while
The benchmark circuits of Table 1 were optimized usinghe speedup in the total gradient computation portion is 7.5x.
the adjoint Lagrangian formulation and the new method cThus the gradient computation bottleneck has been effec-
Hessian updates. As indicated in Section 4.2, a hybrid schertively addressed, leaving the transient simulation as the dom-
was employed. The speedups shown in the last column inant portion of the total run time!
Table 2 are eroded during the optimization procedure due In the above example, the adjoint Lagrangian formula-
an increased number of iterations and to various overheation reduced the CPU time of the circuit optimization from

and tasks that are common to the old and new implementy, e han 4 hours to under 2 hours. This speedup is

tions. Furthermore, because of the hybrid scheme, a “grou, d . furth h hod i lied

adjoint Lagrangian formulation is used for some major itera®xP€ected to improve iurther as the method is applied to
larger circuits, thus rendering such optimizations feasible.

tions. However, some gains in CPU time were observed wil h he adioi o f lati I ddi
little loss in the quality of results. The real benefit of the_uUrther, the adjoint Lagrangian formulation allows addi-

adjoint Lagrangian formulation is seen in large problems, paponal C?}”Stfa'”_ts .‘?t a relatl\r/]elc)j/ IIOW mcremental _cosl,t. IT?'S
ticularly problems with a large number of measurements. THeature has a significant methodology impact, particularly for

results of optimizing the 10mux circuit of Tables 1 and 2 ar(_seIf-‘:[irrr]]edka,r,]dhdynhamic cirguits in ‘?.’h(ijcz the number of timb-
presented in more detail below. ing “checks” that have to be satisfied during tuning can be

The I0mux circuit tuning problem was formulated as arVe"y large.

area minimization with 41 timing constraints and a higr6.0 Conclusions

weight on the area objective function. The area (approx  ap adjoint Lagrangian formulation for the computation
mated by the sum of the transistor widths) began &yt gireyit gradients was proposed. For the purposes of opti-
31 128um. The measurement-at-a-time adjoint methotyzation, the gradients of an augmented Lagrangian merit
reduced the area tb4, 065 m in the course of 30 optimizéfunction can be computed in a single adjoint analysis, irre-
tion iterations. The total CPU time required was 270.7 minspective of the number of parameters or measurements.

Figure 3. Histogram of total speedup, sensitivity
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