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Abstract

In this paper, we developed Boolean matching
techniques for complex programmable logic blocks (PLBs)
in LUT-based FPGAs. A complex PLB can not only be
used as a K-input LUT, but also can implement some wide
functions of more than K variables. We apply previous and
develop new functional decomposition methods to match
wide functions to PLBs. We can determine exactly whether
a given wide function can be implemented with a XC4000
CLB or other three PLB architectures (including the
XC5200 CLB). We evaluate functional capabilities of the
four PLB architectures on implementing wide functions in
MCNC benchmarks. Experiments show that the XC4000
CLB can be used to implement up to 98% of 6-cuts and
88% of 7-cuts in MCNC benchmarks, while two of the
other three PLB architectures have a smaller cost in terms
of logic capability per silicon area. Our results are useful
for designing future logic unit architectures in LUT based
FPGAs.

1. Introduction

The field programmable gate array (FPGA) is a new
technology as an alternative to ASIC designs in recent
years. An FPGA chip consists of programmable logic
elements and interconnections. A K-input lookup-table
(K-LUT) is a K-input one-output logic element composed
of 2K SRAM cells. The K-LUT can implement any
function of up to K variables. In general, the FPGA logic
utilization may increase if smaller LUTs are used. But
circuit performance may degrade due to the increase of the
circuit depth. In order to increase the utilization without
penalty in performance, most FPGA architectures provide
complex Programmable Logic Block (PLB) consisting of
multiple LUTs to offer greater flexibility.

In this paper, we consider four PLB structures shown
in Figure 1: (a) the XC4000 CLB, and other three PLBs
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Figure 1 Four PLB architectures. (a) XC4000 CLB, (b)
PLB1, (c) PLB2, (d) PLB3.

named (b) PLB1, (c) PLB2, and (d) PLB3. The XC4000
CLB, PLB1, and PLB3 contain two LUTs (F and G) at the
input stage and one logic unit (a MUX or an LUT) at the
output stage, while PLB2 has one LUT at the input stage
and one LUT at the output stage. Obviously, these PLBs
have different functional capabilities. The XC4000 CLB
can be used to implement any function of up to five inputs,
or any two independent functions of four inputs, or some
function of up to nine inputs (which we call wide
functions). PLB1 is the XC5200 CLB when LUTs F and G
are 4-LUTs, and can implement any function of up to 5
inputs and some wide functions of 9 inputs. To save silicon
area, LUT F or LUT G or both could be 3-LUTs. However,
the functional capability is also reduced. For example, the
implementation of every 5-input function is no longer
guaranteed. PLB2 and PLB3 are simplified from the
XC4000 CLB. A smaller silicon area is consumed by PLB2
or PLB3 comparing to the XC4000 CLB, but their
functional capabilities are also reduced. In this paper, we
shall develop Boolean matching methods for these PLBs
and evaluate their functional capabilities.

Using PLBs for direct wide function implementation
could be more cost-effective than using PLBs to cover K-



input functions obtained from the decomposition of wide
functions. However, the problem of matching wide
functions to (LUT based) PLBs has not been understood
well before. As a result, most existing technology mapping
algorithms (see [4] for a comprehensive survey) focus on
K-LUT covering for area or delay minimization, or LUT to
PLB packing for area minimization. Recently, Sasao and
Butler [12] studied the bi-decomposition
f (X) = h (g 1(X 1),g 2(X 2)) of logic functions. They gave
necessary and sufficient conditions for non-disjoint bi-
decompositions and considered the case when h is an AND,
OR, or EXOR function, but they did not relate their results
to Boolean matching for LUT based PLBs. Cong and
Hwang [5] characterized two classes of wide functions for
the XC4000 CLB based on the partially-dependent
decomposition of logic functions and applied their results to
LUT based FPGA technology mapping. Good results were
reported (13% decrease on circuit depth). But their results
did not provide a complete characterization of all wide
functions that can be implemented with the XC4000 CLB.
In this paper, we completely characterize wide functions for
the XC4000 CLB, PLB1, PLB2, and PLB3, and evaluate
their functional capabilities. Our evaluation, however,
should be considered as only one aspect of a full PLB
architecture evaluation, which should include other factors
such as the LUT packing capability of PLBs and the routing
area needed in PLBs, etc.

The remainder of this paper is organized as follows.
Section 2 formulates the Boolean matching for PLB
problem. Section 3 presents the functional decomposition
approaches for matching wide functions to PLBs.
Experimental results are reported in Section 4. Section 5
concludes the paper.

2. Problem Formulation

Given a PLB architecture A that can be used to
implement any function of up to KA variables, a function
f (X) is regarded as a wide function with respect to A if
| X | > KA. For most LUT based PLBs available today, the
number KA is not difficult to obtain. For example, KA = 5
for both the XC4000 and XC5200 CLBs while KA = 6 for
the ORCA PFUs. We study the problem of implementing
wide functions with the four PLBs (XC4000 CLB, PLB1,
PLB2, and PLB3) in this paper.

Boolean Matching for PLB Given a wide function
f (X) with respect to a PLB architecture A, determine if
f (X) can be implemented with A.

In general, the Boolean matching problem is difficult
when input negation and/or permutation, output inversion,
bridging of inputs, and assigning some inputs to 0/1 values

are all considered. However, for LUT-based PLBs, the
input negation, input permutation at each LUT, output
inversion, and assigning some inputs to 0/1 values need not
be considered. Only the assignment of inputs to different
LUTs in the PLB and the bridging of inputs (among LUTs
in the PLB) are relevant factors. In the following section,
we solve the Boolean matching for PLB problem by
decomposing functions with consideration of both factors.

3. Boolean Matching Techniques for PLBs

In this section, we first introduce terminologies and
review classical functional decomposition results given in
[1, 7], and then present complete characterizations of wide
functions that can be implemented with the XC4000 CLB,
PLB1 (incl. the XC5200 CLB), PLB2, and PLB3
architectures.

3.1. Functional Decomposition

Let X = { x 1,x 2, . . . , xn} be a set of Boolean variables
and f (X) = f (x 1,x 2, . . . ,xn) be a Boolean function. Given
B = { x 1,x 2, . . . , xb} ⊆ X, let f (B,X −B) also represent
f (X). The support of f (X) is denoted as sup (f ) = X. Let
fxhi

= f (X) | x =0 and fxi
= f (X) | x =1 represent the cofactors of

f (X) with respect to xi . Cofactors of f (X) with respect to
multiple variables are defined in a similar way. For
example, fx 1x

h
2

= f (X) | x 1=1,x 2=0. The cofactor set of f (X)
with respect to B, denoted csB(f ), is the set of all distinct
cofactors of f (X) with respect to the variables in B. It is
clear that csB(f ) represents the set of distinct columns in the
decomposition chart [1] or the set of compatible classes
[13].

Given a function f (X) and a bound set B, the disjoint
decomposition of f (X) under the bound set B is
f (X) = g (y 1(B), y 2(B), . . . ,yt(B), xb +1, . . . , xn), where
t < b. When t = 1, it is a simple disjoint decomposition. Let
Y = { y 1,y 2, . . . , yt} and Y (B) = { y 1(B), y 2(B),..., yt(B)}.
Functions y 1(B) to yt(B) are called the encoding functions
of the decomposition. The condition for the existence of a
disjoint decomposition of f (X) is given in the next theorem.

Theorem 1 [1, 7] f (X) has a disjoint decomposition
g (Y (B),X −B) under the bound set B if and only if
| csB(f ) | ≤ 2t where | Y (B) | = t.

To compute a disjoint decomposition of f (X) under a
bound set B, we employ the reduced ordered binary
decision diagram (OBDD) representation of functions [2]
and use efficient functional decomposition approaches in
[3, 9] based on cut computation in OBDDs.



3.2. Boolean Matching for XC4000 CLBs

We decompose wide functions to match the XC4000
CLB in three possible configurations A, B, and C, as shown
in Figure 2, The bridging of inputs to LUTs F and G is
represented by dotted lines in the configurations. In
Configuration A, the H1 line (Figure 1(a)) is not used (i.e.,
connecting to 0/1 values). LUT inputs are not bridged in
the configuration A.1 while they are bridged in the
configuration A.2. In Configuration B, the H1 line is used
but not bridged. The configuration B.1 is a special case of
the configuration B.2 under the condition that LUT F has
only one input and none of the inputs are bridged. In
Configuration C, the H1 line is used as well as bridged. The
H1 line is bridged with inputs to both LUTs F and G in the
configuration C.1 while it is bridged with one LUT G input
in the configuration C.2. It is easy to see that
Configurations A, B, and C exhaust all possible ways of
using the H1 line and the bridging of LUT inputs. As a
result, we can determine exactly the feasibility of XC4000
CLBs for wide functions by matching the functions to these
configurations.
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Figure 2 Three XC4000 CLB configurations for wide func-
tions. The H1 line is not used, used but not bridged, and
used as well as bridged in Configurations A, B, and C,
respectively.

3.2.1. XC4000 CLB in Configuration A

Let (X 1,X 2) be a partition of X. A disjoint bi-
decomposition of f (X) is to represent f (X) as
f (X) = g (y 1(X 1),y 2(X 2)). Let (X 1,X 2,X 3) be a partition of
X. A non-disjoint bi-decomposition of f (X) is to represent
f (X) as f (X) = g (y 1(X 1,X 3),y 2(X 2,X 3)). A function f (X)
can be implemented with a XC4000 CLB in Configuration
A if f (X) has a bi-decomposition such that | sup (y 1) | ≤ 4
and | sup (y 2) | ≤ 4. The inputs in X 3 are the bridged inputs
in the implementation. In general, X 3 may contain multiple
inputs. The following two theorems give necessary and
sufficient conditions for the existence of bi-decompositions
of functions.

Theorem 2 [1] f (X) has a disjoint bi-decomposition
g (y 1(X 1),y 2(X 2)) if and only if f (X) has simple disjoint
decompositions under the bound set of X 1 and the bound set
X 2.

Theorem 3 [12] Let Xi = X − { xi} and (X 1,X 2) be a
partition of Xi . f (X) has a non-disjoint bi-decomposition
g (y 1(X 1,xi),y 2(X 2,xi)) if and only if fxhi

and fx have disjoint
bi-decompositions fxhi

(Xi) = g 0(y 01(X 1),y 02(X 2)) and
fxi

(Xi) = g 1(y 11(X 1),y 12(X 2)), respectively, such that
g 0(y 1,y 2) = g 1(y 1,y 2).

To determine if a function f (X) can be implemented
with a XC4000 CLB in the configuration A.1, we try all
possible partitions of X into X 1 and X 2 such that | X 1 | ≤ 4
and | X 2 | ≤ 4, and test if f (X) satisfies Theorem 2. For the
configuration A.2, we partition Xi into X 1 and X 2 with
respect to each xi ∈ X exhaustively, and test if f (X) satisfies
Theorem 3. Both tests can be reduced to the simple disjoint
decompositions of logic functions, which can be performed
according to Theorem 1 using the OBDD representation of
f (X) efficiently.

Note that the disjoint bi-decomposition of each
cofactor fxhi

(Xi) and fxi
(Xi) is not unique in the non-disjoint

bi-decomposition of f (X). In order to determine if g 0 = g 1

for some bi-decompositions of fxhi
and fxi

, after we obtain
the bi-decomposition fxhi

= g 0(y 01(X 1),y 02(X 2)), we invert
y 01(X 1), or y 02(X 2), or both of them, and compute the g 0

functions with inverted inputs accordingly. In total, we
obtain four equivalent bi-decompositions of fxhi

. Then we
compare each resulting function g 0 with g 1 for a match.
Since | sup (g) | = 2, we can easily exhaust all four possible
bi-decompositions of fxhi

. As a result, our approach is exact.

3.2.2. XC4000 CLB in Configuration B

A 6-input function f (X) can be implemented with a
XC4000 CLB in the configuration B.1 if f (X) has a simple



disjoint decomposition f (X) = g (y 1(X 1), xi , xj) where
xi , xj ∈/ X 1. Clearly, the bound set X 1 contains four inputs.
To decompose f (X), we enumerate 4-input subsets of X as
the bound set and compute a simple disjoint decomposition
of f (X).

Before we proceed to the configuration B.2, we
introduce the partially-dependent decomposition. In
general, each encoding function yi in a decomposition
f (X) = g (Y (B),X −B) satisfies sup (yi) = B. An encoding
function is partially-dependent on B if sup (yi) ⊂ B. The
functional decomposition that produces partially-dependent
encoding functions is called a partially-dependent
decomposition. An extreme case is the non-disjoint
decomposition where some encoding function yi has
| sup (yi) | = 1. A few approaches [10, 8, 5] have been
proposed in the past to compute partially-dependent
decompositions. In particular, a necessary and sufficient
condition for the existence of partially-dependent encoding
functions was given in [5]. To obtain a maximum number
of partially-dependent encoding functions in a
decomposition, the set of all partially-dependent encoding
functions is computed first, and assignable encoding
functions are chosen from the set to construct such a
decomposition [10]. Note that partially-dependent
encoding functions may or may not share their inputs. Such
a procedure has been implemented based on the existence
condition in [5].

We now match functions to the configuration B.2.
Let Xi = X − { xi}. Recall that csXi

(f ) represents the set of
distinct cofactors of f (X) with respect to variables in Xi .
We consider two cases (i) | csXi

(f ) | = 3, 4, or (ii)
| csXi

(f ) | = 2. (It is impossible that | csXi
(f ) | > 4.) In case

(i), the decomposition of f (X) under the bound set Xi

requires exact two encoding functions (according to
Theorem 1). As a result, f (X) can be implemented with a
XC4000 CLB in the configuration B.2 if
f (X) = g (y 1(X 1), y 2(X 2), xi) such that | X 1 | , | X 2 | ≤ 4.
Since in general sup (yi) = Xi and | Xi | = | X | − 1 > 4, the
decomposition is a partially-dependent decomposition. We
can test the existence of such decompositions using the
procedure developed in [5]. By selecting xi enumeratively
from X, we can conclude the existence of matching to
configuration B.2 under case (ii).

In case (ii), however, the decomposition of f (X)
under the bound set Xi will be f (X) = g (y 1(Xi), xi) where
| Xi | > 4, which can not be matched directly to any
considered configurations. However, we can use one more
encoding function to obtain the condition that both
encoding functions are partially-dependent. This is an
important step in characterizing wide functions for XC4000

CLBs exactly. In particular, let X 1,X 2 ⊂ Xi and
X 1 ∪ X 2 = Xi . A function f (X) = g (y 1(Xi),xi) can be
represented as f (X) = g′(z 1(X 1),z 2(X 2),xi) if the following
condition holds.

Theorem 4 Let Xi = X − { xi}, X 1,X 2⊂Xi and assume
f (X) = g (y 1(Xi),xi) under the bound set Xi . Then f (X) can
be represented as f (X) = g′(z 1(X 1),z 2(X 2),xi) if and only if
y 1(Xi) has a bi-decomposition y 1(Xi) = h (z 1(X 1),z 2(X 2)).

Proof See Appendix.

Based on Theorem 4, f (X) = g (y 1(Xi),xi) can be
implemented with a XC4000 CLB in the configuration B.2
if y 1(Xi) has a bi-decomposition h (z 1(X 1),z 2(X 2)) such that
| X 1 | , | X 2 | ≤ 4 (Configuration A). Note that in both cases
(i) and (ii), X 1 ∩ X 2 ≠ ∅ is possible. As a result, we have
considered the bridging of inputs to LUTs F and G.

3.2.3. XC4000 CLB in Configuration C

Let Xi = X − { xi}, X 1,X 2 ⊂ Xi , and X 1 ∪ X 2 = Xi .
(X 1 ∩ X 2 ≠ ∅ is possible). A function f (X) can be
implemented with a XC4000 CLB in the configuration C.1
if f (X) = g (y 1(X 1,xi),y 2(X 2,xi),xi) where | X 1 | , | X 2 | ≤ 3.
The following theorem can be used to test the existence of
matching to the configuration C.1.

Theorem 5 Let Xi = X − { xi}, X 1,X 2 ⊂ Xi , and
X 1 ∪ X 2 = Xi . f (X) has a decomposition
f (X) = g (y 1(X 1,xi),y 2(X 2,xi),xi) if and only if fxhi

and fxi

have bi-decompositions fxhi
(Xi) = g 0(y 01(X 1),y 02(X 2)) and

fxi
(Xi) = g 1(y 11(X 1),y 12(X 2)), respectively.

Proof See Appendix.

A function f (X) can be implemented with a XC4000
CLB in the configuration C.2 if f (X) can be represented as
f (X) = g (y 1(X 1,xi),y 2(X 2),xi) such that | X 1 | < 3 and
| X 2 | ≤ 4. The following theorem can be used to test the
existence of matching to the configuration C.1.

Theorem 6 Let Xi = X − { xi}, X 1,X 2 ⊂ Xi , and
X 1 ∪ X 2 = Xi . f (X) has a decomposition
f (X) = g (y 1(X 1,xi),y 2(X 2),xi) if and only if fxhi

and fxi
have

bi-decompositions fxhi
(Xi) = g 0(y 01(X 1),y 02(X 2)) and

fxi
(Xi) = g 1(y 11(X 1),y 12(X 2)), respectively, such that

y 02(X 2) = y 12(X 2).

Proof See Appendix.

To implement f (X) with a XC4000 CLB in
Configuration C, we select xi ∈ X and a subset X 1 ⊂ Xi

where | X 1 | ≤ 3 enumeratively, and compute bi-
decompositions of cofactors fxhi

and fxi
to satisfy Theorem 5

and Theorem 6 using the basic decomposition procedures.



Note that the bi-decomposition is not unique with respect to
each pair of X 1 and X 2. For the configuration C.2, after we
obtain a bi-decomposition g 0(y 01(X 1),y 02(X 2)) of fxhi

, we
compute the second one by inverting the encoding function
y 02(X 2). Then we compare if y 02 = y 12 according to
Theorem 6.

3.3. Boolean Matching for PLB1

For all functions implemented with the PLB1
architecture, the select input xi can always stand by itself.
This is because for any function
f (X) = x

h
ig 1(X 1,xi) + xig 2(X 2), we always have

f (X) = x
h

ih(X 1) + xig 2(X 2) where h (X 1) = g 1(X 1,0). Let KF

and KG represent the input sizes of LUTs F and G in PLB1,
respectively. The next theorem gives a necessary and
sufficient condition for implementing f (X) with a PLB1.

Theorem 7 A function f (X) can be implemented
with a PLB1 if and only if either | sup (fxhi

) | ≤ KF and
| sup (fxi

) | ≤ KG or | sup (fxhi
) | ≤ KG and | sup (fxi

) | ≤ KF

holds for some xi ∈ X.

Proof See Appendix.

3.4. Boolean Matching for PLB2

Obviously, PLB2 can not implement functions of
more than six inputs, nor guarantee an implementation of
every 5-input function. When there is no bridging of inputs,
a function f (X) can be implemented with a PLB2 if f (X)
can be represented as (i) f (X) = g (y 1(X 1), xi) or (ii)
f (X) = g (y 1(X 1), xi , xj), both are simple disjoint
decompositions with the bound set | X 1 | . For 5-input
functions, | X 1 | = 4 for case (i) and 3 for case (ii), and
| X 1 | = 4 for 6-input functions. When the bridging of inputs
is considered, f (X) must be represented as
f (X) = g (y 1(X 1), xi , xj) where xi ∈ X 1. This is in fact a
non-disjoint decomposition of f (X) with an encoding
function y 2(X 1) = xi . We don’t consider the case where
both xi ,xsubj ∈ X 1 since it makes a 4-input function that
can be implemented with LUT G alone. By enumerating
the 3-input and 4-input subsets of X, we can match
functions to PLB2 exactly with the methods introduced in
the previous subsections.

3.5. Boolean Matching for PLB3

It should be clear that the same methods used for
matching functions to XC4000 CLBs in Configuration C
can be used for PLB3, except that LUTs F and G may have
different input sizes.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Circuits 5-cuts 6-cuts 7-cutsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
5xp1 285 422 734
9sym 651 1256 2333
9symml 653 1156 2195
C499 3694 9716 27599
C880 1815 3969 9079
alu2 2696 6666 18231
alu4 5889 14841 40332
apex6 1960 2691 4370
apex7 444 743 1342
count 133 94 87
des 28875 65245 157028
duke2 2115 4606 10106
misex1 155 266 400
rd84 1181 2351 5307
rot 2283 4857 10362
vg2 201 410 850
z4ml 44 36 36iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
total 53074 119325 290391iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 1 Numbers of 5-cuts, 6-cuts, and 7-cuts in MCNC
benchmarks.

4. Experimental Results

We implemented our Boolean matching methods in C
language and incorporated it into the RASP logic synthesis
system for FPGAs [6]. We evaluated PLB functional
capability by counting the number of 5-cuts, 6-cuts, and 7-
cuts that PLB can implement in MCNC benchmarks. Our
approach is as follows. All benchmark circuits are
decomposed into 2-input networks. Let v be a node in the
decomposed network N and input (v) represents the set of
fanins of v. Given a subgraph H of a network, let input (H)
denote the set of distinct nodes outside H which supply
inputs to nodes in H. A cone Cv rooted at v is a subnetwork
consisting of v and its predecessors such that if node u ∈ Cv ,
every path from u to v resides entirely in Cv . A cone Cv is a
K-input cone if | input (Cv) | = K. Every K-input cone can
be covered by a K-LUT. Let Nv represent the largest cone
rooted at v. A cut in Nv is a partition (Xv ,X

hh
v) of Nv such

that X
hh

v is a cone rooted at v and Xv is Nv − X
hh

v . This cut is a
K-cut if X

hh
v is a K-input cone. Let u 1,u 2 ∈ input (v). A cut

in Nu1
and a cut in Nu2

can be combined to form a cut in Nv .
As a result, starting from primary inputs toward primary
outputs in a topological order, we can enumerate all K-cuts
for each node in N [11]. Table 1 shows the number of 5-
cuts, 6-cuts, and 7-cuts in each MCNC benchmarks. To
evaluate the functional capability of a PLB, we enumerated
the cuts, computed their functions, matched the functions to
the PLB, and computed the percentage of functions that can
be matched to the PLB.

In the first experiment, we matched 6-cuts and 7-cuts
to the XC4000 CLB configurations A.1, A.2, C.1, and C.2,



respectively. Boolean matching for these configurations are
all based on the bi-decomposition of functions. Note that
for 6-cuts and 7-cuts, if FA. 1, FA. 2, and FC. 1 represent the
set of cuts that can be implemented in configurations A.1,
A.2, and C.1, respectively, we have FA. 1 ⊂ FA. 2 ⊂ FC. 1. In
Table 2 and 3, we see the percentages increase from
columns A.1 to A.2 to C.1. More than 90% of 6-cuts and
more than 60% of 7-cuts can be implemented with XC4000
CLBs in the configuration C.1 on an average.

In Table 4, we matched 6-cuts and 7-cuts to XC4000
CLBs in configurations B.1 and B.2, respectively. Note that
every 6-cut that can be implemented in the configuration
B.1 can be implemented in the configuration B.2. More
than 80% of 6-cuts can be implemented with XC4000 CLBs
in the configuration B.1, and almost all of them can be
implemented in the configuration B.2. For 7-cuts, 88% of

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
6-cutsiiiiiiiiiiiiiiiiiiiiiiiiii

Circuits A.1 A.2 C.1 C.2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
5xp1 25% 85% 86% 25%
9sym 51% 93% 93% 51%
9symml 55% 92% 92% 54%
C880 44% 87% 88% 45%
apex6 56% 95% 95% 50%
apex7 40% 92% 93% 40%
count 30% 59% 71% 29%
misex1 77% 89% 89% 77%
rd84 61% 91% 90% 57%
vg2 55% 97% 97% 40%
z4ml 14% 36% 36% 14%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
average 51% 90% 91% 49%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 2 Functional capability of the XC4000 CLB in
configurations A.1, A.2, and C.1, and C.2 for 6-cuts in
MCNC benchmarks.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
7-cutsiiiiiiiiiiiiiiiiiiiiiiiiii

Circuits A.1 A.2 C.1 C.2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
5xp1 13% 50% 51% 13%
9sym 39% 69% 70% 38%
9symml 40% 72% 72% 40%
C880 26% 57% 58% 27%
apex6 37% 65% 66% 34%
apex7 19% 55% 56% 19%
count 14% 26% 39% 13%
misex1 69% 87% 87% 69%
rd84 45% 65% 65% 43%
vg2 33% 63% 65% 26%
z4ml 0% 0% 0% 0%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
average 34% 62% 63% 33%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 3 Functional capability of the XC4000 CLB in
configurations A.1, A.2, and C.1, and C.2 for 7-cuts in
MCNC benchmarks.

them can be implemented with XC4000 CLBs in the
configuration B.2.

In Table 5, we matched 5-cuts and 6-cuts to PLB1
with a variety of input sizes KF and KG. We consider the
cases when (KF,KG) is (3,4), (4,4), or (4,5), respectively.
Note that the PLB1 architecture is able to implement any
5-cut in the second (Xilinx XC5200 CLB) and third
(KF,KG) combinations. It is interesting to see that by
reducing the KF from 4 to 3, the PLB1 architecture only
loses marginally in its functional capability (100% to 98%
for 5-cuts and 8% to 5% for 6-cuts). However, the SRAM
area in LUTs are reduced by 25%. On the other hand, if we
make the LUT G a 5-LUT, the PLB1 functional capability
for 6-cuts increases substantially (from 8% to 98%), and is
approaching the capability of the ORCA PFU for
implementing 6-cuts.

In Table 6, we test the functional capability of the
PLB2 architecture, which is simplified from the XC4000
CLB. Although PLB2 consumes the smallest SRAM area
in LUTs among the four PLBs evaluated in this paper, the
implementation of 5-cuts is not guaranteed. However, the
results in Table 6 show that 96% of the 5-cuts can still be
implemented with PLB2 by applying simple disjoint
decomposition (SD) and 2% more can be implemented if
non-disjoint decomposition (ND) is applied. PLB2 is
capable of 85% of 6-cuts (SD).

In Table 7, we test the functional capability of the
PLB3 architecture, which is also simplified from the
XC4000 CLB. We consider two LUT input combinations
(KF,KG) = (3,4) and (4,4). PLB3 in the second case is
similar to the XC4000 CLB except that the H LUT has two
inputs. The implementation of 5-cuts is not guaranteed by

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
6-cuts 7-cutsiiiiiiiiiiiiiiiiiiiiii

Circuits B.1 B.2 B.2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
5xp1 64% 96% 72%
9sym 78% 98% 90%
9symml 79% 98% 89%
C880 81% 99% 87%
apex6 87% 100% 93%
apex7 79% 97% 87%
count 84% 100% 71%
misex1 79% 95% 90%
rd84 81% 95% 87%
vg2 84% 99% 87%
z4ml 67% 97% 31%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
average 81% 98% 88%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 4 Functional capability of the XC4000 CLB in
configurations B.1 and B.2 for 6-cuts and 7-cuts in MCNC
benchmarks.



iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
(3,4) (4,4) (4,5)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Circuits 5-cuts 6-cuts 6-cuts 6-cutsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
5xp1 98% 38% 44% 99%
9sym 100% 13% 19% 100%
9symml 100% 10% 15% 100%
C499 92% 4% 4% 95%
C880 98% 4% 5% 99%
alu2 100% 7% 9% 99%
alu4 98% 6% 8% 98%
apex6 100% 8% 9% 100%
apex7 99% 8% 10% 99%
count 100% 16% 16% 100%
des 99% 4% 8% 99%
duke2 100% 2% 4% 100%
misex1 100% 12% 21% 100%
rd84 98% 4% 9% 100%
rot 99% 5% 7% 98%
vg2 100% 6% 8% 100%
z4ml 91% 0% 0% 97%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
average 98% 5% 8% 98%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 5 Functional capability of the PLB1 architecture for
5-cuts and 6-cuts in MCNC benchmarks when (KF,KG) =
(3,4), (4,4), and (4,5).

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
5-cuts 6-cutsiiiiiiiiiiiiiiiiiiiiii

Circuits SD ND SDiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
5xp1 87% 13% 64%
9sym 96% 3% 78%
9symml 93% 6% 79%
C499 97% 0% 88%
C880 98% 1% 81%
alu2 96% 3% 83%
alu4 96% 2% 81%
apex6 97% 3% 87%
apex7 94% 5% 79%
count 100% 0% 84%
des 95% 2% 87%
duke2 97% 0% 91%
misex1 96% 4% 79%
rd84 95% 1% 81%
rot 95% 3% 84%
vg2 98% 3% 84%
z4ml 100% 0% 67%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
average 96% 2% 85%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 6 Functional capability of the PLB2 architecture for
5-cuts and 6-cuts in MCNC benchmarks through simple dis-
joint decomposition (SD) and non-disjoint decomposition
(ND) of functions.

PLB3. From Table 7, we see most of the 5-cuts and 1/3 of
the 6-cuts can be implemented with PLB3 when KF = 3. For
the case of KF = KG = 4, very high percentage of the 5-cuts
and 6-cuts can be implemented.

The experimental results are summarized in Table 8.
We evaluate the functional capability for each PLB through

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
(3,4) (4,4)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Circuits 5-cuts 6-cuts 5-cuts 6-cutsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
5xp1 85% 14% 97% 85%
9sym 94% 31% 100% 93%
9symml 92% 33% 99% 92%
C499 89% 38% 97% 85%
C880 89% 24% 97% 87%
alu2 91% 29% 98% 88%
alu4 84% 28% 96% -
apex6 95% 35% 100% 95%
apex7 94% 19% 99% 92%
count 68% 14% 100% 59%
duke2 97% 53% 98% 96%
misex1 90% 52% 100% 89%
rd84 88% 32% 96% 91%
rot 92% 26% 96% 89%
vg2 99% 33% 100% 97%
z4ml 39% 0% 86% 36%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
average 89% 32% 97% 89%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 7 Functional capability of the PLB3 architecture for
5-cuts and 6-cuts in MCNC benchmarks when (KF,KG) =
(3,4) and (4,4).

dividing the number of cuts implemented by the number of
SRAM bits in the PLB. Among all four PLB architectures
with a variety of input sizes for LUTs F and G, we see
PLB2 obtains the largest number of 5-cuts and 6-cuts
implemented for each LUT SRAM bit, and the second place
belongs to PLB1 with (KF,KG) = (3,4) (a large number of
5-cuts per bit) and PLB3 with (KF,KG) = (4,4) (a large
number of 6-cuts per bit). However, the XC4000 CLB
provides good functional capability for 7-cuts.

5. Conclusions

In this paper, we present Boolean matching
techniques for implementing wide functions with four
complex programmable logic blocks: the XC4000 CLB and
three other architectures PLB1, PLB2, and PLB3. Our

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Config. #cuts per SRAM bitiiiiiiiiiiiiiiiiiiiii

PLBs (KF,KG) #bits 5-cut 6-cut 7-cutiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
XC4K B.2 40 1327 2923 6389iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

(3,4) 24 2167 249 -
PLB1 (4,4) 32 1659 298 -

(4,5) 48 1106 2436 -iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
PLB2 24 2167 4226 -iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
PLB3 (3,4) 28 1687 1364 -

(4,4) 36 1430 2950 -iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

Table 8 Functional capability per each SRAM bit of the
four PLB architectures for 5-cuts, 6-cuts, and 7-cuts in
MCNC benchmarks.



techniques are based on functional decomposition and are
able to completely characterize wide functions for the four
types of PLBs. We evaluate PLBs in term of their
capability for wide functions. Experimental results show
that the XC4000 CLB can implement 98% of 6-cuts and
88% of 7-cuts on an average, while PLB2 provides the
largest number of 5-cuts and 6-cuts implemented per each
LUT SRAM bit among the four PLB architectures. Our
techniques and results are useful for developing future logic
units as well as new technology mapping algorithms in
LUT based FPGAs.
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Appendix: Proofs

[Theorem 4] (if) Because y 1(Xi) has a bi-
decomposition y 1(Xi) = h (z 1(X 1),z 2(X 2)), we have
f (X) = g (y 1(Xi),xi) = g (h (z 1(X 1),z 2(X 2)),xi)
= g′(z 1(X 1),z 2(X 2),xi). (only if) Assume f (X) can be
represented as f (X) = g′(z 1(X 1),z 2(X 2),xi) as well as
f (X) = g (y 1(Xi),xi). Consider fxi

= g (y 1(Xi),1). Because
g (y 1,1) = y 1 or − y 1, we have fxi

= y 1(Xi) or fxi
= − y 1(Xi).

Since fxi
= g′xi

(z 1(X 1), z 2(X 2), 1) = h (z 1(X 1), z 2(X 2)), we
have y 1(Xi) = h (z 1(X 1), z 2(X 2)) or
y 1(Xi) = − h (z 1(X 1), z 2(X 2)). In either case, y 1(Xi) belongs
to Category A. `

[Theorem 5] (only if) Because f (X) has a
decomposition f (X) = g (y 1(X 1,xi), y 2(X 2,xi),xi), we have
fxhi

(Xi) = g 0(y 01(X 1),y 02(X 2)) where g 0 = gx
h

i
,

y 01(X 1) = y 1(X 1,0), and y 02(X 2) = y 2(X 2,0). Similarly, we
have fxi

(Xi) = g 1(y 11(X 1),y 12(X 2)) where g 1 = gxi
,

y 11(X 1) = y 1(X 1,1), and y 12(X 2) = y 2(X 2,1). (if) Assume
fxhi

(Xi) = g 0(y 01(X 1),y 02(X 2)) and
fxi

(Xi) = g 1(y 11(X 1),y 12(X 2)). Define

y 1(X 1,xi) = x
h

iy 01(X 1) + xiy 02(X 2),
y 2(X 2,xi) = x

h
iy 11(X 1) + xiy 12(X 2), and g = x

h
ig 0 + xig 1.

Then f (X) = x
h

i fxhi
+ xi fxi

can be represented as
f (X) = g (y 1(X 1,xi), y 2(X 2,xi),xi). `

[Theorem 6] Since xi ∈/ X 2, the proof is similar to that
of Theorem 5 except that y 02(X 2) = y 12(X 2) = y 2(X 2). `

[Theorem 7] Let the select line carry the input xi or x
h

i

and apply the Shannon expansion of f (X) with respect to
xi . Then it is clear the theorem holds. `
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