
            

Pre-layout delay calculation specification for CMOS ASIC Libraries

Hisakazu Edamatsu1, Katsumi Homma2, Masaru Kakimoto3, Yutaka Koike4, Kinya Tabuchi5

1 Corporate Semiconductor Development Division, Matsushita Electric Industrial Co., Ltd., Moriguchi, JAPAN
2 High Performance Computing Research Center, Fujitsu Laboratories, Kawasaki, JAPAN

3 System LSI Division, Semiconductor Company, Sony Corporation, Atsugi, JAPAN
4 System LSI Division, Device Business Group, Oki Electric Industry Co., Ltd., Hachioji, JAPAN

5 Maingate Electronics Inc., Yokohama, JAPAN

Abstract
   This paper describes the delay calculation method and the
accuracy analysis of its interpolation for CMOS ASIC libraries
which contain cell-based primitives and memories to be used
during the pre-layout design phase of logic simulation, timing
verification, and logic synthesis. The delay calculation method
addressed in this paper is specified as IEC CDV 61523-2
standard which consists of the estimation of wire capacitance,
and the delay calculation method based on a table look-up.

Although the input to the delay calculator is net list and library
parameters, the delay parameter part of the library has not been
standardized because of its strong dependency on the delay
calculation method.
   We, IEC/TC93/WG2/ALR group, specified it[1] based on the
EIAJ work[2]. In IEC CDV 61523-2, we specified in detail a table
look up calculation formula for CMOS ASIC library using a
linear interpolation in the triangular area which is more accurate
than the bilinear interpolation. In this paper, we overview the
specification and provide the mathematical background for the
interpolation.

1. Introduction
    The timing design is the critical issue in sub-micron
CMOS ASIC, and the delay calculation algorithms for both
interconnects and gates are studied[3][4][5][6]. Although
the input to the delay calculator is net list and library
parameters, the delay parameter part of the library has not
been standardized because of its strong dependency on the
delay calculation method. Because of this, the calculated
delay results don’t coincide if the design tools adopt
different delay calculation method. This prevents to mix-
and-match design tools and to communicate LSI designer
and the semiconductor vendors easily. Especially, the
specification of the pre-layout  delay  calculation is
demanded for the early stage of the LSI design and to
facilitate the RTL sign off.

1.1 Delay model
   When considering a sub-micron pre-layout timing
model based on the net capacitance, two items in Figure 1
should be considered; (1) input slew rate effect and (2)

port-to-port delay timing. In this model, it is necessary to
first calculate the capacitance of wires, and then, to
calculate delays.  The delay calculation is executed in the
following steps;

  1) Calculate <input slew rate>, and

  2) Calculate <Port-to-port propagation delay; Tpd>

        by using <input slew rate>.

  The IEC CDV 61523-2 specifies the three tables and the
equation needed to perform these steps.

Figure 1: Delay model

  As shown in Figure 1, the imput slew rate depends on the
input net capacitance, CL0, and the delay time, Tpd,
depends on the net capacitance, CL1, of the concerning
cell as well as the input slew rate.

1.2 Table Look-Up delay calculation method
   The table look-up model of delay calculation specification
uses three types of table models. The first is the ‘Net
capacitance table’ (Cn table). This table is used for the ‘net
capacitance’ estimation. The second is ‘Input slew rate
table’ (Ts table), and the third is the ‘Port-to-port
propagation delay time table’ (Tpd table). The input slew
rate is calculated by using a net capacitance and the Ts
table. After that, the port-to-port propagation delay can be
calculated by using net capacitance, input slew rate, and
Tpd table.

2. Specifications of tables
The following is the definition of each table. If the value

is out of range of the table, we use the value of the edge of



            
the table.

2.1 Cn table for the net capacitance estimation
  The first step is to estimate the net capacitance of each
net. The net capacitance is estimated by the following rule.

 Net Capacitance
   = (port capacitance)∑  + estimated net  capacitance

        where (port capacitance)∑  is the summation of

        port capacitance in the net.

  The estimated capacitance is a function of fanout and
estimated size which is calculated by summing up the cell
size of all cells in the top hierarchy to which the net
belongs. So, to estimate capacitance, a two dimensional
table is used. Indices of the table are fanout and sum of cell
size. Each net capacitance is calculated by step
interpolation using Cn table as shown in Figure 2.

Figure 2:  Net capacitance estimation

 Cn table is a two-dimensional matrix specified for each
design methodology, i.e. gate array, or standard cell. The
first index is a size( ≡ S[i]); a sum of cell size, or a sum of a
number of gates, or a base array size for the gate array. This
index is defined for a pair of sizes, such as 1k and 4k, in
order to divide the range of the sise accordingly. The
second index( ≡ Fo[j]) is a number of fanout in the net. The
value( ≡ C[i][j]) is a pre-defined capacitance value whose
unit is pF or fF.

2.2 Input slew rate calculation
 The input slew rate is calculated by linear interpolation
using the Ts table as shown in Figure 3.

Figure 3:  Input slew rate calculation

  The Ts table is a one-dimensional matrix for each

transient timing group. The index ( ≡ C[i]) is the net
capacitance of the net which includes the input capacitance
of the target gate. The value ( ≡ S[i]) is the characterized
input slew rate, where

2 f i f N       (N is effective maximum number
                   of capacitance values  used),

  C[i] has one real value of capacitance, unit is pF or fF,
0 < C[i] < C[i+1], and
S[i] has one real value of time, unit is ns.

  To calculate input slew rate, Ts0, which is between S[i]
and S[i+1], by the Ts table, the linear interpolation method
will be applied between C[i] and C[i+1] at the
corresponding target input capacitance, CL0.  By
interpolating two points, the slew rate is obtained as
following;

Ts0 =  a  C0 +  b ×

where  a  =  
(S [i + 1] S [i])

(C [i + 1] C [i])

                b =
(C[i +1] S[i] C[i] S[i +1])

(C[i + 1] C[i])
 

× ×

2.3 Port-to-port propagation delay time calculation
 The port-to-port delay is calculated using the Tpd table
shown in Figure 4, by either a linear or a bilinear
interpolation method.

Figure 4:  Propagation delay time calculation

  Tpd table is a two dimensional matrix for each transient
timing group. The first index ( ≡ Ts[i]) is an input slew
rate, and the second index ( ≡ Cl[j]) is a net capacitance of
output of gate. The value ( ≡ Tpd[i][j]) is characterized
propagation delay time, where 2 f i f M (M is effective
maximum number of input slew rates used), and Ts[i] has
one real value of time whose unit is ns.
  To calculate port-to-port propagation delay time, Tpd0, by
the Tpd table, either of two interpolation methods can be
applied to 4 points : (Tpd[i][j], Tpd[i+1][j], Tpd[i][j+1],
Tpd[i+1][j+1]) as shown in Figure 4.
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  One of the interpolation method is a bilinear interpolation
of two variables, X ≡ Ts and Y ≡ Cl, and four coefficients,
a, b, c, and d (Tpd = aX + bY + cXY + d), and another
method is a linear interpolation based on 3 points which are
selected from 4 points.
   Although the bilinear interpolation method is widely used
in the practical delay calculation, the interpolated value is
not continuous at the edge of the interpolation domain. We
specified the linear interpolation method using 3 points and
the division method of the rectangular interpolation area.
The error analysis shows that this interpolation is more
accurate than the bilinear interpolation.

3. Selection rule of 3 points for the linear interpolation
 Tpd is monotonously increasing convex function in the
actual cells. With this assumption, we first explain selection
method of interpolation plane to calculate the port-to-port
delay value using a table model. We also analyzed the
accuracy of the delay value after interpolation using 3
points selected from 4 points surrounding the point to be
calculated.

3.1  Selection of interpolation plane
The triangular area is obtained by dividing the rectangle

in the Ts table. As the result of the division, a combined
plane formed by two triangles become convex, Figure 5 (a),
or concave, Figure 5 (b), depending on the direction of the
division. Hence, the selection of 3 points which define one
of the two triangles becomes the first problem when
calculating the delay using the linear interpolation.

.  
Figure 5:  A selection of interpolation plane

After choosing 3 points among 4 points surrounding the
point to be calculated, we interpolate a delay value.

Unless these 4 points are on one plane, there are two
candidate planes of interpolation for 4 points.

The example is shown in Figure 6 where a value at X
must be interpolated by A, B, C and D. As the result of a
division B-C, two planes, A-B-C and B-C-D become
candidates for the linear interpolation. In this case, we need
to select one plane for the linear interpolation.

3.2 Precision evaluation
   We compare the result of the interpolation for each
combination of the 3 points, and the result of the SPICE
simulation. We assume the position relation of the points A,
B, C and D where a point D is above the plane consisting of
points A,B and C as shown in Figure 5. The errors of a
delay value at a point X which is around the center of the
area are;

(1) plane A-C-D               24.3%
(2) plane A-B-C               -22.5%
(3) plane A-B-D               -7.6 %
(4) plane B-C-D               -12.9%

A better result is obtained for the interpolation using the
planes (3) and (4) which contain point X than the
combination of the planes (1) and (2) which don’t contain
point X.

The error of the interpolation using two planes shown in
Figure 5 against the SPICE simulation result under the
above assumption is;

    RR division  (convex)       -3.3%
    RF division  (concave)     -29.7%

  A good result is obtained when the combination
of the planes are so selected that the surface of
delay curve become convex in the rectangle.

 
Figure 6: A linear interpolation using 3 points

3.3  Assumption from the actual characteristics
A characteristic of a delay value table used for the

above precision evaluation satisfies the following two
conditions when expressed a delay value in F(Ts, Cl) as a
function of the input slew rate and the net capacitance;

         F(1) (Ts, Cl) > 0 ,
         F(2) (Ts, Cl) < 0 .

   Here, F(1) and F(2) represent the first and the second order
derivatives of  F,  respectively.

In other words, a curved surface of delay value
expressed in F(Ts, Cl) is monotonously increasing in the
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input slew rate and the net capacitance and convex in all
areas. Under such condition, interpolation plane which uses
two planes divided by a line A-D gives a good result when a
point D is above the plane formed by points A,B and C. On
the contrary, interpolation plane which uses two planes
divided by a line B-C gives a good result when a point D is
under the plane formed by points A,B and C.  From these
consideration, the curved surface of delay value that is
convex is well interpolated by applying the above method in
the opposite manner.

As it is difficult to use the value of derivatives in the
table model, we developed the procedure of the selection of
the planes without using the derivative values.

3.4  A plane selection rule
 From precision evaluation and a result of consideration,

we can define the division method as follows.

Figure 7: A plane selection

 Let a delay curved surface in one domain be F(Ts, Cl), a
plane formed by points A,B and C be G(Ts, Cl), a net
capacitance, an input slew and a delay value in point D be
load_d, slew_d, and delay_d respectively.

 In this case, we assume that F(1)(Ts, Cl) is 0 or positive.

(1)  F(1)(Ts, Cl)  0  and  F(2)(Ts, Cl)  0
  (a)   G(slew_d, load_d ) > delay_d    Division by a line B-C
  (b)   G(slew_d, load_d ) < delay_d    Division by a line A-D
  (c)   G(slew_d, load_d ) = delay_d
                      A plane formed by points A,B,C and D

(2)  F(1)(Ts, Cl)  0  and  F(2)(Ts, Cl)  0
  (d)    G(slew_d, load_d ) > delay_d   Division by a line A-D
  (e)    G(slew_d, load_d ) < delay_d   Division by a line B-C
  (f)    G(slew_d, load_d ) = delay_d
                    A plane formed by points A,B,C and D

  Figure 7 shows the case (a). In the domain where
F(1)(slew, load) > 0 is not satisfied, we need to determine
the selection method of the plane according to the position
relation of points A,B,C and D. For this purpose,
implementing the information of derivatives in the library
will be helpful. However, this case is not likely to happen in

the actual application.
  The above selection rule can be described using the table
value. The above case (1) becomes as follows.

   If G(Ts[i+1],Cl[j+1]) is greater than or equal to
Tpd[i+1][j+1], select two planes which consist of the
following three points;
   one is Tpd[i+1][j], Tpd[i][j+1], and Tpd[i][j],
   another is Tpd[i+1][j], Tpd[i][j+1] and Tpd[i+1][j+1].

   If G(Ts[i+1],Cl[j+1]) is less than Tpd[i+1][j+1],  select
two planes which consist of the following three points;
   one is Tpd[i][j], Tpd[i+1][j+1], and Tpd[i+1][j],
   another is Tpd[i][j], Tpd[i+1][j+1], and Tpd[i][j+1].

The above case (2) can be described likewise.
  After choosing a combination of planes in this method,
select three points which include point (Ts0, CL1).

4.  Tpd calculation by linear interpolation method
  After defining the linear interpolation method as described
in the previous section, Tpd is calculated using the
following equation (c.f. Figure 8);

z = T pd[i][j + 1] +
(Tpd[i][j] Tpd[i][j + 1])(C L1 C l[j + 1])

(C l[j] C l[j + 1])

T pd0  =  z  +  
(T pd[i + 1][j] T pd[i][j])(T s0 T s[i])

(Ts [i + 1] T s[i])
 

Figure 8: Interpolation for right angle triangle

5. Theoretical Accuracy Comparison Between Two
Interpolation�Methods

In order to analyze the accuracy of the interpolation and
to compare the errors between local linear interpolation and
bilinear interpolation, we simplify the problem and estimate
these precision in case of the quadric surface

      z Ax Bxy Cy Dx Ey= + + + +2 2

on the rectangle [ , ] [ , ]0 0S T×  (S, T > 0).

  We show that the local linear interpolation is better than

B D
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CL1

Cl[j+1]

Cl[j]

Tpd0



            
bilinear interpolation if B  is sufficiently small.

5.1  Test surface
We compare accuracy between two interpolations by

applying them to the following test surface on
[ , ] [ , ]0 0S T×  (S, T > 0),

z Ax Bxy Cy Dx Ey= + + + +2 2 .

  By scaling x and y-direction, it is enough to consider in
case of S = T = 1. So, we assume that the test surface is
defined on the square [ , ] [ , ]0 1 0 1× .

  This test surface is constrained by following properties of
delay surface.
  a) Delay surface is convex. ⇒ < <A C0 0,
  b) Delay surface is monotone increasing.

⇒
+ + >
+ + >





≤ ≤
2 0

2 0
0 1

Ax By D

Cy Bx E
x y( , )

Especially, D E> >0 0, .

5.2  Error evaluation
5.2.1  Bilinear interpolation

Applying bilinear interpolation to the test surface, we
give the following approximation formula.

z A D x C E y Bxy= + + + +( ) ( )
  And the approximation error is

E x y Ax Cy Ax Cy4
2 2( , ) = + − − .

  We estimate the maximum error of bilinear interpolation.
  First, on the boundary of square,

E x E x Ax Ax

E y E y Cy Cy

4 4
2

4 4
2

0 1

0 1

( , ) ( , )

( , ) ( , )

= = −

= = −
  Hence,

Boundary maximum error =








max ,
A C

4 4
.

  Next, the maximum error in interior region is evaluated by
a stationary value of E x y4 ( , ) .

∂
∂

∂
∂

E

x
Ax A

E

y
Cy C

x y

4

4
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2 0

1

2
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= − =

= − =




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



⇒ =( , ) ( , ) .

  Hence,

Interior maximum error = =
+

E
A C

4

1

2

1

2 4
( , ) .

  Therefore, the maximum error of bilinear interpolation is

ME
A C A C A C

4 4 4 4 4
=

+







=
+

max , ,

because, A C< <0 0, .

5.2.2  RF local linear interpolation

We evaluate the approximation formula and an
approximation error in case of rightward falling (RF) local
linear interpolation (Figure 9).

Figure 9: Direction of division

Applying RF local linear interpolation to the test surface,
we give the following approximation formula.

z
A D x C E y x y

A B D x B C E y B x y
=

+ + + + ≤
+ + + + + − + >





( ) ( ) ( )

( ) ( ) ( )

1

1

  And the approximation error

E x y
Ax Cy Ax Cy Bxy x y

Ax Cy Ax Cy B xy x y x y
RF3

2 2

2 2

1

1 1
( , )

( )

( ) ( )
=

+ − − + + ≤

+ − − + − − + + >






  Especially, on a diagonal line ( x y+ = 1)

E x x A C B x xRF3
21( , ) ( )( )− = + − − .

  And on the boundary of square,

E x E x Ax Ax

E y E y Cy Cy

RF RF

RF RF

3 3
2

3 3
2

0 1

0 1

( , ) ( , )

( , ) ( , )

= = −

= = −

5.2.3  RR local linear interpolation
We evaluate the approximation formula and an error 

in case of rightward rising (RR) local linear interpolation
(Figure 9).

Applying RR local linear interpolation to the test surface,
we give following approximation formula.

z
A B D x C E y x y

A D x B C E y x y
=

+ + + + ≤
+ + + + >





( ) ( ) ( )

( ) ( ) ( )
  And the approximation error

E x y
Ax Cy Ax Cy B xy x x y

Ax Cy Ax Cy B xy y x y
RR3

2 2

2 2
( , )

( ) ( )

( ) ( )
=

+ − − + − ≤

+ − − + − >






  Especially, on a diagonal line ( x y= )

E x x A C B x xRR3
2( , ) ( )( )= + + − .

  And on the boundary of square

E x E x Ax Ax

E y E y Cy Cy

RR RR

RR RR

3 3
2

3 3
2

0 1

0 1

( , ) ( , )

( , ) ( , )

= = −

= = −
  Hence,

E x y E x y E x yRR RF3 3 4( , ) ( , ) ( , )= =
  on the boundary of the square.

5.3 Accuracy Comparison when B  is sufficiently small

If B = 0 ,

E x y E x y E x y Ax Cy Ax CyRF RR4 3 3
2 2( , ) ( , ) ( , )= = = + − − .

  Here, we compare the accuracy between the local linear



            
interpolation and the bilinear interpolation when B  is

sufficiently small, by using perturbation method.  In the
following, put B b= ε  where b  is real number and ε  is a
very small positive number (order parameter).

5.3.1  Bilinear interpolation
The maximum approximation error of a bilinear

interpolation is

ME
A C

4 4
=

+
.

5.3.2  RF local linear interpolation
The maximum error on the boundary of square is

max ,
A C

4 4









 and that on the diagonal line

( x y+ = 1) is 
A C b+ − ε

4
.  The maximum error in

interior region is evaluated by stationary value of
E x yRF3 ( , ) .

The stationary condition 
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  By using the perturbation approximation, the solution
( , )x y0 0  of above equation is

( , )
( , ) ( )

( , ) ( )
x y

b

A

b

C
x y

b

A

b

C
x y

0 0

1

2 4

1

2 4
1

1

2 4

1

2 4
1

=
− − + <

+ + + >










ε ε

ε ε

  From A C< <0 0, , the solution ( , )x y0 0  is consistent

with range  condition if b < 0 .
  Then the stationary value is

E x y
A C b b

A C
ORF3 0 0

2
2 3

4 16

1 1
( , ) ( ) ( )= − + − − + +ε ε ε .

  Therefore the maximum approximation error of RF local
linear interpolation is

ME
A C b

ORF3
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4
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+ −
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ε
ε( ) .

5.3.3  RR local linear interpolation
The maximum error on the boundary of square is

max ,
A C
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 and that on the diagonal line ( x y= ) is

A C b+ + ε
4

.  The maximum error in interior region is

evaluated by stationary value of E x yRR3 ( , ) .
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  By using the perturbation approximation, the solution
( , )x y0 0  of above equation is
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From A C< <0 0, , the solution ( , )x y0 0  is consistent

with range  condition if b > 0 .
  Then the stationary value is

E x y
A C b b

A C
ORR3 0 0

2
2 3

4 16

1 1
( , ) ( ) ( )= − + + − + +ε ε ε .

  Therefore the maximum approximation error of RR local
linear interpolation is

ME
A C b

ORR3
2

4
=

+ +
+

ε
ε( ) .

5.3.4  Accuracy Comparison
By above evaluation, maximum approximation errors of

interpolations are as follows.

 ME
A C

4 4
=

+
                 (bilinear)

 ME
A C b

ORF3
2

4
=

+ −
+

ε
ε( )   (RF local linear)

 ME
A C b

ORR3
2

4
=

+ +
+

ε
ε( )   (RR local linear)

  From A < 0  and C < 0 , we give following accuracy
comparison between interpolations.
i)  If b > 0 , then RR local linear interpolation is

better than bilinear interpolation.
ii)  If b < 0 , then RF local linear interpolation is



            
better than bilinear interpolation.

5.4  Conclusion
We give the following accuracy comparison between the

local linear interpolation and the bilinear interpolation in

case of quadric surface z Ax Bxy Cy Dx Ey= + + + +2 2

on rectangle [ , ] [ , ]0 0S T×  (S, T > 0).

  i)    If B > 0  and B  is sufficiently small, then RR local

linear interpolation is better than bilinear interpolation.

  ii)   If B < 0  and B  is sufficiently small, then RF local

linear interpolation is better than bilinear interpolation.
  iii)  If B = 0 , then the accuracy of local linear
interpolation and that of bilinear interpolation are same.

6. Experimental Results
   We demonstrate the interpolation selection method by
showing the example of delay calculation of gates.

6.1 Inverter
We show the result of applying above described method

to the actual library as an example. The library cell of an
inverter of the following characteristics are used;.

   A table of 4×3 for a net capacitance × input signal slew ,
   The net capacitance and input signal slew are monotonously
   increasing,
   Convex in all area.

(load1 < load2 < load3 < load4 , slew1 < slew2 < slew3)

Figure 10: Tpd Table for inverter

We examine the position relation of  four points
forming each area A - F. For example, we divide the area A
so that the condition of convex is satisfied according to the
position relation of the point 5 and the plane formed by the
points 1, 2 and 4. We will show the result of the area
division by examining the relation of the points for each

area using the actual delay data.
In this table, a RR division is performed in order to meet

the condition from position  relation of points in all
domains. In order to verify the correctness of the division of
the areas, SPICE simulation is performed for points in the
center of each area and compared with the result of the
interpolation.

Figure 11: Tpd Table after area division

An interpolation of the delay value for the point X is
performed using two kinds of planes; one is  formed by
points 1,2 and 4 by RF division, and another is formed by
points 1,4 and 5 by RR division.

Figure 12: Relation of X

Error of interpolation is examined against the result of
SPICE simulation. In the above figure, a simulation
condition on domain A is shown. The error analysis is also
performed on the other areas.

Figure 13: Errors of interpolation

load1 load2 load3 load4

slew1

slew2

slew3

1

2

3

4

5

6

7

8

9

10

11

12

A

B

C

D

E

F

load1 load2 load3 load4

slew1

slew2

slew3

1

2

3

4

5

6

7

8

9

10

11

12

B D F

A C E

load 1 load 2

slew 1

slew 2

X

1

2

4

5

X: (load_x, slew_x)ı
load_x : (load1+load2)/2
slew_s:(slew1+slew2)/2 > α 



            
From the above-mentioned result in Figure 13, we

conclude that the interpolation is well performed by
dividing all areas by RR lines. The reason why a difference
of precision is small in areas B,C,E and F is that four points
to constitute each domain are near to one plane.

6.2 Buffer
 We performed the interpolation experiment on the
following buffer;

   A table of 3×2 for a net capacitance × input signal slew,
   Convex in the all domain.

Figure 14: Tpd Table after area division

  Figure 14 shows the result of the division of area for the
buffer using the actual delay value as performed for
inverter.

In areas C and D, the result is different from the case of
the inverter. This is because that the point 8 is under a
plane formed by the points 4, 5 and 7 by RF division. We
show a result compared with SPICE simulation result using
an equal point in case of inverter next.

Figure 15:  Errors of interpolation

As the result, the difference of RR division and the RF
division is as small as none. Even in this case, the error is
smaller in the case of the RR line under our early
assumption. This  result gives a good example that the
method of the area division is satisfactory if each division of

area is RR.

7. Summary
  The delay calculation method specified in this paper is
based on the input slew rate calculation step and the port-
to-port calculation step. During these calculation steps, the
table lookup method is used. The table method of this
standard specifies two interpolation methods for delay
calculation. One is bilinear interpolation which is widely
used through the industry. Another is a linear interpolation
using neighboring 3 points. Although the bilinear
interpolation is widely used in the delay calculation, the
error analysis is not provided. We compared the error of
two interpolation methods and showed that the accuracy of
the linear interpolation is better than that of the bilinear
interpolation assuming that  the nature of the delay value
has monotonously increasing function of convex surface.
This linear interpolation has a few percent of differences
between linear interpolation and SPICE result.
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