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Abstract

Integral equation based approaches are popular for
extracting the capacitance of integrated circuit struc-
tures. Typically, first-order collocation or Galerkin
methods are used. The resulting dense system of
equations is efficiently solved by combining matrix
sparsification with an iterative solver. While the
speed-up over direct factorization is substantial, the
first-order methods still lead to large systems even
for simple problems. In this paper we introduce a
high-order Nyström scheme. For the same level of
discretization, the high-order schemes can be an or-
der of magnitude more accurate than the first-order
approaches at the same computational cost. As a con-
sequence, we obtain the same level of accuracy with
a much smaller matrix.

1 Introduction

With decreasing feature sizes and increasing frequen-
cies, accurate and efficient capacitance extraction has
become critical for design. In recent years, capac-
itance extractors based on integral equations [3, 7]
have become popular. Integral formulations have
many advantages over finite-difference or finite ele-
ment schemes, including good conditioning, reduction
in dimensionality and ease in dealing with layered di-
electrics [15]. While discretizing an integral equa-
tion leads to a linear system involving a dense ma-
trix, modern matrix compression schemes combined
with iterative solvers have made working with this

dense matrix efficient. Previous extractors have dis-
cretized the integral equation using a first-order col-
location [3, 7] or Galerkin [2] method. In these meth-
ods, the charge density is assumed to be piecewise
constant. With this crude approximation, getting ac-
curate answers mandates large discretizations even
for simple problems.

In this paper we introduce an alternative discretiza-
tion technique, the Nyström [5] method, which re-
duces the integral equation to a finite system by
replacing the integral with a high-order quadra-
ture. The primary advantage of this approach is
that extrememly fast convergence can be achieved
at a very small cost of constructing quadratures.
Nyström approaches have been sucessfully used for
one-dimensional and two-dimensional problems in the
numerical analysis community [1, 4, 13]. However,
there have not been any methods developed to han-
dle three-dimensional extraction problems. In our
approach, the matrix arising from the Nyström dis-
cretization is represented using IES3 [3], a scheme for
matrix compression based on the singular value de-
composition (SVD). The compressed representation
is then used to compute matrix-vector products dur-
ing an iterative solve. For matrices of the same size,
the high-order Nyström approach is essentially the
same speed as the earlier methods based on first-order
collocation. However, since the high-order Nyström
scheme is rapidly convergent, the accuracy obtained
is dramatically higher than before. As a consequence,
in order to obtain the same accuracy, the high-order
approach requires much smaller matrices.

2 Formulation of the Problem

The capacitance extraction problem can be reduced
to solving the first-kind integral equation

φ(r) =
∫

R

G(r, r′)σ(r′) dR, (1)



where φ is the potential, σ is the surface charge den-
sity, R ranges over the surfaces of conductors, and
G is the Green’s function. In free-space, the Green’s
function G(r, r′) is simply 1/(4πε0|r−r′|). For layered
media, the Green’s function can be precomputed and
tabulated. To solve the integral equation numerically,
we must first discretize the region R and reduce (1)
to a matrix equation. The typical approach is to use
first-order collocation or Galerkin methods [2, 3, 6].

2.1 First-order methods

In a Galerkin approach, the integral equation (1) is
reduced to a matrix problem by projection onto the
space spanned by an orthonormal set of basis func-
tions {f1, f2, . . . , fn}. The approximate solution

σ̃(r) =
n∑

i=1

cifi(r) (2)

is obtained by solving the system of equations

n∑
j=1

aijcj = φi, i = 1, . . . , n (3)

where
φi =

∫
R

φ(r)fi(r) dr (4)

and

aij =
∫

R

∫
R′
G(r, r′)fi(r)fj(r′) dr dr′. (5)

The quality of the approximation σ̃ ≈ σ is dependent
on the size of the differences

|G(r, r′) −
n∑

i=1

n∑
j=1

aijfi(r)fj(r′)|. (6)

In most implementations, the functions fi are taken
to be piecewise constant (a first-order method). Since
a true Galerkin scheme requires accurate evaluation
of the double integrals of the singular kernels of equa-
tion (5), first-order collocation schemes are more pop-
ular. In collocation schemes [3, 6], the domain R is
subdivided into regions {T1, T2, . . . , Tn}, a collocation
point rj is chosen in each region, and σ is assumed
to be piecewise constant over each region. Then (1)
reduces to the following set of equations:

φ(ri) =
n∑

j=1

(∫
Tj

G(ri, r′) dr′
)
σ(rj). (7)

In both first-order collocation and Galerkin methods,
the asymptotic error is at least 1/n (in a Galerkin

method the constant associated with the error is
smaller). The situation is even worse when the
boundary has edges or corners with strong solution
singularities. Hence, accurate solutions require ex-
tremely fine discretizations. A more efficient alterna-
tive is to use a high-order method.

2.2 High-order Nyström methods

The Nyström method represents the functions σ and
φ in the integral equation

φ(r) =
∫

R

G(r, r′)σ(r′) dr′ (8)

by their values at selected points {r1, r2, . . . , rn} on R
and replaces the integral by a quadrature. A quadra-
ture is simply a formula of the form

Q(f) =
p∑

j=1

wjf(rj) (9)

with the property that∫
R

f(r) dr = Q(f) + E(f). (10)

The term E(f) is called the quadrature or truncation
error. The points rj are called quadrature nodes and
the wj are called weights. The goal is to approximate
the definite integral of a function f by evaluating f
at a finite number of sample points [12].

By enforcing (8) at each rj and replacing the inte-
gral by a quadrature, we obtain the linear system

n∑
j=1

wijG(ri, rj)σ(rj) = φ(ri), i = 1, . . . , n. (11)

The wij are quadrature weights that depend on the
Green’s function G. If we take Aij = wijG(ri, rj),
then multiplying the vector of charge densities by the
matrix A gives the vector of potentials.

The error in a Nyström scheme is proportional to
the quadrature error

|
n∑

j=1

wijG(ri, rj)σ(rj) −
∫

R

G(ri, r′)σ(r′) dr′|, (12)

where σ is the true solution [5]. The entire task in
applying a Nyström scheme is the development of
quadrature weights wij that are accurate for a set of
basis functions broad enough to closely approximate
the solution. In the following section, we introduce
new quadrature methods for three-dimensional ex-
traction problems. We also refer the reader to the lit-
erature for quadrature techniques for smooth and sin-
gular functions in one and two dimensions [1, 4, 8, 13].



3 Quadrature Construction

Structures for capacitance extraction problems are
typically described in terms of a mesh of triangles
(or, more generally, polygonal regions) Tk in R3. R is
just the union of all triangles. In the following discus-
sion, we shall assume for notational simplicity that all
the triangles Tk in the mesh lie in the x-y plane. (In
practice, we make local transformations to barycen-
tric coordinates.) For triangle Tk, we choose a set
{ψk

1 , . . . , ψ
k
p} of basis functions which have values

{1, x, y, x2, xy, y2, . . .} (13)

in Tk and which are zero elsewhere. Then given a
point r, we must construct a quadrature rule for com-
puting ∫

Tk

G(r, r′)ψk
i (r′) dr′ (14)

for i = 1, . . . , p. The task is nontrivial because the
Green’s function G(r, r′) in (14) has an integrable
singularity at the point r = r′. Good convergence
and accuracy depend on the correct treatment of this
singularity.

The integrals over Tk fall into two classes, as shown
in Figure 1. If r is far from Tk (|r − r′| > c), we
can use standard Gaussian quadrature [14]. To ap-
ply Gaussian quadrature, the points rk

1 , . . . , rk
p inside

of Tk where φ and σ are tabulated must be Gaussian
nodes. Then the far-field quadrature weights are sim-
ply standard Gaussian weights wk

1 , . . . , wk
p [14].

Tk

c

Hollow points need specialized quadrature
Filled points use Gaussian quadrature

Figure 1: Integration regimes for the triangle Tk

Unfortunately, Gaussian quadrature only works
well in regions where the Green’s function G(r, r′)
is smooth. When the singular point r is close to Tk

(|r− r′| ≤ c), the singularity is strong and needs spe-
cial treatment. In this regime, a special quadrature is
constructed for evaluating the integral (14). We set
up a system of equations which must be satisfied by
the unknown weights vk

1 , v
k
2 , . . . , v

k
p . Let

aij = G(r, rk
j )ψi(rk

j ) (15)

for i, j = 1, . . . , p. Then the requirement that that
weights correctly integrate each basis function is
equivalent to the weights satisfying the system

p∑
j=1

aijv
k
j =

∫
Tk

G(r, r′)ψk
i (r′) dr′. (16)

We solve for the weights vk
j by LU factoring the p×p

matrix aij . The weights will exactly integrate any
linear combination of the basis functions convolved
with G(r, r′). Note that the weights vk

j depend both
on the particular triangle Tk and on the singular point
r. This is in contrast to the Gaussian weights, which
depend on the triangle but not on the point. For-
tunately, the near-field for any given triangle encom-
passes only a small number of other triangles. Hence,
the number of weights which must be explicitly com-
puted is small. In free space problems, we use analytic
formulas to evaluate the singular and near-singular
integrals needed on the right-hand side of (16) [9].
For layered media Green’s functions, we analytically
remove the singularity and use adaptive Gaussian
quadrature to evaluate the remaining smooth part.

The integral over all of R to the point r is given by
the sums over individual triangles:

∑
near Tk

p∑
i=1

vk
i G(r, rk

i ) +
∑

far Tk

p∑
i=1

wk
i G(r, rk

i ). (17)

The combination of all such quadrature rules as r
ranges over the nodes rk

i defines the matrix A in equa-
tion (11).

The distance at which the Gaussian weights cease
to be adequate depends on the order of the quadra-
ture, the accuracy required and the Green’s function.
Distance is measured from the triangle’s centroid and
scaled so that the distance to the farthest vertex of
the triangle is one unit. To obtain 0.1% accuracy, us-
ing the free-space Green’s function and a third-order
rule, the Gaussian weights are sufficient for points at
a distance of only 2. For typical discretizations, al-
most all the points are farther away than this. Hence
the number of specialized quadratures is very small.

Note that the choice of basis functions
{1, x, y, x2, xy, y2, . . .} we use is arbitrary. We
know that if the solution is smooth then this choice



is a good one. For singular solutions, as found in
problem domains with edges and corners, this choice
is not optimal. Instead, it is probably better to
use more sophisticated basis functions (at edges
and corners) which incorporate the behaviour of the
solution singularity [1]. We have not yet incorporated
such specialized basis functions.

4 Rapid Matrix Solution

Solution of the linear system Aσ = φ via direct fac-
torization would be prohibitive. However, the ma-
trix turns out to be extremely well-conditioned, and
hence Krylov-subspace iterative schemes such as GM-
RES [10] can be used. Iterative solvers require appli-
cation of the matrix A to a sequence of recursively
generated vectors. The dominant costs become the
O(n2) time and space required for constructing and
storing the matrix and the O(n2) time required for
each matrix-vector product. While this is already
an improvement over direct factorization, the stor-
age and computational cost is still excessive. Each
of these costs can be reduced to O(n log n) for typ-
ical problems using the fast integral equation solver
IES3 [3].

The key idea behind IES3 is to exploit the fact
that typical Green’s functions vary smoothly with
distance. Consequently, large parts of the matrix
A are numerically low-rank. These low-rank regions
are represented as sparse outer products using the
singular value decomposition (SVD). The SVD is an
extremely effective tool for the compression of rank
deficient matrices. Based on this observation, Ka-
pur and Long [3] describe a scheme for recursively
partitioning, sampling and compressing the matrix.
Figure 2 is a “rank map” of a matrix for a typical
problem. The rank map shows the partitioning of the
matrix into submatrices and the rank of each subma-
trix. Although there are some strong off-diagonal in-
teractions, the rank map is typical in problems where
the time and memory requirements drop from O(n2)
to O(n log n).

5 Examples

In this section we compare high-order Nyström meth-
ods to first-order collocation schemes. All matrices
were solved using IES3 and the experiments were run
on a Sun Ultra Enterprise (248 MHz UltraSPARC-II
CPU).
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Figure 2: Rank map of a typical compressed matrix

5.1 Convergence analysis

The first example we consider is a 3x3 bus crossing.
The bus lines were of a size typically found in a CMOS
process. In the first example, all the triangles were
approximately the same size, i.e., no special treate-
ment was used at corners and edges where charge
distribution is expected to vary rapidly. The simula-
tor was run at various levels of discretization for four
schemes: a first-order collocation method (one point
per triangle), a second-order Nyström scheme (three
points per triangle), a third-order scheme (six points
per triangle) and a mixed-order scheme. The mixed-
order scheme used six points for corner and edge tri-
angles and three points for interior triangles. Com-
parisons between the methods are shown in Figures
3 and 4. The x-axis in both graphs gives the number
of points (or matrix size). In Figure 3, the y-axis gives
the percent error. The error is computed by running
the third order Nyström method at a discretization
of 68,000 points and computing ||C − C̃||/||C|| where
C is the capcitance matrix of the accurate solution
and C̃ is the low-discretization capacitance matrix.

The following observations can be made from Fig-
ure 3. At the same number of points, a high-order
Nyström method is more accurate than the low-
order methods and the slopes indicate that the high-
order schemes exhibit faster convergence. For the
same number of points, the mixed-order method gives
greater accuracy than the third-order method.

In Figure 4, the time for each of the methods is
presented. At low levels of discretization, the low-
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Figure 3: Comparison of convergence rates for a reg-
ular mesh

order schemes are slightly faster than the high-order
schemes. This is because the number of singular and
near-singular weights is relatively large. Since the
number of special weights is approximately a con-
stant times the number of triangles, at higher levels
of discretization, the time for spent computing these
weights becomes small compared to the total time.
This is clear from Figure 4 where, for high discretiza-
tions, all the schemes take roughly the same amount
of time.
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Figure 4: Comparison of timings

If the mesh is refined to have more triangles in re-
gions where there is rapid variation in charge (typi-
cally near corners and edges) the matrix size can be
further reduced. Even in this case, it turns out that
the high-order Nyström methods maintain their ad-
vantage over the low-order schemes. In Figure 5 we

show the convergence of solution with problem size.
At around 20,000 points, the error using the regular
mesh is twice that of the refined mesh.
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Figure 5: Comparison of convergence rates for an
edge and corner-refined mesh

5.2 Simulating a memory cell

In this subsection, we consider the capacitance ex-
traction of a memory cell array. Figure 6 is a coarse
discretization of the 14 conductor array. Two IES3-
based simulations were run. The first simulation
used first-order collocation while the second used the
mixed-order Nyström scheme. Comparisons between
the methods are shown in Figures 7 and 8. The er-
ror is computed by running the mixed-order Nyström
method at a discretization of 112,000 points. At this
discretization the total time required to compute the
capacitance matrix was 4649 seconds. It took 1812
seconds to compress the matrix and 541 seconds to
generate the mixed-order corrections. Approximately
164 seconds were required for each of the 14 solves
(with around 25 iterations per solve). The advan-
tage of using the Nyström method is clear from Fig-
ures 7 and 8.

5.3 Simulating an interdigitated capacitor

For structures with many fine features, getting accu-
rate results requires extremely large discretizations.
In this subsection, we consider is an interdigitated ca-
pacitor fabricated in CMOS. Figure 9 is a mesh of the
capacitor. Two sets of IES3-based simulations were
run. The first set used first-order collocation while
the second used the third-order Nyström scheme.

Since we could not run the first-order scheme to
convergence on the full capacitor, we studied a ver-



Figure 6: Mesh for a memory cell array
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Figure 7: Convergence for the memory cell
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Figure 8: Timing for the memory cell

Figure 9: Interdigitated capacitor

sion with only a few fingers. Convergence of the
mutual capacitance under both schemes is shown in
Figure 12. The Nyström scheme shows a slight in-
crease in capacitance with increasing discretization,
presumably due to the fact that edge and corner so-
lution singularities are not reflected in the quadra-
ture. However, the Nyström approach at the lowest
discretization gives much better accuracy than the
collocation scheme at the highest discretization. Fur-
ther, the efficiency of the two schemes is similar: at
10,000 points, the Nyström version takes 150 seconds
while the collocation scheme requires 160. Thus, the
superior convergence available with the high-order
scheme comes at very little cost. The scaling of
time and memory requirements with problem size is
shown in Figures 10 and 11. For both collocation and
the Nyström method, the resource requirements grow
slightly faster than linearly.

For the full capacitor, the Nyström-based extrac-
tor using 38,142 points took just over an hour of CPU
time (using layered Green’s functions [15]) and pre-
dicted a capacitance of 252 fF. The average measured



value for this capacitor (over a population of eight)
was 241 fF, with a standard deviation of 10 fF. At
about 100,000 points the first order scheme had not
come close to converging.

The timing for this example is significantly higher
than similar sized examples in the previous subsec-
tion. In order to restrict the size of the mesh, elon-
gated triangles were used in the fingers of the ca-
pacitor. Hence a relatively large number of special
quadratures was required.
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Figure 10: Time requirements for the interdigitated
capacitor

6 Conclusions

In this paper we described a high-order Nyström
method for efficient capacitance extraction in three
dimensions. The method is based on combining
Gaussian quadratures for far-field interactions with
special purpose quadratures for the near-field inter-
actions. These quadratures give an accurate discrete
approximation to the integral operator. The result-
ing dense matrix is efficiently solved by combining
the matrix sparsification of IES3 with an iterative
method. For the same level of discretization, the
high-order schemes were an order of magnitude more
accurate than the first-order approaches at the same
computational cost. Hence, in order to get the same
level of accuracy as a first-order method the high-
order Nyström method requires a much smaller ma-
trix. The Nyström method was found to maintain its
advantage even for refined meshes. The high-order
methods were run on a number of examples and were
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Figure 11: Memory requirements for the interdigi-
tated capacitor
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found to be far superior to the first-order methods in
all cases.
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