
Prototyping of the Receiver Unit for a Broadband Access Network

A. Hein, J. Dalcolmo, P. Le Corre, R. Lauwereins, M. Ad�e
Kard. Mercierlaan 94

K.U. Leuven
ESAT/ACCA Laboratory
B-3001 Heverlee, Belgium

email: Axel.Hein@esat.kuleuven.ac.be

Abstract

To exploit the potential of two-way communication

on CATV networks for advanced interactive telecom-

munication applications like video-on-demand, a high

speed modem for up-stream communication is currently

under development. We are using the rapid prototyp-

ing tool GRAPE to evaluate the digital receiver part of

the modem which is described in detail in this paper.

The sampling rates achieved for a 16-QAM modem on

multiple DSP processors are reported.

1. Introduction

Recently, coaxial cable networks have received much
attention in the context of interactive applications [3,
5]. In countries with a high penetration of CATV (in
Belgiummore than 90%), it may serve as an alternative
to classical telephone networks. The envisioned ap-
plications are telephony, interactive television, home-
shopping, video-on-demand, high-speed Web browsing,
etc [7]. Since these applications require the possibility
of interactive use, two-way communication has to be
provided on the networks which initially have been de-
signed for only a one-way broadcasting of television
signals.

What is aimed at now, is a 10 Mbit/s upstream link
(from the subscriber to the head-end station) and a
downstream link (from the head-end station to the lo-
cal subscribers) with higher bit rate. Especially the
upstream is challenging because very little is known
about the upstream channel, and communication stan-
dards are still under development [4]. The projected
frequency band for upstream communication is in the
5-25 MHz range.

Since the basic con�guration of the network is hy-

brid �bre-coax, the upstream signal will �rst travel
through coax before entering a �bre node and go-
ing through the �bre trunk to the head-end station.
The coaxial part will bring along some serious chan-
nel impairments which have to be compensated for
at the receiver. The most important impairments are
mentioned below without going into too much detail.
Group delay distortion (ie signals at di�erent frequen-
cies propagating with a di�erent velocity) causes se-
vere inter-symbol interference at the receiver. Micro-
re
ections are caused by discontinuities in the trans-
mission medium and cause part of the signal energy
to be re
ected. Ingress noise models the interfer-
ence caused by the antenna-like properties of the ca-
ble. Burst noise typically originates from household
appliances such as electrical motors. Besides this there
are common path distortion products, thermal noise,
impulse noise, non-linearities, phase-noise frequency
o�set etc. Adding to this the variations in the net-
work stemming from the variability of the number of
trunk, bridge and distribution ampli�ers it becomes
quite clear that it is very hard to build a channel
model which incorporates all these statistical and non-
statistical phenomena observed in real networks. Stud-
ies [5] have shown that due to this inhospitable envi-
ronment, less than half of the spectrum will be avail-
able at any given time instant. The absence of a good
mathematical channel model necessitates the real-time
prototyping of the complete set-up, including the ca-
ble, after o�-line simulation and before commitment
to silicon is made. Real-time prototyping has several
bene�ts compared to o�-line simulation:

� It enables algorithm veri�cation on the real chan-
nel.

� It allows for more extensive testing under more
varying conditions: 24 hours a day measurements



are possible as well as tests with transmitters
placed on di�erent locations.

� It gives faster feedback when modifying algo-
rithmic settings: the prototype allows to mod-
ify algorithmic parameters on the 
y, without re-
compilation and to view its e�ects in real-time on
the next received data packet.

We aim at developing a 16-QAM modem for the up-
stream communication channel described above. The
projected bit rate is 10 Mbit/s at an overall bit-error
rate of 10�10 including software-based error correction.
The transmission payload consists of ATM cells and the
multiple access protocol is TDMA.

A prototype of the receiver part of a 16-QAM
modem is currently under development at the
ESAT/ACCA research group of the K.U. Leuven. A
sketch of the modem architecture is shown in Figure 1.
The algorithm for the decoding of the data has been
simulated and is to be implemented in an ASIC. It is
desirable to test the algorithm on data on a real net-
work, and to measure bit and frame error rates. How-
ever, workstation simulation of the algorithm is in the
range of 104 slower than real time operation and there-
fore too slow for such an evaluation. It is rather obvi-
ous, that fast execution time of the prototype is manda-
tory; this can be done by porting the algorithm to a
set of DSP processors or FPGAs. Since DSPs provide
larger 
exibility, the algorithm of the receiving unit has
been ported to a set of DSPs, working in parallel, in or-
der to achieve suitable performance. GRAPE has been
chosen as the rapid prototyping tool to implement the
algorithmon a set of DSPs, because it allows automatic
task assignment, routing, and scheduling, gives rapid
estimation of the performance, and automatically gen-
erates the code required for the DSPs [6].

Since the software running on a set of DSPs is still
not capable to provide real time data throughput, the
problem had to be divided into a software and hard-
ware domain. The software runs the actual receiver
algorithm which is to be tested, the hardware provides
the access to real time sampling rates, at least for the
duration of one or a few data bursts, ie data for a single
network user can be processed in real time.

In the following sections we present the components
of the receiver unit of the modem { the Sample Rate
Reducer (section 2) and the processing unit of the re-
ceiver (section 3). Measurements are presented in sec-
tion 4, and the main aspects of the paper are summa-
rized in the �nal section 5.

Front end
receiver ADCCATV

cable

custom
design IC

Front end
transmitter

custom
design IC

Transmitter

Receiver

data

data

Signal processing (digital)

Figure 1. Modem Setup

2. Sample Rate Reducer

The modem algorithm running on a set of DSPs
cannot keep up with the rate of incoming data in real
time. However, in order to test the algorithm on a real
network, real time samples have to be captured and
played back slower to the DSPs running the algorithm
under test. This is the task of the Sample Rate Re-
ducer shown in Figure 2. This device, developed by
the ESAT/ACCA group at K.U. Leuven, captures a
frame of real time data, stores it, and plays it back to
the DSP boards. The number of samples per frame
is programmable, and the Sample Rate Reducer has
features to facilitate debugging.

Furthermore, the hardware has the task of synchro-
nization with the data bursts: The energy level on
the net is calculated and a discriminator triggers on
the beginning of a data burst. Since this must hap-
pen in real time, it could not be implemented in soft-
ware. Synchronization is needed to avoid storage and
software processing of long periods of samples between
data bursts. Elimination of these periods is what actu-
ally provides the reduction of the sample rate needed
for software emulation of the receiver algorithm.

2.1. Sample Rate Reducer Concept

The main function of the Sample Rate Reducer is
that of a frame grabber. In order to test the modem
receiver algorithm on the DSPs, samples with prede-
�ned content are sent by a test transmitter. The data
arrives from the receiver ADC at a sampling rate of ap-
proximately 10 MHz and is then stored in two circular
bu�ers simultaneously. One of these is used to bu�er
data 
owing to the DSPs, the other one is bu�ering a



Host (PC)

Xilinx
(FPGA)

(25 000 gates)

Front end
receiver ADC

SRAM 1
(64kB)

SRAM 0
(64kB)

CATV

cable
C40 DSP
boards

ISA bus

Sample rate reducer

Figure 2. Sample Rate Reducer

copy for debugging purposes and allows downloading
of the incoming data to the host PC simultaneously
with new data acquisition. When a frame of data has
been detected, the data acquisition is temporarily sus-
pended, and one copy of the data, including pre-trigger
data is transferred to the DSPs. The DSPs run the mo-
dem algorithmon it, then compare it with the expected
data content and return at the completion a 
ag indi-
cating success or failure of the reception.

If the 
ag returned by the DSPs indicates an error,
the second copy of the data is moved to the host com-
puter via an ISA bus interface, so it can be processed
o� line by feeding it back into simulation to improve
the receiver algorithm.

Thus, the better observability of simulation models
is combined with the higher speed and 24-hours-a-day
unattended measurement capabilities of prototyping.

Even while a frame is being downloaded to the host,
the Sample Rate Reducer restarts with collection of
new data, now only saving one copy of incoming data,
until the host download is completed. In this fashion,
there is no interruption in the data 
ow, even when
debugging information is being dumped to the host
computer. Naturally it is not possible in this way, to
provide debugging information on a continuous basis,
but only for the �rst of a set of erroneously received
frames.

The net result is that the output data rate is in
the order of about 200 times slower than the incoming
rate, when using a single DSP, which means that one
out of 200 frames could be analyzed, if the incoming
data stream would be near continuous. The actual rate
is dependent on the number of DSPs used to run the
receiver algorithm. For test purposes, the repetition
rate of the frames on the network is reduced by a factor

of 200, but the frames themselves are sent with real
time speed.

2.2. Implementation Details

Unfortunately it was not possible to use the rapid
prototyping environment GRAPE to implement the
data 
ow through the FPGA, as has been done for the
DSP part, because the necessary VHDL code generator
within GRAPE is still under development. Therefore
we had to resort to code the FPGA by hand, using
VHDL.

All the logic on the board of the Sample Rate Re-
ducer, except for an ISA Bus address decoder, is im-
plemented in a Xilinx FPGA chip. All the logic on this
chip was designed in VHDL.

Besides the 16 bit ISA bus interface, there are
TMS320C40 style DSP links implemented, to commu-
nicate with the DSPs, and a general purpose parallel
interface to capture modem data coming from an ADC.
All I/O interfaces are electrically bu�ered. The FPGA
has direct simultaneous access to two 16 bit wide, 64
kWord deep static RAM chips, with 15ns cycle time.

The data 
ow is from the parallel interface through
the FPGA to the two RAMs, then from one RAM via
the FPGA to a link to the DSP boards, and for the
debugging information from the second RAM via the
FPGA to the ISA bus. Various parameters like the
frame length and repetition rate are programmable via
the ISA bus interface.

2.3. FPGA

The FPGA is in circuit re-programmable via a stan-
dard Xilinx XChecker interface, and can also be probed
via this interface. In addition there are a few facilities
on board to ease debugging of the board or any design
inside the FPGA.

The design programmed into the FPGA is modular
and consists of several blocks shown in Figure 3.

� Energy Calculation and Burst Detection:
The signal energy on the network cable can be
calculated by I2+Q2, where I and Q are a pair of
successive ADC samples. The energy calculation
is implemented as an approximation to avoid the
high hardware cost of multipliers. The energy cal-
culated from the pairs of samples is averaged over
four samples and compared with a threshold. If
this average is above theshold four times consecu-
tively, it is assumed to be the beginning of a data
burst. Since the 12-bit wide samples arrive at a



ADC

RAM 0RAM 1

ISA

Energy
calculation

and
Burst

detection

ISA controller

C40

C40
out

controlSample rate
reducer

parameters

FPGA

RAM
control

RAM
control

Samples
counter

C40
in

control

Detection
control

Synchro
and

register
samples

Synchro
and

register
data

Figure 3. Overview of the Receiver Com-

ponent

rate of 10 MHz, the speed of the energy calcula-
tion has to be taken into account too. The various
operations that take place are pipelined in order
to achieve the required throughput.

� ISA Controller: A PC interface to a set of pa-
rameter registers and to read status 
ags as well
as captured data frames for debugging.

� Sample Rate Reducer Parameters: A set of
registers for: the threshold value for burst detec-
tion, the size of the data frame, the trigger posi-
tion, the time to wait for the DSPs etc.

� Sample Counter: A count down counter decre-
menting at each incoming sample advances the
state machine when it reaches 0. It is used to posi-
tion the trigger within the data, to stop and start
data aqcuisition and to time the waiting period for
the DSPs.

� Detection Control: This is the top level state-
machine of the Sample Rate Reducer, and driven
mainly by the state of the Sample Counter, the
input from the Burst Detection and the DSPs.

� RAM Controllers: Essentially silicon tape
recorders, storing the incoming data at high speed
to replay them slowly.

� C40 Controllers: The DSP word length is 32
bits which the link sends asynchronously in four
times 8 bits. Both blocks handle the hand-shaking
signals and convert the data format (the FPGA
uses a 12-bits two's complement representation of
the data).

� Synchro and Register: The ISA bus is running
asynchronously with the FPGA, and there is an
unknown di�erence in phase between the ADC and
the FPGA. These blocks are used for synchroniza-
tion.

3. Processing Unit of the Receiver

The processing unit of the receiver is responsible for
the decoding of the incoming symbols and for the post-
processing which includes checking for bit errors and
notifying the sample rate reducer in the case of errors.

The tasks of the processing unit as well as their
interdependencies are de�ned within the GRAPE en-
vironment as an extended data-
ow model which is
called cyclo-static data-
ow (CSDF) [2] and represents
an extension of Lee's synchronous data-
ow (SDF) [8].
CSDF maintains all the properties of SDF but allows
for the consideration of cyclically changing behavior

such as time-multiplexed channels with a static and
cyclically repeated period. Although this cyclo-static
behavior is known at compile time and is independent
of any run-time data, it cannot be speci�ed within the
SDF framework which requires �xed and constant to-
ken productions and consumptions.

GRAPE's design 
ow consists of several phases [1]
as shown in Figure 4. Regarding the data-
ow repre-
sentation, the application has to be set up as a directed
graph G=(N, E), where the nodes N represent compu-
tation tasks, and the edges E depict the communication
of the results (commonly called the tokens) between a
producing and a consuming task. The functionality
of the nodes is speci�ed in a conventional high-level
language like C (for DSP processors) or VHDL (for
FPGAs). The number of tokens a task consumes and
produces during an execution phase of a task is known
at compile time, allowing for a compile-time analysis of
the graph in the next phases of GRAPE's design 
ow
and leading to highly e�cient run-time code. GRAPE
embeds the task descriptions in shells which handle all
the communication.

The target hardware is represented as a connectiv-
ity graph with an indication of the amount and type
of resources each processing device possesses. In the
following step of GRAPE's design 
ow, the amount of
resources required by each of the tasks when executed
on each of the processing devices, is estimated. Then,
the application is mapped onto the target hardware, ie
the assignment, routing, and scheduling of the tasks are
automatically optimized to minimize the bu�er lengths
and the total execution time. The �nal code is gener-
ated depending on the target hardware, an estimation



of the execution times is given, and the application can
be downloaded on the target hardware. It should be
emphasized that the target hardware can be changed
rapidly without modifying the data-
ow model of the
application and vice-versa. This independence of ap-
plication and target hardware has tremendously facili-
tated the performance measurements of the application
on di�erent hardware platforms as will be presented in
section 4.

assignment

routing

minimization

buffer length

scheduling

code generation for

target platform

execution on 

target platform

ressource

estimation

specification

targetapplication

specification

Figure 4. Flow of GRAPE Design Process

The architecture of the 16-QAM receiver unit which
has been designed by IMEC and the ESAT/SISTA re-
search group consists of the following tasks:

� DMUX (Demultiplexer) : The 4-phase demulti-
plexer scales the incoming values before they are
forwarded.

� FIL[IQ] (FIR Filter) : These two FIR �lters
downsample and �lter the incoming data by per-
forming a convolution with pre-computed param-
eters.

� AGC (Automatic Gain Control) : The AGC con-
trols and corrects the gain. The changes between
the internal idle and active states depend on the
input data and state parameters.

� EQ (Burst Acquisition Equalizer) : The EQ task
performs the detection of symbol sequences. The
state changes depend on the input data and state
parameters.

� LMS (Symbol-Spaced Adaptive Equalizer) :
Equalizing is performed based on feedforward and
feedback convolutions.

� DEMAP (Demapper) : The constellations of
16-QAM or 4-QPSK, respectively, are mapped
back to symbols. The 4-QPSK encoding is pro-
vided as an alternative to 16-QAM but is not fur-
ther taken into account within this paper.

Figure 5 gives an overview of the receiver unit rep-
resented as a data-
ow model.

FILQ

AGC

FILI

EQ

LMS

DEMAP

DMUX

Figure 5. Data-Flow Model of the Applica-

tion

During each static schedule DMUX is executed four
times, and all the other tasks are triggered twice, ie the
incoming data are downsampled. In each of the four ex-
ecutions of DMUX another set of operations is started.
The order of these four phases is known at compile-
time and can be statically assigned and scheduled; the
consideration of this cyclo-static behavior (CSDF) is
one of the outstanding characteristics of the GRAPE
tool.

The execution of LMS and DEMAP is data-
dependent, ie they are triggered by EQ. LMS and
DEMAP perform operations only when useful data is
coming in, and in that case only once per schedule;
therefore, EQ downsamples by a factor of two. A static



assignment tool as it is used by GRAPE cannot handle
this data-dependent execution which can be considered
as dynamic data-
ow. Hence, LMS and DEMAP are
triggered twice a schedule, such as AGC and EQ, but
the incoming data provides information whether oper-
ations have to be performed at all.

4. Performance Measurements

The original code of the application has been op-
timized to speed up the execution times on the DSP
processors. This step clearly increased the sampling
rate of the application. Table 1 shows the sampling
rates for simulation on a SUN UltraSparc Workstation
and for one, two and four DSP processors TMS320C40
before (Tno�opt) and after (Topt) code optimization,
which includes elimination of redundant operations,
loop unrolling, and introduction of additional variables
to avoid address calculations. Moreover, expensive
switch conditions have been replaced by nested if

statements.

Architecture Tno�opt [kHz] Topt [kHz]

Simulation 0.19 {

1 C40 12.3 22.7

2 C40 23.6 42.4

4 C40 23.6 70.4

Table 1. Sampling Rates of the Processing

Unit

When moving from 2 DSPs to 4 DSPs for the un-
optimized algorithm, no improvement of the execution
time can be achieved. This is due to the fact that the
AGC task takes about the same execution time per
schedule as all the other tasks together; in its original
version, the shifting of numerous state parameters is
performed by copying them within arrays. By replac-
ing this expensive mechanism with a few additional
variables pointing to the logical begin of the arrays,
the copy operations can be avoided and the execution
time of the AGC was reduced from 1624 down to 356
cycles.

Several runtime- and back-parameters have been
added to the application. Runtime-parameters make
it possible to modify algorithmic parameters at run-
time, whereas back-parameters provide instantaneous
feedback from the application running on the DSPs to
the user or a control program running on the PC (in
Figure 5 the runtime-parameters are drawn as black
triangles pointing to the corresponding block, and the
back-parameters are represented as dark-grey triangles

pointing out of the block). The automatic gain control
(AGC) can be bypassed to set the gain value manually,
and threshold values may be modi�ed at runtime. Also,
the modulation type (4-QPSK or 16-QAM) can be set.
Additionally, a derandomizer can be activated and ini-
tialized (DEMAP). The implemented back-parameters
provide information about the gain value (AGC), the
tap coe�cients (EQ and LMS), and the correctness or
error of the received and decoded samples (DEMAP).

The runtime- and back-parameters allow for test-
ing and monitoring of the application. When problems
are encountered, these values are used to improve the
application by going back to more 
exible but slower
simulation runs.

5. Summary

Although continuous real-time sampling rates can-
not be achieved, prototyping is shown to be a needed
and useful means to evaluate the interaction of such a
modem design with the real channel. The use of an ad-
vanced environment like GRAPE in combination with
programmable hardware strongly encourages the fast
prototyping and makes it hardly more expensive than
simulation.

GRAPE's advanced use of run-time readable and
writable parameters facilitates the monitoring, debug-
ging, and �ne-tuning of applications assigned to hard-
ware platforms which can be exchanged easily and in-
dependently from the application. By using DSPs in-
stead of workstation simulation the execution times of
the algorithm are tremendously speeded up by a factor
in the order of 102.

6. Acknowledgments

R. Lauwereins is a Senior Research Associate with
the FWO. M. Ad�e is a postdoctoral researcher of the
K.U. Leuven-DOC. J. Dalcolmo and A. Hein are post-
doctoral researchers, P. Le Corre is a master of en-
gineering at the K.U. Leuven. Research has been
supported by Siemens Atea and the Flemish Govern-
ment via the Flemish Institute for the Advancement of
Scienti�c-Technological Research in Industry (IWT).
This project has been partly made possible by an FWO
Krediet aan Navorsers and is partly sponsored under
Texas Instruments' Elite University Program. K.U.
Leuven-ESAT is a member of the DSP Valley network.



References

[1] M. Ad�e, R. Lauwereins, and J. Peperstraete. Hardware-

software co-design with GRAPE. In Proc. 6th Int.

Workshop on Rapid System Prototyping, pages 40{47,
June 1995. Chapel Hill, NC, USA.

[2] G. Bilsen, M. Engels, R. Lauwereins, and J. Peper-
straete. Cyclo-static data
ow. IEEE Transactions on

Signal Processing, 44(2):397{408, February 1996.
[3] R. Comerford and S. Tekla. Wired for interactivity.

IEEE Spectrum, pages 21{28, April 1996.
[4] W. End. IEEE project 802.14 : Standards for digital

convergence. IEEE Communications Magazine, pages

20{23, May 1995.
[5] L. Goldberg. Cable modems: The journey from hype to

hardware. Electronic Design, pages 65{80, April 1996.
[6] R. Lauwereins, M. Ad�e, M. Engels, and J. Peperstraete.

GRAPE-II: A system-level prototyping environment for

DSP applications. IEEE Computer, 28(2):35{43, Febru-
ary 1995.

[7] R. Lauwereins, M. Ad�e, P. Vandaele, M. Moonen, and
P. Schaumont. Prototyping quadrature amplitude mod-

ulation for two-way communication on CATV networks.

In Proc. of 7th Int. Conference on Signal ProcessingAp-

plications and Technology ICSPAT, pages 1570{1574,

1996. Boston.
[8] E. Lee and D. Messerschmitt. Static scheduling of syn-

chronous data 
ow programs for digital signal process-

ing. IEEE Transactions on Computers, C-36(1):24{35,
January 1987.


	CD-ROM Home Page
	ISSS97
	Front Matter
	Table of Contents
	Session Index
	Author Index


