
Hierarchical Floorplan Design on the Internet
Jiann-Horng Lin Jing-Yang Jou Hui-Ru Jiang

Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan

ABSTRACT
With the proliferation of transistor count in VLSI design,
more and more design groups try to figure out a way to ef-
ficiently combine their designs. The Internet features dis-
tributed computing and resource sharing. Consequently, a
hierarchical floorplan design can be adequately solved in
the Internet environment. In this paper, we address the
problem of area minimization floorplan design in the Inter-
net environment. We propose a novel algorithm, RMG al-
gorithm. Taking advantage of the Internet, RMG algorithm
reduces the computing time by shortening the critical path
in the floorplan tree. With creating floorplan design in the
Internet environment, it can be seen that the Internet ad-
vantages Electronic Design Automation (EDA).

1. INTRODUCTION
Floorplan design is a stage in VLSI design which determin-
es the locations of modules. Being applied before placement
and routing, floorplan design dominates the resulting area
and performance. The objectives of floorplan design vary
from (1) to minimize area, (2) to reduce wirelength, (3) to
maximize routability, (4) to minimize power consumption,
(5) to determine the shapes of flexible blocks, and (6) to
maximize yield. Since area minimization is a fundamental
problem of VLSI design, in this paper, we restrict ourselves
to the area minimization floorplan problem.

On the other hand, as the rapid increase of the transistor
count in chip design, more and more design teams attempt
to figure out an efficient way to combine their designs. Be-
sides, designers in the same group are widely separated. The
designers have to communicate each other by e-mail or by
telephone. If there exists an efficient way to manage the
designs with high fidelity, the designers can accelerate the
design cycle. The Internet is a good choice. The salient
feature of the Internet is distributed computing and resource
sharing. Hence, a hierarchical design is especially suitable
to be solved on the Internet.

Concerning these two issues together, in this paper, the
authors try to solve the area minimization floorplan problem
in the Internet environment.

We propose a novel algorithm in section 3, RMG algorithm,
which takes advantage of the Internet to accelerate the com-
puting of the floorplan for minimum area. RMG algorithm
shortens the critical paths of computing and collaboratively
completes the computing.

By solving this problem, it could be seen that the infra-
structure of the Internet is suitable for EDA problems.

This paper is organized as follows. The preliminaries about
floorplan are descirbed in Section 2. Section 3 formulates
the problem as well as introduces RMG algorithm. The im-
plementation and experimental results are shown in Section
4. Section 5 finally gives the conclusion of this paper.

2. PRELIMINARIES
2.1 Terminology
Before introducing the fundamental area minimization algo-
rithm for floorplan, there exist six definitions as follows.

A floorplan for n modules is an enveloping rectangle which
contains n non-overlapping rectilinear regions.

A slicing floorplan is a floorplan which is obtained by re-
cursively subdividing a rectangle into two parts with either
a horizontal or a vertical line.

A

B

C

D

V

A H

H D

B C

Figure 1: A slicing floorplan and the corresponding slicing
tree

A floorplan tree is a binary tree in which an internal node
represents a cut line and a leaf represents a module.

A slicing tree is a floorplan tree in which an internal node
represents either a vertical or a horizontal line and a leaf
represents a module. The corresponding floorplan of a slic-
ing tree is a slicing floorplan depicted in Figure 1.

A realization for a module is a 4-tuple (h1, h2, w1, w2) in
which h1, h2, w1, and w2 represent the lengths of the left,
right, top, and bottom edge respectively, as shown in Figure
2.

h1 h2

w1

w2

h1
h2

w1

w2

a rectangular module an L-shaped module

Figure 2: Realizations of two modules

An irredundant realization list of a module is a list of re-
alizations, provided without two distinct realizations (h1,
h2, w1, w2) and (h1', h2', w1', w2') such that

h1 ≥ h1', h2 ≥ h2',

w1 ≥ w1', w2 ≥ w2'.

Otten [1-2] pointed out a slicing floorplan is suitable for
top-down hierarchical designs. Stockmeyer [3] showed the
optimal algorithm for area minimization of a slicing tree.
Specifically, the time complexity of this algorithm is O(nd),
in which n is the number of modules and d is the depth of
the slicing tree. In this paper, we adopt the representation of
[4] which can represent rectangular and L-shaped modules.
By this representation, slicing floorplans and wheels can be
manipulated. Since this representation is in the form of a
binary tree, it also has the hierarchy property of a slicing
tree.

2.2 Node Types
From section 2.1, the internal nodes of a floorplan tree are
corresponding to cut lines, while the leaves are corre-
sponding to modules. The node type of a module can be
represented by the N series nodes; however, the node type
of a cut line can vary from V series, H series, M series, LV
series and LH series as shown in Figure 3.

V0

A B

V1

A
B

V2

A
B

V3

A
B

V4

A
B

V
V

A B

H0

A
H

H

A B

B

H1

A

B

H2

A

B

H3

A

B

H4

A

B

N
1 3

2 4

N1

N2

N3

N4
N0

LV
A

B

LV1

A

B

LV2

B

A

LV3

B

A

LV4

LH

LH1

A

B

LH2

A

B

LH4

A

B

LH3

A

B

A

M1

A

M2

A

M3

M
M

A B

A

M4

Figure 3: Node types

2.3 Hybrid Rectangular L-Shaped (HRL) Algorithm
After introducing the various node types, we present HRL
algorithm [4] in this section. HRL algorithm expresses how
to combine V, H, M, LV and LH series nodes. Each of them
represents different combination method of two subtrees.
HRL algorithm generates an optimal solution, the minimum
area of an enveloping rectangle occupied by all modules.
Here, we detail three typical combination algorithms.

V0 combination algorithm: Let n be a V0 node. According
to the definition of V0 node, the left-child n1 and right-
child n2 represent two N0 type nodes. The goal is to verti-
cally combine n1 and n2. Let Ln1 and Ln2 be the sorted irre-
dundant realization lists of n1 and n2. (h1n1(i), h2n1(i),
w1n1(i), w2n1(i)) expresses the ith element of Ln1, and
(h1n2(j), h2n2(j), w1n2(j), w2n2(j)) expresses the jth element of
Ln2. The V0 combination algorithm constructs a new irre-
dundant realization list Ln of n by sequentially combining
Ln1 and Ln2 from the beginning to the end. The relationship
between Ln, Ln1 and Ln2 is as follows.

h1n(k) = h2n(k) = Max(h1n1(i), h1n2(j)),

w1n(k) = w2n(k) = w1n1(i) + w1n2(j) ,

where (h1n(k), h2n(k), w1n(k), w2n(k)) is the kth element of
Ln.

Actually, the combination can be achieved with the time
complexity O(n1+n2). We don’t have to consider all n1�
n2 combinations because many of them are redundant.

V3 combination algorithm: Let n be a V3 node. By the
definition of V3 node, the left child n1 and the right child

n2 represent two N0 type nodes. The goal is to vertically
combine n1 and n2 and forms an L-shaped (N3 type) mod-
ule. Let Ln1 and Ln2 be the sorted irredundant realization
lists of n1 and n2. (h1n1(i), h2n1(i), w1n1(i), w2n1(i)) expresses
the ith element of Ln1, and (h1n2(j), h2n2(j), w1n2(j), w2n2(j))
expresses the jth element of Ln2. The V3 combination algo-
rithm constructs a new irredundant realization list Ln by se-
quentially combining Ln1 and Ln2 from the beginning to the
end as follows.

h1n(k) = h1n1(i),

h2n(k) = h1n2(j),

w1n(k) = w1n1(i),

w2n(k) = w1n1(i) + w1n2(j),

where (h1n(k), h2n(k), w1n(k), w2n(k)) is the kth element of
Ln.

A time complexity O(n1�n2) is necessary for this algo-
rithm. Note that the only exception is under the condition
when Max(h1n1(i), h2n1(i)) < Max(h1n2(j), h2n2(j)).

L A = {A1, A2, . . . , Am}
L B = {B1, B2, . . . , Bn}

A
1 B 1

A
1

A
1 B 3B 2

A
1 A 2 A 3

B 3

...

B 1 B 2

B 2A 2 A 2
B 3

A 2 B 1

...

...

.....

.....

n+1 n+2 n+3

A m

B n
2n

A
B

...

n1 2 3

mn

Figure 4: V3 combination algorithm

Figure 4 illustrates that the combination of modules A2 and
B1 is unnecessary because it cannot generate an L-shaped
module of N3 type as we expect.

Other V series and H series combination algorithms can be
implemented in similar ways.

2.4 Transfer Latency
As we apply the floorplan algorithms on the Internet, some
problems are introduced. The most obvious one might be
the network transfer latency.

latency: For any internal node of a floorplan tree, the laten-
cy L of a node denotes time consumed to compute the opti-
mal floorplan of the corresponding sub-tree rooted at this
node. That is, L = T + Max(Ll, Lr), where T is the time con-
sumed to perform combination, and Ll and Lr denote the
latencies of the left and right children.

critical node: For any floorplan tree, a critical node is a leaf
with maximum access time among all leaves.

H0

V0 D

A C

F''

ta

0

tc

ta+tc+tv0

ta+tc+tv0+tH0

multitasking

H0

V0 D

A C

F''

ta

0

tc

Max(ta,tc)+tv0

Max(ta,tc)+tv0+tH0

Figure 5: Timing improvement by multitasking

In order to speed up the computing of the minimum-area
floorplan on the Internet, we introduce the multitasking
technique widely used in the modern operation systems. In
a multitasking system, users can simultaneously execute
multiple programs. Taking advantage of multitasking, the
total latency can be declined. For the example depicted in
Figure 5, in the traditional algorithm without multitasking,

the total latency is ta+tc+tv0+tH0. By using multitasking tech-
nique, because each node can fork two new processes to
perform HRL algorithm simultaneously, the node V0 will
have the latency of Max(ta,tc)+tv0 , and the total execution
time of the floorplan is Max(ta,tc)+tv0+tH0.

3. PROBLEM AND RMG ALGORITHM
After introducing preliminaries, now we can formulate the
problem as follows. Given a slicing and/or wheel floorplan,
find the minimum area which covers the enveloping rectan-
gle of all modules such that the computing time is mini-
mum.

We introduce a novel algorithm, RMG algorithm, which
stands for "Rotation, Modification and Grouping algo-
rithm." In order to shorten the computing time, the objec-
tive is to raise the critical node in the floorplan tree to a
level as high as possible without changing the floorplan.
The three procedures of RMG algorithm are listed as fol-
lows.

z Rotation algorithm rotates the structure of given floor-
plan trees so that the critical node will be raised to a
higher level in the floorplan tree.

z Modification algorithm modifies the node type of floor-
plan tree after rotation so that the original structure of the
floorplan can be preserved.

z Grouping algorithm shrinks the whole subtree into a
virtual node so that the floorplan tree can be simplified
and easily analyzed with other nodes which have not
been handled.

3.1 Rotation Algorithm
Rotation algorithm raises the critical node in a floorplan
tree from a lower level to a higher one.

critical path: Let F be a floorplan tree. A critical path is a
path from the root to the critical node.

L-L type floorplan tree: An L-L type floorplan tree F is a
floorplan tree with the critical path
{rootÆLeft_childÆLeft_child}. The symbol "L" represents
"Left," which expressess the direction of the critical path.

R-R, L-R and R-L type floorplan tree are defined in similar
ways.

Figure 6 demonstrates the rotation algorithm. The rotation
algorithm is very similar in spirit to the rotation of an AVL
tree.

L-L roration

B

CA

21

C

B 2

A 1

R-R rorat ion

B

C A

2 1

C

B2

A1

L-R rorat ion

R-L rorat ion

C

B 2

A1

C

B2

A 1

C

AB

21

C

BA

2 1

Figure 6: Rotation algorithm

3.2 Modification Algorithm
However, the floorplan structure may be inexact after rota-
tion. Modification algorithm is to modify the node types of
the rotated floorplan tree.

After modification, the corresponding floorplan of the
modified floorplan tree occupies the same area with the
original one. Besides, the modified subtree has a similar
floorplan to the original subree. The floorplan of the modi-
fied subtree can be obtained by operating a mirror or a rota-
tion on the corresponding subtree in the original floorplan.

Therefore, we can recover the original floorplan according
to the discrepancy.

Lemma 1: After applied rotation and modification algo-
rithms to a subtree, the new floorplan of the subtree can be
obtained by rotating or mirroring the original floorplan.

Figure 7 shows the example of modification algorithm; the
new floorplan occupies the same area with the original one.

H 0

M 1 / M 3

1

2

M 1 / M 3

H 0

21

2

1

2

1

H 0 - M 1 / M 3 M 1 / M 3 - H 0

Figure 7: After rotation and modification, the resulting floor-
plan occupies the same area

3.3 Grouping Algorithm

type(b) type(c) type(d)type(a)
Figure 8: Four basic patterns of floorplan trees

Grouping algorithm is to group a subtree into a virtual node
so that RMG algorithm will treat it as a leaf. The reason to
virtually group a subtree is to simplify the floorplan tree so
that RMG algorithm can perform optimization recursively.
Another reason is that no improvement can be obtained by
rotating the nodes inside this subtree.

The four basic patterns are illustrated in Figure 8. For type
(a), no rotation has been performed so that there exists an
opportunity to rotate it in the future. Hence, no grouping in
this case.

For types (b) and (c), the critical node has been raised to a
higher level after rotation algorithm, there exists no oppor-
tunity to raise other leaves. In this case, we can group this
subtree into a virtual leaf.

Type (d) can be transformed to type (b) or (c) by grouping
the left or the right subtree, depending on which of the ac-
cess latency is larger. Applied rotation, modification and
grouping recursively, each type of floorplan can be grouped
into type (a) eventually.

3.4 An Overview of RMG Algorithm

group 4

group 5

Rotat ion

A B

A B
group 2

 (latency: A>B)

group 1
 (latency: A<B)

A B group 3
(latency: A=B)

type(d)

type(d)

type(b)

type(c)

type(a)

Figure 9: Overview of grouping algorithm

The RMG algorithm will recursively traverse from the root,
and then the left subtree and the right subtree to find sub-
trees matching the basic patterns represented in Figure 8. If

the patterns are found, RMG algorithm is performed to
minimize the total execution time of subtrees. Figure 9
gives the global view of RMG algorithm; Figure 10 presents
the pseudo code of RMG algorithm. As RMG algorithm
collaborates with HRL algorithm, we can create an area-
minimum floorplan within minimum execution time.

Algorithm: RMG algorithm
input: floorplan tree TI;
output: floorplan tree To with minimum total execution time;
begin

switch (type of Ti)
case ‘leaf node’,‘virtual node’,‘type(a)’: return;
case ‘type(b)’,‘type(c)’:

rotation(root); modify(root);
switch (type of root)
case ‘type(b)’:grouping(root->right); break;
case ‘type(c)’:grouping(root->left); break;
root->latency=Max(root->left->latency,

root->right->latency); return;
case ‘type(d’):

if (root->left->latency>root->right->latency) then
grouping(root->right);

else if (root->left->latency<root->right->latency)
grouping(root->left);

else
grouping(root->right),grouping(root->left);

root->latency=Max(root->left->latency,
root->right->latency); return;

default :
RMG(root->left),RMG(root->right);

end
Figure 10: RMG algorithm

4. EXPERIMENTAL RESULTS

(a) (b)

Figure 11: (a)EX1-EX5 (b)EX6

We implemented RMG and HRL algorithms in C language
on a Sun Sparc20 platform. RMG algorithm can solve the
traditional floorplan problem by specifying all modules lo-
cated in a local host. In other words, the program only per-
forms HRL algorithm if restricted in a local host.

The floorplan with 25 rectangular modules shown in Figure
11(a) are used in the experiments from EX1 to EX5. The
realization list of each module is shown as follows.
z EX1: {(4,4,1,1),(2,2,2,2),(1,1,4,4)}
z EX2: {(6,6,1,1),(3,3,2,2),(2,2,3,3),(1,1,6,6)}
z EX3: {(16,16,1,1),(8,8,2,2),(4,4,4,4),(2,2,8,8),(1,1,16,16)}
z EX4: {(12,12,1,1),(6,6,2,2),(4,4,3,3),(3,3,4,4),(2,2,6,6),(1,1,12,12)}
z EX5:{(24,24,1,1),(12,12,2,2),(8,8,3,3),(6,6,4,4),(4,4,6,6),(3,3,8,8),(2,2,1

2,12),(1,1,24,24)}
The execution time of HRL algorithm on each of the
benchmarks is not only very small but also comparable to
the traditional floorplan area minimization algorithms as
captured in Table I.

The floorplan with 8 rectangular modules is shown in
Figure 11(b). In experiment EX6, each module has eight

possible realizations, {(24, 24, 1, 1), (12, 12, 2, 2), (8, 8, 3, 3),
(6, 6, 4, 4), (4, 4, 6, 6), (3, 3, 8, 8), (2, 2, 12, 12), (1, 1, 4, 4)}.

Benchmarks
 Total number of

realizations
Execution time of

HRL(sec)
EX1 325 2.4
EX2 425 2.6
EX3 525 2.9
EX4 625 3.3
EX5 825 5.1

Table I: Results of floorplan on local host

Since HRL can generate the floorplan with minimum area,
the resulting area is not shown here. The experimental re-
sults in Table II show that the execution time can be re-
duced by 31.91% ~ 47.06%. The computation time is de-
crease by incorporating RMG algorithm into the HRL algo-
rithm. Once the remote data access latency is longer than
the computing time without latency, the execution time im-
proved by RMG algorithm would be almost equal to the
computing time without data access latency.

5. CONCLUSIONS
With the dramatic increase of transistor count in VLSI
physical design, an efficient strategy to merge the design is
needed. In this paper, we try to solve a well-known area-
minimization floorplan problem on the Internet. The
authors propose a novel algorithm, RMG algorithm. Taking
advantage of distributed computing and resource sharing,
RMG algorithm solves the area minimization of a hierarchi-
cal floorplan in the Internet environment. RMG algorithm
reduces the execution time by shortening the critical path in
the floorplan tree. With creating floorplan design in the In-
ternet environment, designers can conveniently catch the
latest design without wasting time in communication. By
the example, it can be seen that the Internet favors Elec-
tronic Design Automation (EDA).

Execution Time(second)

Bench-
Marks Condition

(1)
HRL

algorithm

(2)
HRL+RMG
algorithm

(3)
Improve-

ment by (2)
(1)-(2)/(1)

All nodes with
latency 0

1.6 1.6 -

Node 15 with
latency 0.5

2.2 1.8 33.33%

Node 15 with
latency 1

2.7 1.8 40.74 %

Node 15 with
latency 1.6

3.4 1.8 47.06%

Node 15 with
latency 2

3.7 2.2 40.54%

EX6

Node 15 with
latency 3

4.7 3.2 31.91%

Table II: Results of floorplan in the Internet environment

6. REFERENCES
[1] Ralph H.J.M. Otten, "Automatic Floorplan Design," 19th

Design Automation Conference, pp. 261-267, 1982.

[2] Ralph H.J.M. Otten, "Layout Structures," IEEE Large Scale
Systems Symposium, 1982.

[3] Larry Stockmeyer, "Optimal Orientations of Cells in Slicing
Floorplan Designs," Information and Control 57, pp. 91-
101, 1983.

[4] D. F. Wong and C. L. Liu, "Floorplan Design of VLSI Cir-
cuits," Algorithmica, Vol. 4, pp. 263-291, 1989.

	Main Page
	ASPDAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

