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Abstract

Due to the limited amount of memory resources in em-
bedded systems, minimizing the memory requirements is an
important goal of software synthesis. This paper presents a
set of techniques to reduce the code and data size for soft-
ware synthesis from graphical DSP programs based on the
synchronous dataflow (SDF) model. By sharing the kernel
code among multiple instances of a block, we can further
reduce the code size below the single appearance sched-
ule. And, a systematic approach is presented to give up
single appearance schedules to reduce the data buffer re-
quirements. Experimental results from two real examples
prove the significance of the proposed techniques.

1 Introduction

Minimizing the memory requirements is very important
to synthesize code for embedded systems due to the limited
amount of memory. Especially, in an on-chip design, ex-
tra memory requirements over the on-chip memory size in-
cur additional memory cost, performance penalty, and dras-
tic increase of power consumption. Critical constraints on
the memory size have made assembly programming still a
popular way of software synthesis for embedded systems in
spite of low productivity.

Growing complexity of embedded systems, fast design
turn-around time, limited development budget, and short
life cycle of products, however, will make the use of high
level software design methodology mandatory: high level
language compiler or automatic code generation from block
diagram specification.

In this paper, we aim to reduce the code and data size for
software synthesis from graphical DSP programs based on
the synchronous dataflow (SDF) model, one of block dia-
gram specification models. An SDF graph is a coarse grain
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dataflow where each node contains a kernel (code fragment)
of a host language tailored to an implementation engine
while the dataflow graph itself is a coordination language
among function modules. Numerous DSP design environ-
ments including a number of commercial tools support SDF
or closely related models ([1],[3],[4]) for both simulation
and code generation.

Software synthesis from an SDF graph includes deter-
mining a feasible schedule and a coding style, both of which
affect the memory requirements of the generated software
for code and data. One of main scheduling objectives for
software synthesis is to minimize the memory requirements.
Once the schedule is determined, codes are generated ac-
cording to the scheduled sequence. Since nodes are pre-
pared in libraries, the kernel inside a node is assumed al-
ready optimized and treated as a unit. Two popular coding
styles are inlining and functions. The former generates an
inline code for each node at the scheduled position while
the latter calls a function that contains the kernel.

Previous approaches first assume a coding style and de-
termine an optimal schedule afterwards. Also, they try to
minimize the code size first and the data size later. Even
though they produce good results for a set of applications,
they could not produce good codes for some applications
which we will demonstrate.

In this paper, we propose a pair of optimization tech-
niques to overcome their limitations by mixing the coding
style. The first technique is to reduce the code size by shar-
ing the kernel among multiple instances of the same block;
which requires function style code generation instead of in-
lining. The second technique is to give up single appear-
ance schedule, an important schedule class for the mini-
mum code size, for data memory minimization. By ap-
plying these two techniques, we could reduce the memory
requirements of two important examples by 10% and 23%
over the best results from SAS[7].

In section 2, we review the previous works. The pro-
posed techniques will be explained in section 3 and 4. Two
real life examples will be discussed in section 5. Section 6
will wrap up the paper with conclusions and future works.
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for(i=0;i<2;i++){D}
for(i=0;i<3;i++){C}
for(i=0;i<4;i++){B}

main(){

}

for(i=0;i<6;i++){A}

Figure 1. An SDF example

2 Previous Works and Our Strategy

Figure 1 is an example SDF graph, and each arc is anno-
tated with the number of tokens produced or consumed by
an invocation(activation) of its source or destination node.
Each arc is assigned to a data buffer whose size is equal to
the maximum number of tokens accumulated during exe-
cution of the graph. These data buffers compose the state
of the SDF graph. We call an SDF graphconsistent, when
there exists avalid cyclic schedulewhich returns the graph
to its original state after every repetition. A valid schedule
fires each node at least once, does not deadlock, and pro-
duces no net change in the number of tokens queued on each
arc. A schedule� is a sequence of node executions. For ex-
ample,�1=(6A)(4B)(3C)(2D) and�2=(2(3A2B))(3C)(2D)
represent two valid schedules for figure 1. Here, a paren-
thesized term (nS) specifies n successive firings of the sub-
schedule S and such a term is used to be translated into a
loop in the target code[5]. Among valid schedules for a con-
sistent SDF graph, if every block appears exactly once in�,
the schedule� is calledsingle appearance schedule(SAS
or SA-schedule). Since each node has a kernel(code block)
inside, if select the�1, the generated C program is shown
in figure1.

Since a single appearance schedule guarantees the min-
imum code size for inline code generation, a group of re-
searches are focused on finding a single appearance sched-
ule which minimize the data memory requirements. Bhat-
tacharyya et. al. developed two heuristics: APGAN and
RPMC, to find a schedule that minimizes the data memory
requirements[6]. Ritz et. al. used an ILP formulation to
minimize the data memory[10]. Their approach is different
from Bhattacharyya’s in that they allow data buffer sharing
based on flat single appearance schedule. Since a flat SA-
schedule usually requires more data buffer than the optimal
nested SA-schedule, the advantage of sharing data buffer is
not evident in general. Both works([6], [10]) stick to single
appearance schedule and do not exploit code sharing opti-
mization, which is of main interest in this paper.

Another group of researches try to minimize only data
memory. Ade et. al. present an algorithm to determine
the smallest possible data buffer size for arbitrary SDF
applications[8]. Though their work is mainly targeted for
mapping an SDF application onto Field Programmable Gate
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Figure 2. Optimizations in software synthesis

Array (FPGA) in their GRAPE environment, the efforts to
compute the lower bound on buffer requirement can be ap-
plicable to software synthesis. Govindarajan et. al.[9] de-
veloped a rate optimal compile time schedule, which min-
imizes the buffer requirement using linear programming
formulation. Both do not discuss the code size, which is
likely to be more important for memory requirement. Even
though the inline coding style is preferred in those previous
researches, we propose the use of functions for the nodes
whose kernel would be repeated several times in the inline
code. As a result, the proposed method generates a code
mixed with inline kernels and functions.

We start with a single appearance schedule obtained by
the method described in [6]. Then, we apply our optimiza-
tion techniques as shown in figure 2. In the code sharing
optimization, we investigate the schedule to find multiple
instances of a same block. Multiple instances are treated as
different nodes in a single appearance schedule. The code
sharing technique described in section 3 formulates the gain
and the overhead of function code over inline code using
the context size and code block size. Only when the gain is
greater than the overhead, we make a function for the shar-
ing block.

In the next phase of schedule adjustment, we give up
the SA-schedule to further reduce the data size if the gain
is greater than the overhead. We express the SA-schedule
with the BTLC(Binary Tree with Leaf Chain) data struc-
ture. From BTLC, we could identify the possible location
of schedule adjustment and obtain adjusted schedule.

3 Code Sharing Optimization

In an inline code from a single appearance schedule,
multiple instances of the same block are regarded as dif-
ferent blocks, and the same kernel, possibly with differ-
ent local states, may appear several times in the generated
code. We propose a technique to share the same kernel us-
ing a function in this section. Figure 3 contains an example,
which is a sample rate converter from compact disc to digi-
tal audio tape. Figure 3(b) depicts one of the library blocks:
fir filter. Since there are four instances of the fir filter, it
becomes a candidate of code sharing. Each fir filter has its
own state values such as tab values. Also, each input or
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for(int i=0; i < 2; i++) {

    }
}
.............

      /* kernel of fir 2 */

      out = tap * input[i];
      ..........

      ..........

   {

.............

out = tap * input[i];
.......

.......
output = out;

outputinput tap

decimation

typedef struct{
{
       double *input;
       int  output_ofs;
       int   output_bs;
       int   output_nx;

.......

       double decimation;
       double tap;
} context_FIR_type;

SAS = {7(7(3(R,S,R’,S’,M,X’,F1)2F2)8F3)40(F4,4X)

xgraph’

xgraph

sharing
code

(a)

(b) (c)

fir3 fir4fir2sine

sine’ 1
1 1

3 4 5

1

4 1772111 111

1 1
ramp’

ramp fir1

.............

        fir(1);
for(int i=0; i < 2; i++) 

.............

void fir(int context){
...............
context_FIR[context].output...
................
}

Figure 3. CD2DAT example: from inline single
appearance schedule to code shared function
code

output port of an instance is bound to its own buffer.
Separate state variables and buffers should be maintained

for each instance, in case the code is shared among four
instances. They define the“context” of each instance. An
example of the context of the fir filter is depicted in figure
3(c). Two generated codes are shown in the figure 3(a); one
is an inline style with single appearance schedule and the
other is after code sharing is applied to the fir block.

To decide whether a code block had better be shared, we
compute the overhead and the gain of sharing. If� is an
overhead,
 is a code block size, and� is the number of
instances of a block, the decision function is summarized as
the following inequality.

1 >
�

(�� 1)

(1)

The overhead incurred by code sharing comes from addi-
tional data structure :context. We compute the sharing
overhead� by dividing into two parts; a context size over-
head in the data block and the reference code overhead in
the code memory.

� = �context +�reference (2)

In an implementation point of view, a context includes
pointers to input and output token buffers and state vari-
ables. Since the state variables are also needed for each in-
stance in the inline code, the context size overhead includes
only per-port overhead. At most three integer variables and
a pointer variable are needed per port. For the multirate
computation, a port is implemented with a buffer array. To

point the next read or write location in the array, an off-
set is needed; the offset is an index of the array. Two more
integers are needed to delimit the end of the array and to de-
scribe the offset increment after each activation. Therefore,
the per-port overhead� and the total context size overhead
of a block are computed using the next two equations.

�(x) = 3 � sizeof(int) + sizeof(pointer) (3)

�context = ���pi
�(pi); pi 2 ports (4)

A reference overhead is an overhead resulting from ac-
cessing a port or state through the context structure. When
we access states or ports via the context structure, we need
additional codes. Below shows the difference of two ac-
cess methods in two simple assignment statements. The first
statement is when sharing is not used, the second is when
sharing is used.

... = value;

... = *(context_CGCRamp[context].value);

An assembly list is obtained through compiling with the
gcc compiler in a Sparc/Solaris machine. The first assign-
ment with direct memory access is compiled into the first
assembly line, while the second assignment results in 10
assembly lines.

; without context
ldd [%fp + -336],%o0

; through context
sethi %hi(0x20800), %o1
ld [ %o1 + 0x3c8 ], %o0
mov %o0, %o2
sll %o2, 2, %o1
add %o1, %o0, %o1
sll %o1, 3, %o0
add %fp, -424, %o1
add %o1, %o0, %o2
ld [ %o2 + 0x1c ], %o0
ldd [ %o0 ], %o2

In machine code, the sizes of the two parts are 4 bytes
and 40 bytes, respectively. Thus, we can define the per-
reference overhead as 36 bytes. Although the overhead may
be reduced after compiler optimization, we use the worst
value to be conservative.

The reference overhead is dependent on the variable type
as well as whether it is a port or a state. We consider three
variable types: scalar type such as integer or double, array,
and constant. Although a more detailed classification may
result in more accurate overhead estimation, we consider
six combinations only in this paper.

Among the six combinations, the scalar and the constant
types have the same overhead both for port and state. As
a result, we define the overhead cost� as a function of the
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Figure 4. Schedule adjustment using BTLC

reference type.

�(t) =

8>><
>>:

36 if t = scalar(S)
32 if t = constant(C)
60 if t = array,state (AS)
128 if t = array,port (AP)

(5)

By counting the reference counts in a code block according
to the reference type, we compute the reference overhead
�reference ,where�(t) is the reference count of type t in
the kernel.

�reference = �t2fS;C;AS;APg(�(t) � �(t)) (6)

The constants we use in equations are highly machine
dependent; the size of types and addressing mode of the pro-
cessor will be a great concern. Since we can obtain the con-
stant numbers easily from manuals or simple test program,
our technique is applicable to other than Sparc/Solaris envi-
ronment,

In summary, we can compute the code sharing overhead
of a block using the port count and the reference counts,
which can be easily obtained from the kernel of the node.
From equation (1),(2) and (4), it is obvious that if the con-
text overhead is greater than the kernel size like the ramp
block in figure 3(a), the node may not be shared.

4 Adjusting Single Appearance Schedule

4.1 Construction of BTLC

To compute a new schedule which requires less data
memory than SAS, we devise a data structure BTLC(Binary
Tree with Leaf Chain) to express a schedule and its buffer
requirements as depicted in figures 4 and 6. Each leaf node
of a BTLC corresponds to an SDF node which contains a
library block(kernel). A loop count
 1 is represented by an

1Since ’
’ successive firings of the subschedule ’S’ is translated into a
loop in the target code, we call ’S’ a loop cluster(shortly cluster) and ’
’ a
loop counter.

O RbObL

bxW IbRIbL

Obx

bxI

bL

(α)
bR

(β) (γ)
bx

Figure 5. Two clusters and its I/O

intermediate node of a tree. In the figures 4 and 6, the loop
counter
 is used as the label of each intermediate node. If
we visit each node of a BTLC with depth first search(DFS)
method, we obtain a single appearance schedule of the orig-
inal SDF graph, such as 2(7A3B)5C in the figure 4(b).

Every node of a BTLC maintains the buffer requirement
information as a tuple[I, W, O] : the set of input buffers,
the buffer requirement between child nodes, and the set of
output buffers. For compact representation, we use a tuple
[jIj; jWj; jOj] rather than[I, W, O] in the figure 4 and 6.
The I andO of a leaf node become the input and output
buffers of corresponding node in SDF, andW becomes null.
TheI andO of an intermediate node are the set of input and
output buffers of a cluster, andW is the buffer produced and
consumed within the cluster. From the tuples of leaf nodes,
other tuples are computed in a bottom up manner. For an
intermediate nodebx, which has two child nodes,bL andbR
as shown in figure 5, we compute the tuple[Ibx ;Wbx

; Obx
]

with the following equations.

Wbx
= jObL

\ IbR j (7)

Ibx = 
 � jIbL [ IbR �Wbx
j (8)

Obx
= 
 � jObL

[ObR
�Wbx

j (9)

Unless thejIj andjOj of the root node are zero, the corre-
sponding SDF graph is not consistent.

Chains along the leaf nodes represent the firing order in
the schedule. The weight of a chain is thejWj value of the
first common ancestor of two end nodes. The total sum of
chain weights represents the buffer requirement needed by
the schedule which the BTLC represents(jBTLCj). Fig-
ure 4(b) shows the BTLC of an SDF graph and its schedule
shown in 4(a), and itsjBTLCj is 51.

4.2 Schedule Adjustment using BTLC

In figure 4(a), the buffer requirement between node B
and C is 30 as shown in figure 4(b). If we give up SAS
and construct a schedule as 2(7A3B2C)C, the buffer re-
quirements is reduced to 18. In this section, we show how
to obtain the reduced buffer requirements systematically by
splitting a chain.

A given schedule is adjusted to reduce total memory re-
quirement. If we select a chain as an adjustment point, there
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are two sub-clustersCL andCR connected by the chain,
as shown in figure 5. Let� and� be the loop counts of
them and� be smaller than�. To reduce the buffer require-
ments betweenCL andCR, we merge theCR intoCL. The
merged portion ofCR has a new loop countb�� �c. To be
equivalent, remainingCR is required to be located outside
the mergedCL with a loop count�%�. Thus, the adjust-
ment procedure is cloning and merging.

�new =

�
�(CL(� � �)CR)(�%�)CR) if � < �

(�%�)CL�((� � �)CLCR) otherwise
(10)

To find a schedule adjustment point, we compute the
‘Gain’ and ‘Cost’ of an adjustment at each chain and select
a chain which has the largest difference between the ‘Gain’
and ‘Cost’. We perform schedule adjustment iteratively un-
til we can not find a chain where the ’Gain’ is larger than
the ’Cost’.

For each chain, the newjBTLCj after adjustment and
its ’Gain’ is computed as following, wherejClusterj is the
jW j value of the common ancestor node in the old BTLC.

Gain = jBTLCjold � jBTLCjnew (11)

=
b� � �c+ (�%�)

�
� jClusterj (12)

The ’Cost’ for adjustment is due to cloning a cluster,
which is computed by following algorithm.

for(N 2 ClonedCluster)f
if(N 2 IN) f

if(Cost2FN(N)� BlockSize(N))f
Cost += Cost2FN(N);
Move2FN(N);

g else Cost += BlockSize(N);
g else Cost += Cost4Call(N); /* N2 FN,FS */
Cost += LoopOverhead;

g

Since we generate the code in a hybrid style, which is
a mixture of inlines, functions, and shared functions, we
define three sets of blocks during adjustment procedure:
IN ,FN,andFS. If a node inCR is a member ofIN , we
compare the cost of moving that node toFN with its ker-
nel code size to decide whether we maintain the node in
IN or move the node toFN. The kernel size or the mov-
ing cost is added to the ’Cost’ based on the decision. The
moving cost fromIN to FN includes the function body over-
head, the function call overhead, and the variable migration
overhead. The function body overhead and the function call
overhead are small; they are 12 and 8 bytes in Sparc/Solaris
environment. The variable migration overhead is incurred
by changing the local variables into the global variables.
Since a function code can not see the local variables of other
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Figure 6. CD2DAT: BTLC data structure and
schedule adjustment

functions, the local variables to store tokens among inline
blocks should be replaced with global variables to store to-
kens among functions. The variable migration also increase
the size of code to access global variables compared to ac-
cessing local variables. If a node is already inFN or FS,
the additional cost is only one more function call. After the
‘Cost’ is computed for all the node in the cloned cluster,
since the loop structure is also cloned, adding the loop clus-
ter size finalize the cost computation. When the number
of leaf node isNL, the complexity to compute the ‘Cost’
is O(NL) and finding an adjustment point requiresO(N2

L
)

time complexity.
Figure 6(a) is the BTLC of the cd2dat example in figure

3. The chain(F3; F4) which has 280 units of data buffer
requirement is chosen. The adjusted BTLC is depicted in
figure 6(b) whose buffer requirement is reduced to 143 from
351; the gain is 208.

5 Experimental Results

We have implemented the proposed scheme in our devel-
oping PeaCE environment, which is a Ptolemy extension as
Codesign Environment. Two real life examples are chosen
to show effectiveness of our approach; they are 8 channel
filter bank and compact disk to digital audio tape converter,
which are borrowed from the Ptolemy distribution.

Table 1 shows the results of the stepwise optimization.
The cd2dat example shows significant code size reduction
from the code sharing optimization and data size reduction
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from schedule adjustment. The filter bank example con-
taining 28 fir filters is an ideal example for code sharing
optimization, which is confirmed by experiments. Since the
sample rate change is not drastic, the filter bank example
does not get any benefit from schedule adjustment.

Table 2 depicts the memory behavior of CD2DAT on
ARM7 processor. To get the number in table 2, we use
ARMulator[11] and dineroIII[12] to get a trace and the
cache performance for the trace, respectively. The total
fetch counts are increased, which results in longer execution
time. However, the increments are not larger compared to
memory buffer reduction; the increments are at most below
2.7%. Moreover, since the cache miss counts are reduced,
the penalty may be reduced further. We currently analyze
the memory access patterns to understand the experimental
behavior rigorously.

Table 1. Change of program sizes after each
optimization steps.

CD2DAT Filter bank

SAS 13672 28512
Code Sharing 12768 22024

Schedule
Adjustment

12296 22024

Table 2. Memory behavior of CD2DAT in ARM7

Fetches Miss

SAS 17098177 57189
Code Sharing 17573923 52867

Schedule
Adjustment

17499386 54331

6 Conclusions

In this paper, we have presented a pair of optimization
techniques to jointly minimize the code and data mem-
ory requirements. As a starting point, a single appearance
schedule is chosen because the schedule produces the mini-
mum code size. Before applying the proposed optimization
techniques, we carefully analyze the gains and overheads.
Selective application of the optimization techniques shows
significant improvements in memory requirement for both
code and data.

Beyond what we achieved in this work, there are more
chances of optimization to be studied in the future. As the
kernel size becomes larger, the chance of code sharing op-
timization increases. So, we will develop a scheme to clus-

ter fine grain nodes into a large grain before code sharing.
Also, data memory requirements and cache behavior will be
improved if buffer sharing is considered, which is another
future work.
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