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Abstract

This paper describes a methodology for synthesizing
the data-path of a Very Long Instruction Word (VLIW)
based Video Signal Processor (VSP). Offering both
performance and programmability, VSPs are important
for their roles in digital video applications, which are
omnipresent in today’s world. Among many different
architectures, VLIW is becoming increasingly popular
and widely used due to its efficiency in exploiting high
degree of parallelism inherent in multimedia applications.
While architectural syntheses of embedded systems have
been studied in depth, little literature has addressed
similar issues for VLIW-based VSPs. Using an MPEG-2
video encoder as a case study, in this paper we present a
combined application of trace-driven simulation and
performance estimation in the data-path synthesis of a
VLIW VSP. Results show that our estimations are quite
precise and helpful, let alone that they are orders of
magnitude faster than simulation.

1. Introduction

Just as a wide range of applications and time-to-market
pressures have driven audio-rate processing towards
programmable DSPs, the need for greater functionality
and short product cycles will push the video industry to
programmable VSPs. In addition to offering great
flexibility and video-rate performance at lower cost than
multimedia-enhanced microprocessors (e.g. MAX2 for
Hewlett Packard’s PA-RISC [5]), programmable VSPs
can also motivate the development of new types of
multimedia applications by providing an efficient means
to design, implement and test algorithms.

Because of the nature of video-rate signals, multimedia
applications generate a considerable demand for real-time
and computational-intensive processing. E.g., an MPEG-2
encoder requires from a few hundred million to several
billion RISC-equivalent operations per frame [6]. On the

other hand, VLIW architecture, while keeping hardware
simple, combines a high degree of parallelism with the
efficiency of statically scheduled instructions. The brevity
makes the architecture easy to implement and attractive.
The 90’s have seen a great popularity of VLIW
architecture in a number of commercial products such as
Philips’s TriMedia [11] and Chromatic Research’s
Mpact2 [7].

In this paper, we focus on the data-path synthesis of
Princeton VSP, which is a VLIW-based microprocessor
consisting of several clusters. We use trace-driven
analysis to evaluate the performance of application on
many different architectures with varying parameters such
as register file size, number and type of functional units,
et al. Since the trace length of a real application is in the
order of 109 instructions or even more, trace-driven
studies are very time-consuming, hence we cannot afford
evaluating all the possible solutions in the design space.
Instead, we use some statistical information collected at
full-length simulation to estimate the performance without
looking at the whole trace every time for each different
data-path.

For a number of reasons, we use MPEG-2 encoder as a
case study of data-path synthesis for our VSP. First, this is
a comprehensive example which represents a category of
typical video applications. Second, this application is
fairly complicated and challenging for next-generation
VSP — no programmable VSPs today can implement it
yet. Third, the application is becoming very popular from
home video to satellite broadcasting. Finally it is readily
available.

The rest of this paper is organized as follows. We go
over some related work in section 2, and then introduce
the architecture of Princeton VSP in section 3. Section 4
discusses our methodology in detail. Section 5 shows the
results. Finally conclusions are drawn in section 6 with
future work.

2. Previous work



Micro-architectural synthesis is an overwhelmingly
complicated task. An important case study of a VLIW
processor based video system was done by Camposano et
al. [1]. Using hardware/software co-design techniques,
they synthesized a DCT-based video compression system.
However, they did not model the VLIW processor
precisely. Instead, they only analyzed the ratio of different
instructions in a given application; dependencies among
these instructions were neglected. Therefore their tool can
only generate a lower bound on the resource numbers and
an upper bound on the achievable performance.

Fisher and his colleagues at HP Labs practiced a more
detailed exploration of VLIW VSPs [4]. They retargeted a
VLIW compiler onto different architectures, generated
object code from benchmark programs, ran the code
trough a simulator to get the execution time, and
compared the cycle counts along with area and clock
speed obtained from estimation. Although this method
can yield precise results, simulating the whole application
would take such a long time that only experiments with
small pieces of code are practical. Not surprisingly, as
Fisher et al. have observed, the target architecture is very
sensitive to the programs being executed — an
architecture best tailored for one program may perform
very poorly (up to six times worse) for another one. As a
result, the overall performance of the entire application on
the target architecture is still hard to predict, even though
the performance of some kernel algorithms is known.
Therefore evaluating the complete application is
necessary.

In our previous work, using trace-driven architectural
exploration, we analyzed the entire trace of several real
video applications, including H.263, MPEG-2 and
MPEG-4 CODECs, and studied their performance on
different parallel architectures [10]. The results show us
which architectural tradeoffs enhance the overall
performance in the application domain and how we
should balance processor resources among registers,
functional units and memory units. By comparing the
results, we can choose in the multi-dimensional design
space the next point to evaluate and then analyze that
architecture. This would save us tremendous time as
compared to exhaustive search. However, the procedure
requires a lot of involvement of human being — the
designer has to enter the number and type of each
hardware resource, and then decide the next set of
architectural parameters based upon previous simulation
results. Hence it would very helpful if some tools can
automatically narrow the set of candidate architectures.

3. Architectural model

Figure 3.1 depicts the architecture of Princeton VSP.
This is a VLIW-based microprocessor in which several
clusters are integrated together on a single die to deliver

high performance required for video signal processing.
Inside each cluster, there are several functional units
(ALUs, shifters and/or multipliers), a few memory units
(for memory load and store operations), a local register
file, and some local memory. Inter-cluster communication
is provided by a global crossbar which is able to transfer
any register from one cluster to another within a single
cycle.

Figure 3.1: Architecture of Princeton VSP

Given a 32-port crossbar, there are a number of
configurations. E.g. there could be 8 clusters each having
four issue slots, or 16 clusters each having two issue slots,
and so on. Depending on the applications being executed,
the clusters could be homogenous or heterogeneous.
Wolfe et al.’s study of five key VSP kernel algorithms
shows that architectures with 16 clusters outperform 8
clusters [8].

In each cycle, our VLIW processor can issue 32
regular instructions (executed by the functional units and
memory units) and one branch instruction (executed by
the branch unit, which is not shown in Figure 3.1),
achieving a high degree of parallelism.

Focusing on the data-path of the VSP, we are
interested in finding out the optimal numbers of registers,
functional units and memory units for a specific
application, namely MPEG-2 encoder. Although knowing
these numbers is still far away from the final chip, at least
we can determine the basic architecture of the VSP and
fix the programming model.

4. Methodology

To synthesize an architecture, we must perform several
tasks. The first and most basic problem is to estimate the
cost of the architecture; given that we are using library
components such as SRAMs and data-paths, we can
easily obtain accurate area estimates. We also need to
evaluate the performance of the architecture. This step is
much more challenging given the large sizes of the traces
on which performance estimates are based; much of our
work has gone into performance estimation.
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In our problem, we limit the size of the design space
by only allowing certain resource configurations. This not
only makes the chip easy to implement (it is difficult to
layout an architecture with arbitrary configuration), but
also simplifies compiler design. Starting from the
assumption of using 16 clusters, we outline our search
space with following parameters:

• Total number of register: 256, 512, 1024, 2048
• Total number of memory units: 8, 16, 24, 32
• Total number of ALUs: 16, 24, 32
• Total number of shifters: 8, 16, 24, 32
• Total number of multipliers: 8, 16, 24, 32

Notice that the numbers listed above should be divided
by 16 in order to get the configuration for each cluster.
When the resource number is not a multiple of 16, the
architecture becomes heterogeneous. E.g. if we are to use
8 shifters, then half of the 16 clusters will not have any,
while the other half will have one each.

4.1 Performance and cost

We use total execution time of the application and chip
area (not including instruction cache) as the metrics for
performance and cost respectively. The total execution
time is further defined as the product of cycle count and
clock rate. We obtain the cycle count through trace-driven
analysis, which will be explained in the next subsection.

Number of portsNumber of
registers 3 6 9 12

16 0.8957 0.9498 0.9572 0.9620
64 0.9596 0.9648 0.9709 0.9763
256 0.9745 1.0006 1.3903 1.4845

Table 4.1.1: Delay (ns) for 16-bit register files

Number of portsNumber of
registers 3 6 9 12

16 0.1098 0.2201 0.3975 0.5851
64 0.3782 0.7362 1.2615 1.8405
256 1.3913 2.6566 4.3892 6.3818

Table 4.1.2: Area (mm2) for 16-bit register files

The other two factors, area and clock rate, are based on
Dutta et al.’s work [3]. Using a 0.25µm CMOS
technology, Dutta has designed parameterizable versions
of key modules. Furthermore, he simulated all the
components with AT&T’s ADVICE circuit simulator and
collected all the timing information. As an example, Table
4.1.1 and 4.1.2 show, respectively, the delay (cycle time)
and area of a 16-bit multi-port local register file. Other
details of Dutta’s work can be found in his thesis [2].

4.2 Trace-driven analysis

Since the instruction set of our VLIW VSP has not yet
been fully defined, it is very difficult to evaluate the
performance of an architecture. To deal with this problem,
we follow the same idea Fisher et al. practiced, i.e. to try
to match the application being analyzed with the structure
and size of the candidate architecture, rather than specific
opcodes [4]. However, unlike Fisher et al., we do not have
a sophisticated retargetable VLIW compiler, and thus we
have to devise some other method.

Figure 4.2.1: Flow chart of trace-driven analysis

Instead of doing static instruction scheduling at
compilation time, which requires a highly optimized
compiler, we schedule instructions dynamically at
simulation time. Figure 4.2.1 illustrates the procedure of
our experiments on SGI workstations. In addition to the
dynamic trace, our scheduler also takes in the
disassembled program (for dependency analysis) and a
resource description file (which specifies the availability
of all the hardware resources and their parameters). Since
in our approach the application is instrumented and
actually run on a processor rather than being interpreted
by a program, the speed is orders of magnitude faster than
a software simulator. Other highlights of our scheduler
include moderate storage requirement, linearity in terms
of input trace length, and using an extremely large search
window (up to one billion instructions) to exploit
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parallelism in a wide range from basic-block level to
functional and loop level. Further information about the
scheduling algorithm can be found in out previous work
[9][10].

As for the precision of our methodology, of course
there are always certain tradeoffs between accuracy and
CPU time in performance analysis. Our experience from
hand-coding five kernel algorithms in an MPEG-2
encoder [8] shows that the scheduler produces comparable
results.

4.3 Performance estimation

Although our scheduling algorithm is quite efficient, it
still takes a long time (5-10 hours) to simulate a whole
application, just because the length of the dynamic trace is
too long. Therefore we hope that we could get the cycle
count without looking at the trace, but how?

Figure 4.3.1: Histogram of ALU on
(1024, 24, 16, 16, 16)

Figure 4.3.2: Histogram of shifter on
(1024, 16, 32, 16, 24)

As pointed out in our early studies of the VSP
architecture, by analyzing the statistical information
accumulated at simulation, we can identify the bottleneck
and figure out the most efficient way to use the resources
[10]. E.g. Figure 4.3.1 shows the distribution of ALU
instruction issue rate on a specific architecture. The
quintuple (1024, 24, 16, 16, 16) denotes the architecture
with 1024 registers, 24 memory units, 16 ALUs, 16
shifters, and 16 multipliers. Since over 50% of the total
execution time a large number of instructions can be

issued to ALUs, we would guess that increasing the
number of ALUs is very likely to shorten the execution
time. On the other hand, decreasing the number of ALUs
would probably degrade the performance a lot. Similarly
Figure 4.3.2 tells us that halving or doubling the number
of shifters is not likely to affect the total execution time
remarkably.

Obviously it is hard to crank out a precise cycle count
just from estimation, but it is possible to get an upper
bound and a lower bound by redistributing the bars in the
histogram. E.g. if the number of ALUs is reduced from 24
to 16, then the bars corresponding to 17-24 ALU
instructions (per cycle) have to be broken down (Figure
4.3.3). Remember that each cycle counted by the nth bar
indicates that n instructions can be issued simultaneously
in that cycle, hence a 20-instruction cycle will be
remapped to one 16-instruction cycle followed by one 4-
instruction cycle, and so on. Notice that in the above case,
some other (later issued) ALU instructions may be
scheduled into the same cycle as the 4-instruction cycle,
provided that all the dependencies have been cleared.
Therefore the new cycle count from re-mapping is
pessimistic.

Figure 4.3.3: Increase and decrease resource

On the other hand, when we increase the number of
units of a resource, we can redistribute the histogram the
other way round. Nonetheless, we don’ t know which low-
issue-rate cycles can be chosen to form a high-issue-rate
cycle. Of course we can extract and save that information
at simulation, but that would require a gigantic data
structure with as many entries as the total cycle count.
Moreover, manipulating such a big data structure would
not be much faster than a complete simulation. Our
solution to this problem is very simple: we just subtract
from the total cycle count the number of cycles
corresponding to the rightmost bar in the histogram. E.g.
assuming that we are given 8 more ALUs to our already-
simulated 16-ALU architecture, then the new cycle count
would be cut down by the number of cycles
corresponding to the 16th bar. The reason can be explained
as follows (refer to Figure 4.3.3). Imagine the situation on
the old architecture when more than 16 instructions can be
issued on the enlarged architecture. Since the scheduling
algorithm is greedy, the old architecture must be able to
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issue 16 instructions in that cycle, after which the rest
instructions are issued in the following cycle. Not
counting the 16-instruction cycle means to issue all the
instructions in the following cycle. Apparently this simple
estimation yields an optimistic cycle reduction for two
reasons. First is that the following cycle may have more
than 8 instructions (because the scheduler can squeeze in
some other independent instructions), making it
impossible to issue more than 24 instructions (as we only
have 24 ALUs). The other reason is that a 16-instruction
cycle cannot always be merged with another cycle —
sometimes the parallelism is exactly 16.

So far we have only changed one resource parameter
and considered the impact on the resource itself.
However, when we alter the histogram of one resource,
the others’  could be changed as well due to correlation
between different instruction types. To make our bounds
tighter, we have to use another piece of information — the
dependency array. This is a 3-D array in which element
dep[ res1] [ res2] [n]  specifies the number of cycles when at
least one res1–instruction depends on n res2–instructions
and thus has to be issued later. By adding a few lines of
code to the dependency analyzer in our scheduler, this 3-
D array can be easily obtained as a byproduct of
simulation.

When the number of one resource is reduced, the
parallelism of other resources (which have dependency on
the reduced resource) is also diminished, which can be
reflected by the dependency array. E.g., when the number
of ALUs is reduced from 32 to 24, in the worst case
(∑24<i≤32 dep[multiplier] [ALU] [ i] ) extra cycles will be
introduced to multipliers. Similarly when the number of
ALUs is increased from 24 to 32, same amount of stall
cycles (indicated by the 0th bar in the histogram) can be
eliminated for multipliers in the best case.

As a summary, when we decrease the number of one
resource, the total cycle count is going to increase, and we
can get an upper bound. On the other hand, when we
increase the number of one resource, we will get a lower
bound on cycle count. However, since the cycle count
adjustment is done individually for each resource, we
might end up with four different upper/lower bounds for
memory unit, ALU, shifter and multiplier respectively. In
an extreme case, the real cycle count increase (or
decrease) could be the sum of the increase (or decrease)
of all the four resource types. Since such a bound is too
loose and the situation is too odd to happen, we use the
average of the four numbers as a semi-bound. The results
from simulation show that our semi-bounds are always
true bounds, no matter whether they are upper or lower
bounds.

All the discussions we have made previously are based
on a very important fact, i.e. the number of registers does
not change. We find that it is very difficult to come up
with some quantitative estimation about the impact of

register numbers. Therefore we have to do the same
experiments four times, each for a different register file
size.

4.4 Algorithm

The main flow of the algorithm is outlined in Figure
4.4.1 below. We use two sets, solutions and database, to
keep respectively all the promising solutions and results
either simulated or estimated.

Figure 4.4.1: Synthesis algorithm

Depending on whether there is an increase or decrease
of a resource, we can only get one bound at a time. So our
synthesis algorithm starts from the minimum architecture
(i.e. reg registers, 8 memory units, 16 ALUs, 8 shifters
and 8 multipliers) and the maximum architecture, and
then tries to approach the target data-path from both
directions. While least_smaller(arch) returns the closest
architecture (in solutions ∪ database) with less number of
resources, least_bigger(arch) returns the closest one with
more resources.

foreach reg ∈ { 256, 512, 1024, 2048}  {
   solutions = {  eval(reg, 8, 16, 8, 8) } ;        // min arch
   database = {  eval(reg, 32, 32, 32, 32) } ;  // max arch
   foreach arch ∈ (design space) {
      if (area(arch) < budget) {
         arch1 = least_smaller(arch);
         arch2 = least_bigger(arch);
         max_time = estimate(arch) based on arch2;
         min_time = estimate(arch) based on arch1;
         good = 1;
         foreach sol ∈ (solutions) {
            if ( area(sol) > area(arch) &&
                  time(sol) > max_time ) {     // arch is better
               solutions = solutions \ { sol} ;
               database = database ∪ { sol} ;
               break;
            }  else if ( arch(sol) < area(arch) &&
                    time(sol) < min_time ) {      // sol is better
               good = 0;
            }             // else hard to judge
         }
         if (good)
            solutions = solutions ∪ { arch} ;
         else
            database = database ∪ { arch} ;
      }
   }
}



5. Results

Table 5.1 shows the solution pool with an area budget
of 180 mm2 (only including data-path and crossbar). The
speedup is defined as the total execution time (cycle time
× cycle count) of the application divided by the total
execution time on the baseline architecture (256, 8, 16, 8,
8) (shown in the first line of Table 5.1). The simulated
speedups are obtained from trace-driven analysis, while
the estimated ones are calculated according to our
estimation method. Notice that due to floating-point
rounding, some numbers in the table appear the same but
they are actually different. From the results we can see
that our method does a good job.

Data-path architecture Cost Performance
# of
regs

# of
mem

# of
ALU

# of
shfts

# of
muls

Area
(mm2)

Simult’d
speedup

Estmt’d
speedup

256 8 16 8 8 149.6 1.00 1.00
256 16 16 8 8 151.2 1.03 1.08
512 8 16 8 8 152.6 1.37 1.37
512 16 16 8 8 154.2 1.48 1.50
512 16 24 8 8 157.4 1.54 1.52

1024 8 16 8 8 158.2 1.54 1.54
1024 16 16 8 8 159.8 1.82 1.92
1024 16 24 8 8 163.0 2.07 2.12
1024 16 32 8 8 166.2 2.12 2.19
1024 16 32 16 8 170.2 2.14 2.26
2048 16 24 8 8 175.0 2.30 2.35
2048 16 32 8 8 178.2 2.39 2.45

Table 5.1: Synthesis results

Being afraid that our synthesis algorithm may miss
some solutions due to inaccuracy, we randomly picked
out 100 architectures from the design space (which
contains 768 points in total) and simulated the MPEG-2
encoder trace for these architectures. Fortunately our test
passed — all the 100 solutions were discarded because
they implied bigger area yet lower speedup than at least
one of the winners in Table 5.1.

6. Conclusions and future work

In this paper, we use an MPEG-2 encoder as a case
study of the data-path synthesis for a VLIW-based VSP.
Our contributions include using a trace-driven scheduling
method to evaluate the architecture and a quantitative
estimation of the impact on cycle count when varying
resource numbers. We apply the synthesis algorithm in
our architectural exploration. Results show that our
estimations are precise enough to be used when
evaluating different architectures.

To simplify the problem, we limit the choice of some
design parameters so as to reduce the search space. In

general this may not be persuasive. Hence our future work
will combine some search techniques (e.g. simulated
annealing, genetic algorithm, et al.) to explore the space
more smartly and efficiently.
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