
1

Abstract − In this paper, we propose a scheduling
method for synchronous communication between
threads in the Bach hardware compiler. In this method,
all communications are extracted from a behavioral
Bach-C description and statically prescheduled to
synchronize communications between threads if
possible. Then all the operations and communications of
each thread are synthesized independently according to
the prescheduling result. Consequently, we can
synthesize large system LSIs efficiently, because we do
not need to synthesize the whole system descriptions at
once to synchronize communications.

Experimental results show that our method improves
throughput of synthesized circuits and is applicable to
large systems designed with the Bach hardware
compiler.

1 Introduction

In order to handle large-scale system design with
increasing size and complexity, many behavioral level
synthesis techniques have been proposed[1][2]. Some of
them are now embedded in commercial CAD tools, and
practically used[2]. They release a designer from detailed
timing and control logic design, then the designer can
concentrate on the essential algorithm and architecture
design. However, known behavioral level synthesis
techniques are limited to handling single data-flow. In
other words, they cannot handle a system that consists of
many subsystems communicating with each other. The
integration of many subsystems is still a major problem for
design automation.

We have proposed the Bach hardware compiler[5] to
describe and to synthesize whole systems, as discussed
above. The Bach hardware compiler realizes successful
communications between subsystems by synthesizing
handshake circuitry. Then the system synthesis task is
partitioned into smaller behavioral level synthesis tasks,
each of which can be handled by conventional high-level
synthesis tools.

This strategy works well in the case of a system with
coarse granularity where the system consists of large
subsystems and loose communication channels. On the
other hand, when a system consists of many tightly coupled

subsystems, the cost and performance of the synthesized
circuit will be dominated by the implementation of
communication protocols. This is caused by generating the
handshake circuitry to implement communications.
Although it guarantees successful communication,
additional circuitry and clock cycles are necessary.

In this paper, we propose a scheduling method to
determine the communication timings between subsystems
statically in the whole system. Using this method, each
communication is implemented by a simple
interconnection to reduce the communication circuit cost
and clock cycle, and each partitioned circuit is synthesized
independently.

This paper is organized as follows. In the next section,
we introduce the Bach hardware compiler and its source
language Bach-C. In Section 3, a synchronous
communication scheduling problem is defined, and its
efficient solution is proposed. A model and algorithm for
communication operation scheduling problem are shown in
section 4. We give experimental results and show the
effectiveness of our proposed technique in Section 5. In the
last section, we make concluding remarks.

2 The Bach Hardware Compiler

In the conventional LSI design flow, system
algorithms are often implemented using programming
languages C or C++, then the equivalent functionality is
implemented using HDLs such as VHDL or Verilog-HDL.
This means that different descriptions for the same function
must be written and verified twice, which often causes long
design period. To cope with the issue, we developed the
Bach hardware compiler. Bach’s source language, Bach-C,
is based on ANSI C with some extensions to describe
hardware algorithms. Bach hardware compiler enables us
to design a large-scale system with Bach-C, verify the
system description using Bach-C simulator, and also
synthesize a circuit from the same description.

2.1 The features of Bach-C

Bach-C supports most constructs in ANSI C, and adds
a few more constructs which are specially tailored to
hardware description and simulation.

Bach-C has par statement to support explicit

1 Design Technology Development Center,
IC Group, Sharp Corporation

2613-1 Ichinomoto-cho, Tenri-shi, Nara JAPAN
E-mail: sakurai@edag.ptdg.sharp.co.jp

2 Sharp Laboratories of Europe
Edmund Halley Road, Oxford Science Park, Oxford

OX4 4GA United Kingdom
E-mail: akay@sharp.co.uk

A Scheduling Method for Synchronous Communication in the Bach Hardware Compiler

Ryoji Sakurai1, Mizuki Takahashi1, Andrew Kay2, Akihisa Yamada1, Tetsuya Fujimoto1, and Takashi Kambe1

2

parallelism (concurrency). Bach-C also provides chan
declaration for synchronous communication, as in CSP[3]
or occam[4]. Using par and chan, we can describe the
behavior of a complete system including communication
between parallel subsystems.

Figure 1 shows examples of the par statement. In
Figure 1(a), two statements a=b*c and d=e*f are
executed concurrently. Figure 1(b) shows an example of
synchronous communication. Channel variables are first
declared with the keyword chan. Each channel transfers
data of a given type from one thread to another
synchronously. The sender uses the function
send(ch,send_data) to send the value send_data down a
channel ch. The receiver uses receive(ch) to receive the
value from channel ch. Both sender and receiver must be
ready in order for the transfer to occur. If either a sender or
a receiver is not ready, the other one waits it.

The synchronous communication in Bach-C supports
only one-to-one and one way communication. We refer to a
pair of the send and receive operations using one channel
as communication pair.

2.2 System designing with the Bach

When designing large-scale systems, it is very
important to decide how subsystems communicate each
other. If the protocol is inconsistent between them, the
behavior of the whole system will be incorrect. Most of
conventional behavioral synthesis tools are limited to
handling single data-flow. This means that they cannot
handle system descriptions composed of communicating
subsystems. When we design large systems which consists
of many tightly coupled subsystems using conventional
tools, we must flatten these subsystems into one unified
system if we want to synthesize interactions between
subsystems. Otherwise, we must design each subsystem
separately keeping consistency of communications
between subsystems.

To release designers from these problems, Bach
generates handshake circuitry for communicating between
threads (subsystems). Because handshake communication
dynamically determines the timing at run-time, we do not
need to schedule each thread in consideration of
communication timing. In other words, we can synthesize
each thread independently. Therefore, Bach can divide a

full system synthesis into smaller behavioral synthesis
problems, and guarantee communications by handshaking.

3 Synchronous communication scheduling

When we design a system consists of many tightly
coupled subsystems with the Bach, sometimes handshake
communication becomes critical issues in terms of cost and
performance. These problems are caused by over constraint
(too much safe assumption) that all communications need
the dynamic synchronization provided by handshaking. In
many applications, however, the most communication
timings can be statically determined. Then we can realize
the communications between threads by simple
interconnection and can decrease area overhead and
increase circuit performance.

In this section, we propose an efficient solution for
synchronous communication scheduling problem which
determines the communication timings between threads
and which enables us to synthesize each thread separately.

3.1 Definition of synchronous communication
scheduling problem

In this paper, we assume that each channel variable in
a Bach-C description is assigned to an individual channel
resource in the synthesized circuit. Then, a synchronous
communication scheduling problem is defined as a
problem to schedule all operations in the whole system
description satisfying the following constraints.
C1: Execution order for communication operations within

a thread must be kept.
C2: For each communication pair, the send operation

must be executed no later than the receive operation.
C3: Two communication operations must be scheduled to

guarantee the data dependency between them.
C4: Two send (receive) operations on the same channel

within a thread must be scheduled at different cycles.
(Remark: Send and receive operations are not executed
on the same channel within a thread, since Bach-C
supports only one way channel as mentioned in Section
2.1.)
This scheduling problem can be solved in this way:

first join several CDFGs corresponding to each thread into
one large unified CDFG by making edges for each
communication pairs, and schedule this unified CDFG all
at once. However, this simple method may not work for
large designs, because the unified CDFG may exceed the
capacity of behavioral synthesis tools.

3.2 An efficient solution for synchronous
communication scheduling problem

We propose an efficient scheduling method to

Figure 1. Examples of Bach-C description

par {
a = b * c ;
d = e * f ;

}
�D� SDU V\QWD[

chan int ch;
par {

send(ch, send_data);
receive_data=receive(ch);

}
�E� V\QFKURQRXV FKDQQHO

3

determine the communication timings. The outline of our
algorithm is as follows:
Step1: For each thread, select all communications

whose timing can be statically determined.
Step2: Extract execution order of the communication

operations within each thread.
Step3: Find the communication pair in the whole

threads.
Step4: Estimate execution cycles required between the

communication operations within a thread.
Step5: Determine timing of all the selected

communications to satisfy constraint C1 to C4 for
synchronous communication (we call this step
communication operation scheduling).

Step6: Synthesize all operations and communication
operations in each thread based on the result of Step5
using a conventional behavioral synthesis tool.
In Step1, we select communications whose timing can

be statically determined. The other communications should
be implemented by handshaking. In this way, we solve the
synchronous communication scheduling problem by
dividing into small behavioral synthesis tasks.

In the next section, we focus on communication
operation scheduling executed in Step5, and explain the
details of the algorithm.

4 Communication operation scheduling

In this section, we define the communication graph
for modeling C1 to C4. Then we show the algorithm for
communication operation scheduling problem.

4.1 Communication graph

A communication graph, G=(V, E), is to represent C1
to C4 which are obtained from a Bach-C description. Here
V is a node set and E ⊆ (V × V) is a directed edge set.

Each node vi ∈V corresponds to a communication
operations (send or receive operation) in the Bach-C
description. V is partitioned into two subsets Vs and Vr

such that V = Vs ∪ Vr and Vs ∩ Vr = φ. Vs is a set of all
send operations and Vr is a set of all receive operations.

A directed edge eij =(vi, vj)∈E represents an execution
order on vi and vj . E is partitioned into two subsets Es and
Ep such that E = Es ∪ Ep and Es ∩ Ep = φ. If eij belongs to
Es then vj is executed after vi , and vi and vj are in the same
thread. This edge set Es denotes the C1. If eij belongs to Ep
then vi ∈Vs and vj ∈Vr is a communication pair. This edge
set Ep denotes the C2.

Each edge eij has an associated nonnegative integer Cij

used as scheduling constraint. Cij represents C3 and C4,
that is, vj must be executed at least Cij cycles after vi. Each
Cij is calculated as follows.

If eij belongs to Ep then Cij is always 1. Here, we
assume that a generated circuit has latched output port for
each send operation. Thus a receive operation must be
executed at least 1 cycle after the corresponding send
operation.

If eij belongs to Es and there exists data dependency
between nodes vi and vj , Cij denotes the number of cycles
required to execute non-communication operations
between vi and vj, which represents C3. We estimate Cij by
performing an initial scheduling in each thread. If eij

belongs to Es and nodes vi and vj use the same channel, Cij

is 1, which represents C4. Otherwise, Cij is 0.
In Figure 2, we show examples of a Bach-C

description (a) and a communication graph (b) which is
generated from (a). For clarity, the node names
corresponding to communication operations are annotated
in Figure 2(a) using comments. The value along edge eij

denotes the corresponding Cij. We suppose that functions
f1 and f2 are defined elsewhere.

We consider nodes v1 and v5. There is an edge e15 ∈Ep
between them. Then C15 of edge e15 is 1. Next, let us
consider nodes v5 and v6. There is a funciton f1 between
them. Suppose that clock period is 50 ns and function f1

takes 70 ns. Then C56 of edge e56 is 70/50=1. Note that Cij

is 0 if there exists no data dependency between two nodes

Figure 2. Examples of Bach-C description and generated communication graph

v3

v1

v4

v5

v7v6

v8

0

0

0

1

0

1

1

1

1

v2

0

0

0

par {
 /* thread 1 */

while(1){
 send(ch1, a); /* v1 */
 send(ch2, b); /* v2 */
 c = receive(ch3);/* v3 */
 d = receive(ch4);/* v4 */
}

/* thread 2 */
while(1){
 e = receive(ch1);/* v5 */
 send(ch3, f1(e));/* v6 */
}
/* thread 3 */
while(1){
 f = receive(ch2); /* v7 */
 send(ch4, f2(f));/* v8 */
}

}

Vs = {v1, v2, v6, v8 }
Vr = {v3, v4, v5, v7 }

Es
Ep

�D� %DFK�& �E� &RPPXQLFDWLRQ *UDSK

4

vi and vj. In Figure 2, for example, C12 is 0, since there is no
data dependency between node v1 and v2.

4.2 Algorithm for communication operation
scheduling

As mentioned in Section 3.1, we do not consider
channel resource sharing among different channel variables.
Therefore, we can use the well known ASAP (As Soon As
Possible) scheduling method to determine the execution
cycle Si of node vi in V. In Figure 3, S (vi) denotes the
scheduled cycle of node vi. Predvi denotes a set of nodes
that are immediate predecessors of the node vi.

A scheduling result for the graph from Figure 2(b) is
as follows.

S1 = S2 = 1; S5 = S7 = S8 = 2; S6 = 3; S3 = S4 = 4;
We can handle this scheduling problem for large scale

system design, because a target of the scheduling problem
is only communication operations. Moreover, each
communication timing (scheduling cycles in high-level
synthesis) can be fixed for each thread with communication
operation scheduling. This shows that we can partition the
whole system synthesis problem into small behavioral
synthesis problems for synchronous communication
scheduling.

5 Experimental results

We applied the proposed method to several samples
and compared synthesis results with those of the
handshaking approach. The results are summarized in
Table 1. In this table, Orig shows the synthesis results
using the handshake communication, and New shows the
results of proposed method. The number in parentheses
along each sample name indicates the number of
communication operations in the Bach-C description.
Throughput shows the number of interval clock cycles
required to receive each data item.

This table shows that the proposed method can
generate a high-speed circuit for all samples, and remove

handshake circuitry for all synchronous communications.
The speed advantage is due to the following features:
(1) The reduction of the number of cycles required for

each communication between threads to half clocks.
(2) The ability to schedule and synthesize a circuit which

operate several communication operations
concurrently.
These experimental results demonstrate that the

presented method improves both cost and performance of
generated circuit.

6 Conclusion

In this paper, we have proposed a synchronous
communication scheduling method in the Bach hardware
compiler. In this method, the communication timings
among subsystems are statically determined. Then
synchronous communications are realized by just an
interconnection. Unlike communication using handshake
circuitry, we can guarantee the communication without
sacrifice in circuit overhead and clock cycles. In particular,
our method is effective for large system design, since the
method partitions the whole system synthesis problem into
small behavioral synthesis problems.

Experimental results show that the throughput and
area of synthesized circuits are improved using our method,
and that the Bach hardware compiler has become
applicable to communication intensive applications.

References

[1] D. Gajski, A. Wu, N. Dutt and S. Lin, “High-level
Synthesis: introduction to Chip and System Design,”
Kluwer Academic Publishers, 1992

[2] “Behavioral Compiler User Guide,” version
1997.01, Synopsys, 1997

[3] C.A.R. Hoare, “Communicating Sequential
Processes,” Prentice-Hall, 1985

[4] INMOS Ltd, “occam2 reference manual”, Prentice-
Hall International, 1988

[5] K. Nishida, A. Kay, A. Yamada, T. Kambe and T.
Nomura, “Bach Hardware Compiler for System
Level Synthesis,” IEICE Technical Report, CPSY97-
87 (In Japanese), 1997

Gate count
(gates)

Through-
put (cycles)

Orig 2,382 8Sample1
(10) New 1,580 4

Orig 9,130 10Sample2
(18) New 8,188 2

Orig 135,534 32Sample3
(32) New 113,105 3

Table 1. A comparison with handshake circuitry

Figure 3. Algorithm for communication operation scheduling

Procedure CommunicationOperationScheduling (G);

while V ≠ φ loop

 foreach vi ∈ V loop

 if Predvi = φ then

 Si = 1;

 else if Predvi are already scheduled then begin

 Si = Maxvj∈Predvi (S(vj) + Cij);

 V = V − { vi };

 end;

	Main Page
	ASPDAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

