
-- --

Design-for-Testability for Synchronous Sequential Circuits
using Locally Available Lines

Irith Pomeranz and Sudhakar M. Reddy+

Electrical and Computer Engineering Department
University of Iowa

Iowa City, IA 52242

1. Introduction
We propose a non-scan design-for-testability (DFT) method to
increase the testability of synchronous sequential circuits. Non-
scanDFT allows at-speed testing, as opposed to scan or partial-
scan basedDFT that normally leads to low-speed testing and
longer test application times due to scan operations. The pro-
posed method is based on the identification of several types of
restrictions imposed by the combinational logic of the circuit on
the values that can be assigned to the next-state variables. These
restrictions limit the set of states the circuit can reach, thus limit-
ing the set of input patterns that can be applied to its combina-
tional logic during normal operation. This in turn limits the fault
coverage that can be achieved. The proposedDFT procedure is
different from other non-scan basedDFT procedures [1], [2] in
that it relies on lines available locally to drive the insertedDFT
logic, avoiding the routing of primary input lines to the flip-
flops, and the routing of internal lines to the primary outputs.
The proposed scheme uses the complement valueY of a next
state variableY or the value of an adjacent state variableY′ in
order to change the value ofY, and thus enrich the set of states
that can be reached by the circuit.

The proposed approach considers several special cases
that result in unreachable states (or states that cannot be easily
reached) to determine where theDFT logic will be placed. We
consider cases where a next-state variable always (or almost
always) carries a single value under a random sequence of input
vectors, and cases where two next-state variables carry the same
values, or complemented values. These cases have a drastic
effect on the set of state variable patterns that can be applied to
the combinational logic of the circuit in practical time, thus lim-
iting its testability.

2. DFT based on locally available lines
To identify restrictions on and dependencies among values of
next state variables, we simulate a random input sequence of
fixed length. The circuit is started in the fully-unspecified initial
state, and the states it reaches under the selected input sequence
are recorded. This does not accurately identify dependencies of
the types discussed above. However, a random sequence of
input vectors is useful in that it provides information about state
variables that aredifficult to set to specific values, as well as
state variables thatcannotbe set to specific values.

Due to the use of the fully-unspecified state as the initial
state of the circuit, the dependencies among the state variables
must accommodate unspecified values (x). To define these
dependencies, we use the following notation. The input
sequence applied to the circuit in order to find the dependencies
is denoted byV. We useV[u] to denote the input pattern at time

+ Research supported in part by NSF Grant No. MIP-9357581, and by NSF
Grant No. CDA-9601503.

unit u of V. We denote bySu the state of the circuit at time unit
u. The value of state variableyi under Su is denoted bySu[i].
The dependencies are defined with respect toV and are written
in terms of the present state variables (denoted byy or yi).
Constant {0,1} state variables:State variableyi is said to be
constantα , α ∈ {0,1}, if Su[i] ≠ α for every time unitu along
V, and there exists a time unitu0 such thatSu0

[i] = α .
Constant x state variables:State variableyi is said to be con-
stantx if Su[i] = x for every time unitu alongV.
Equal state variables:Two non-constant state variablesyi and
yj are said to be equal if for every time unitu along V, either
Su[i] = x, or Su[j] = x or Su[i] = Su[j].
Complementing state variables:Two non-constant state vari-
ablesyi and yj are said to be complementing if for every time
unit u alongV, eitherSu[i] = x, or Su[j] = x or Su[i] ≠ Su[j].

We use the following variables to store the dependencies
identified among the state variables.const[i] ∈ {0,1,x,−} indi-
cates whetheryi is constant 0, constant 1, constantx, or non-
constant, respectively.same− as[j] gives the index of the first
state variableyi such thatyi and yj are equal by the definition
above, andi ≤ j . compl[j] gives the index of the first state vari-
able yi such thatyi and yj are complementing by the definition
above, andi < j .

To resolve the dependencies defined above, we use the
logic in the dashed box of Figure 1, referred to as theDFT struc-
ture. The DFT structure contains a multiplexer with a select
input E. WhenE = 1, the value ofYi produced by the combina-
tional logic of the circuit is transferred to the input of flip-flopi
unmodified; whenE = 0, the complemented value ofYi pro-
duced by the circuit is transferred to the input of flip-flopi . By
controlling the value ofE, the value ofyi can be controlled.

CL

&

&

FFi

+Yi

E

yi

Figure 1: Modification of the next-state logic ofYi

3. The overallDFT procedure
We first add DFT structures on the state variables with
const[i] = 0 or const[i] = 1. Suppose that duringj iterations, we
add DFT structures onY1, Y2, . . . , Yj . Suppose also that before

-- --

the addition we hadconst[1] = const[2] = . . . = const[i] = 0 and
const[i + 1] = const[i + 2] = . . . = const[j] = 1. The addition of
DFT structures in this case allows us to complementy1, . . . , yj
simultaneously. As a result of this modification, if the pattern
(y1

. . . yi yi+1
. . . yj) = (0 . . .01. . .1) is applicable in the original

circuit, then the pattern (y1
. . . yi yi+1

. . . yj) = (1 . . .10. . .0) that
cannot be applied in the original circuit is applicable in the modi-
fied circuit. Using a single control inputE, it is only possible to
increase the number of fully specified patterns on (y1y2

. . . yj)
from one to two. The additional fully specified pattern can be
selected in one of several ways. We prefer to placeDFT struc-
tures on all the next state variables with constant values in order
to be able to complement all of them.

Next, we consider the state variables with
same− as[i] ≠ i and the ones withcompl[i] ≠ −. Consider a sin-
gle pair of state variables (yi yj) with same− as[j] = i that can
assume the patterns (00) and (11). Placing aDFT structure onYi
or Yj (but not on both) allowsyi andyj to be controlled individ-
ually, resulting in the patterns {(00),(11)} on (yi yj) when E = 1
and the patterns {(01),(10)} whenE = 0. Similarly, if
compl[j] = i , a DFT structure needs to be placed onYi or Yj
(but not on both). We use this observation as follows.

We first consider pairs of state variablesYi , Yj such that
compl[j] = i . We select one of the state variables, sayYi , to
place aDFT structure on it. We also mark that aDFT structure
must not be placed onYj . Next, we consider state variables
Yi1, . . . , Yik such that same− as[i1] = same− as[i2] = . . . =
same− as[i k] = i1. In this case, we partition the set
{ Yi1, . . . , Yik} into two (approximately) equal subsets.DFT
structures are then added only on the variables in one subset.

After each DFT structure is placed, we resimulate the
input sequenceV to update the dependencies among the state
variables.

By applying the procedure above again to a circuit that
has already been modified, and using a new control inputE, it is
possible to further divide the sets of equal state variables into
smaller subsets, and allow additional state variables that were
previously equal to obtain non-equal values. Another conse-
quence of repeating the procedure using a new control input is
that state variables that were constantx in the original circuit
may be specified once the number of states the circuit can go
through is increased.

4. Experimental results
We applied the procedure above to ISCAS-89 benchmark cir-
cuits. We used a random sequence of length 200 to collect infor-
mation about constant, equal and complementing state variables.
The results are reported in Table 1 as follows. After circuit name
we show the fault coverage achieved for the original circuit by
the deterministic test generation procedure of [3]. For the modi-
fied circuit, we show the number of state variables modified, and
the fault coverage achieved using the test generation procedure
of [3]. In this experiment, a single control input is used. It can
be seen that significant increases in fault coverage are obtained
in many cases. Although the numbers of flip-flops modified by
the proposed procedures are higher than those in partial scan
designs, the test application time overhead of partial scan is
avoided, allowing at-speed testing.

Several methods may be used to increase the fault cover-
age to 100%. One of them is to use a small number of control
inputs instead of only one. To demonstrate the advantages of
addingDFT structures controlled by multiple inputs, we applied
the proposed procedure tos208 ands420 repeatedly until no
additional modifications were possible. Fors208, the fault cov-
erage achieved by the procedure of [3] reached 100% after four
iterations, using four different control inputs. Fors420, the fault
coverage reached 100% using eight different control inputs.

Table 1: Results ofDFT Table 2: Results of synchronization
init modified init. mod ff

circuit f.c ff f.c circuit s.v. synch ff [4]

s208 69.77 6 82.64 s9234 228 53 51 54
s298 88.64 3 100.00 s13207 669 192 129 191
s382 94.00 13 95.84 s15850 597 308 82 151
s386 81.77 3 90.00 s38417 1636 372 644 643
s420 47.44 12 82.39 s38584 1452 1398 28 28
s526 83.24 13 98.34
s641 87.37 9 100.00
s1423 96.04 38 98.64
s5378 79.14 115 89.19

5. Using additional next state variables
In the previous sections, theDFT structure placed on state vari-
ableYi was driven by the functionsYi andYi . In this section, we
consider the possibility of using other next state variables to
drive theDFT structure of a state variableYi . Layout informa-
tion can be used to restrict the distance allowed betweenYi and
Yj , thus keeping the overhead of routingYj to Yi low. We use
this structure to synchronize unsynchronizable circuits. This is
possible by using a synchronizable state variableYj to drive an
unsynchronizable state variableYi .

To achieve synchronization,DFT structures need to be
placed on constantx state variables. We use the dependencies
among the remaining state variables to rank them according to
the desirability of using them to drive other state variables. We
prefer to drive a constantx state variableYi from a state variable
Yj such thatyj is not involved in any dependency. We refer to a
state variable that satisfies this condition as afreestate variable,
and we denote the set of free state variables byFREE. By allow-
ing Yj to driveYi only if Yj ∈ FREE, we ensure that theDFT
structure onYi does not introduce new dependencies except pos-
sibly thatyi and yj will be equal. We allow non-free state vari-
ables withconst[j] ≠ x to drive other state variables only if the
set of free state variables is not sufficient to drive all the state
variables withconst[i] = x. Additional heuristics used are omit-
ted due to space considerations.

We applied the procedure above followed by reverse
order simulation to non-synchronizable ISCAS-89 benchmark
circuits. The input sequences used were of length 50. We used a
single extra input, and addedDFT structures to synchronize all
the state variables. The results are reported in Table 2, as fol-
lows. After circuit name we show the number of state variables,
and the maximum number of state variables synchronized at any
time unit in the original circuit. We then show the number of
DFT structures placed. For comparison, the number of state
variables that needed to be reset using the procedure of [4] to
achieve synchronization are shown in the last column of Table 2.

References
[1] S. M. Reddy and R. Dandapani, "Scan design using standard flip-

flops," IEEE Design & Test, Feb. 1987, pp. 52-54.
[2] V. Chickermane, E. M. Rudnick, P. Banerjee and J. H. Patel,

"Non-Scan Design-for-Testability Techniques for Sequential Cir-
cuits", in Proc. 30th Design Autom. Conf., June 1993, pp.
236-241.

[3] X. Lin, I. Pomeranz and S. M. Reddy, "MIX : A Test Generation
System for Synchronous Sequential Circuits", in Proc. 1998
VLSI Design Conf., Jan. 1998.

[4] I. Pomeranz and S. M. Reddy, "On the Synchronization of Syn-
chronous Sequential Circuits by Partial Reset using Focused
Search", Technical report 9-7-96, ECE Dept., Univ. of Iowa.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

