
A Flexible Code Generation Framework
for the Design of Application Specific Programmable Processors

François Charot, Vincent Messé
Irisa/Inria

Campus de Beaulieu
35042 Rennes Cedex, France
{charot,messe}@irisa.fr

Abstract

This paper introduces a flexible code generation framework
dedicated to the design of application specific programmable
processors. This tool allows the user to build specific compi-
lation flows, using a library of modules, implementing flex-
ible compilation passes such as code generation, resource
allocation, scheduling, etc. Retargeting is performed at two
levels: minor changes in the target processor architecture
are handled by a retargeting of the modules of the defined
compilation flow, while major modifications require a struc-
tural modification of the flow. To build a compiler for a
target processor, the user selects modules from the library,
and links them together. While the global compiler struc-
ture is user-defined, the retargeting of modules is automat-
ically performed by the framework. Target processors are
described using Armor, a programmable processor model-
ing language especially defined for design space exploration.
The proposed tool is then suitable for a large range of in-
struction set architectures.

1 Introduction

In a hardware-software co-design methodology, designers ha-
ve to decide which programmable processors should be used
to run the software components of the system. Among exist-
ing possibilities, in house application specific programmable
processors (asips) are valuable components, as they provide
a tradeoff between efficiency and flexibility. Retargetable
code generation tools play an important role in asip design
process, since many instruction set architectures have to be
evaluated. The target architecture may be changing in or-
der to minimize cost, speed, code size, power consumption
and/or to increase performance of the whole system. This
is achieved by designing its architecture and instruction set,
and then evaluating the code for desired performance. In-
teresting results on design space exploration can be found
in [12, 4, 3].

Three levels of retargetability are commonly considered,
differing in the amount of user intervention required dur-
ing the retargetting process: automatic, user and developer

retargetability. Most of the retargetable compilation frame-
works [6, 1, 8, 5, 7] operate at a user level of retargetabil-
ity. A description of the target processor is provided to
a compiler-compiler, which determines those optimizations
that are applicable to the processor and then automatically
constructs an optimizing compiler for it. This approach has
led to high-quality compilers for application-specific proces-
sor especially in the area of dsp. In such an approach, the
target processor has to be close to the specific model sup-
ported by the compilation tool, which is only suited for a
restricted category of processors and consequentlty suffers
from a lack of flexibility.

To allow an efficient architectural exploration process to
be performed, code generation tools may deal with a large
variety of processors, while achieving a good performance
according to code quality. Depending upon the architec-
tural features of the target processor (register and memory
structure, data-path organization, etc.), different compila-
tion techniques may be used to produce efficient code sat-
isfying the requirements of the application. In order to be
efficiently exploited, these different techniques may require
different compilation flows, which is not usually allowed by
classical retargetable compilers and is of major importance
in the context of an architectural exploration process.

This paper focuses on a code generation framework with
the goal of allowing the user to build specific compilation
flows, using a library of flexible modules. This framework,
operating at a developer level of retargetability, permits the
compiler to be tailored to the target processor. The interest
of this work is twofold. On the one hand, the framework al-
lows different target processors and variants of these proces-
sors to be evaluated and compared, since rapid prototyping
of specific compiler flows can be performed. On the other
hand, it can be viewed as an experimental framework for
experiments in compiler design.

This paper is organized as follows. Section 2 introduces
the framework, and the way compilers are built for candidate
processors. Section 3 illustrates, by the way of examples, the
use of the tool.

2 Flexible code generation framework

2.1 Library structure

The framework is built on a library of modules, as illus-
trated in figure 1. Each module implements a compilation
pass such as code selection, resource allocation or schedul-
ing and is individually flexible. This framework thus allows
flexibility at two levels: minor changes in the target proces-

sor architecture are handled by a retargeting of the modules
of the defined flow, while major changes require a structural
modification of the compilation flow, as explained below.

�����
�����
�����

�����
�����
�����

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

�����
�����
�����

�����
�����
�����

code code
Source Assembly

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

����
����
����

����
����
����

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

����
����
����

����
����
����

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

����
����
����

����
����
����

Scheduling

Register allocation

Code selection

processor model
ARMOR

Building area

Library of modules

Figure 1: Building code generation flows using the library

To build a compiler for a target processor, the user selects
modules from the library, and links them together. Figure
1 illustrates the evaluation and comparison of two compila-
tion flows. The first one achieves sequentially code selection
and register allocation followed by compaction. The second
one uses three other modules and a different scheduling. Al-
though these two examples illustrate the use of standard
compilation flows, more sophisticated modules may exist
and implement complex algorithms, mixing, for instance,
compaction and resource allocation. Additionally, the user
may build iterative flows, where some modules execute sev-
eral times, until result is satisfied.

While the global compiler structure is defined by the
user, the retargeting of modules is automatically performed
by the framework. Target processors are described using
the Armor language [2] which is a programmable processor
modeling language especially designed for design space ex-
ploration. This language describes instruction set behavior,
including semantic, timing information, resource usage, and
a detailed instruction-level parallelism specification.

2.2 Flexible modules

In order to achieve an easy retargeting in many different sit-
uations, the library should contain many pre-defined mod-
ules, implementing various algorithms. Moreover, modules
have to share compatible program representations.

Nevertheless, even if many algorithms are available in
the default library, the framework must provide a way of
easily building new ones. This feature may be useful in im-
plementing architecture specific algorithms when necessary,
and in integrating new efficient code generation or optimiza-
tion techniques.

To this end, the framework has a building area, as illus-
trated in figure 1. A part of this area, used to build optimiza-
tion modules such as compaction and resource assignment,
is illustrated in figure 2 which shows the structure of low-
level code treatment tools. Three levels are identified. The
program representation level consists of a library of C++
classes implementing several program abstractions, such as
procedure, basic block, instruction, etc: it concerns the code
representation level. The intermediate one, called the toolkit
level, implements functionalities which are not binded to a
particular generation or optimization algorithm: data-flow
analysis, timing and resource usage control, generic graph

coloring are typical examples. These functions correspond
to building blocks, making the writing of new modules eas-
ier. The third level, called user module, corresponds to al-
location, scheduling and optimization algorithms, which are
built on the top of the two lower levels.

Module building support

usage

Compaction

Resource

Compaction
2

coloring

Register
1

User module

Timing Graph
analysis

Data flow

Allocation

Instruction

set

model

Procedure Instruction Program

Program representation

Basic block

Figure 2: Library structure

2.3 Framework prototyping

In order to experiment with such a structure, we focused on
the use of existing tools as components of the framework.
Concerning instruction selection, although many accurate
algorithms appeared recently, available tools are mainly re-
stricted to standard algorithms based on tree matching. As
a consequence, the Olive code generator generator [11] was
chosen. Concerning code optimizations, we did experiments
with the Salto framework [9] and the Spam library [10].
Salto is a tool for assembly code restructuring, and Spam

is dedicated to code optimization for dsps. Both are built
following the structure described in figure 2, with a code rep-
resentation, some toolkit equivalent components and an al-
gorithmic level. Experiments have underlined qualities and
limitations of both tools in the domain of design space ex-
ploration.

Salto benefits from an interesting way of retargeting.
The user provides a specification file containing the syntax
of instructions, and their resource usage. The model is cy-
cle accurate, and is exploited using a resource and delay
checking C++ class, which is very useful in writing schedul-
ing algorithms. However, Salto is oriented towards gen-
eral purpose microprocessors, and many architectural spe-
cific properties of asips do not fit the model. Such proper-
ties have then to be defined manually in specific algorithms.
Finally, although Salto benefits from interesting code rep-
resentation and toolkit levels, no architecture independent
powerful algorithm is distributed with it.

Spam is oriented towards dsp processors. Unlike Salto,
retargeting is quite difficult, since it does not use a mod-
eling language. Instruction set description is spread out in
many different C++ classes. As a consequence, Spam can-
not be rapidly and frequently retargeted. In contrast, Spam

benefits from a powerful toolkit level, including useful tasks
such as data-flow analysis or graph coloring. Moreover, the
library is distributed with many powerful optimization al-
gorithms.

If none of these tools is suitable for a large design space
exploration, experiments have rapidly shown a real com-
plementarity between Salto and Spam. As a result, the
prototype tool can be seen as composed of Salto-like com-
ponents built on the top of a slightly modified Spam library.

Although the resulting framework is still incomplete, it is
close to the scheme described in figure 2.

class ArmorCompactInfo

1

Compaction

Compaction

List of

2

algorithm

Parallelism
matrix

Armor
description

algorithm

valid groups

Matrix

Groups

legal ?
Is group

Always
true

Figure 3: Iterative programmable processor design method-
ology

3 Use of the framework

To illustrate the use of the framework, this section focuses
on compaction modules. As shown in figure 3, compaction
algorithms are written using the ArmorCompactInfo class.
This class provides a method whose goal is to check if groups
of instructions are valid according to the instruction set ar-
chitecture.

Three different implementations of the checking method
are considered. The first one is based on a parallelism ma-
trix. The (i,j)th entry in the matrix is true if instruction i
can be scheduled in parallel with instruction j. A group is
valid if all combinations of two components are valid and the
group size is lower than the global parallelism limit. This
representation is accurate in case of architectures having an
homogeneous instruction level parallelism. The second im-
plementation is based on an enumeration of valid groups. It
may be used in case of processors having an occasional and
heterogeneous parallelism. A third implementation (always
true) considers that groups are always valid. This is for
instance useful in measuring the effects of parallelism re-
strictions on the quality of the compacted code.

3.1 Target architecture examples

Target processors are described in the Armor language [2],
especially designed to be used in an application-architecture-
compiler codesign framework based on a retargetable com-
piler technology.

In Armor, an instruction set is described using rules,
which form a grammar from which each possible derivation
represents one legal instruction. A description consists of a
top-level rule (InstructionSet) which describes all the al-
ternatives in the instruction set and gp (group) rules. The
combination of such rules models the set of instructions and
the available parallelism. The behavior of each instruction
is defined using df rules (data-flow instructions) which cor-
respond to traversals of a data-path unit and ctr rules for
control flow instructions. These rules define register trans-
fers using operators (defined with op and class rules), or
lists of operands (mode rules). Processor resources are de-
fined using reg (register), regFile (register file), mem (mem-
ory), fu (functional unit), etc. rules. Resources are stamped

+/- +/- *

R

*

+/-

Acc

X Y

InstructionSet = [instDF || instDF || instDF] | instCTRL

 | anyInstruction

gp memAccess = load | store

restriction ! [memAccess || store]

gp instDF = compute | move | memAccess | nop

InstructionSet = [move || memAccess]
 | [load || load]

gp anyInstruction = compute | control | memAccess | move

gp memAccess = load | store

1

2

Figure 4: Two target processor examples

with access and timing information. The restriction rule
models explicit parallelism restrictions. These rules use the
parallel (||) and alternative (|) operators.

Figure 4 shows two different target processors, and parts
of the corresponding Armor description (timing and re-
source usage are not detailed in these examples).The first
one is an homogeneous architecture, with a general purpose
register file and three computation units. Its instruction set
allows either three parallel data flow instructions (named
instDF), or a control instruction (named instCTRL) to be
simultaneously executed, but store instructions cannot be
executed in parallel with any other memory access. The sec-
ond architecture is an heterogeneous one, with two specific
register files (X and Y), and an accumulator. In addition
to conventional computations, the processor has a multiply-
accumulate instruction (Acc = Acc+X×Y). In this exam-
ple, the instruction encoding is supposed to be restrictive.
As a consequence only a few parallel combinations are al-
lowed: a move instruction with a memory access, or two load

ADD SUB MOVE LOAD STORE ...

ADD true true true true true ...
SUB true true true true true ...

MOVE true true true true true ...
LOAD true true true true false ...
STORE true true true false false ...

...

Table 1: Partial compaction matrix for processor #1

Group 1 LOAD - LOAD
Group 2 LOAD - MOVE
Group 3 MOVE - STORE

Table 2: List of valid groups for processor #2

instructions.

3.2 Code generation

Compaction parameters For processor #1, the scheduling
algorithm is retargeted using the compaction matrix as il-
lustrated in table 1. Since processor #2 cannot be modeled
using this data structure, a list a valid groups of instructions
is used instead (table 2). In both cases, explicit parallelism
is completed by resource usage checking.

Compacted code Figure 5 illustrates the result of a par-
tial code generation pass. In this example, the same (par-
tial) code generation flow was applied: code selection (using
Olive), followed by a simple list scheduling algorithm.

Code quality is not the topic here, since optimizations
such as loop unrolling or software pipelining should be used.
The interesting point is that code generators for two com-
pletely different instruction set architectures were automati-
cally generated, using common library modules, built on the
top of two different models.

4 Conclusion and future work

The code generation framework introduced in this paper is
dedicated to the design of application specific programmable
processors. It allows the user to build for a given target,
specific compilation flows, using a library of code genera-
tion and optimization modules. Different target architec-
tures and variant of these architectures can then be rapidly
evaluated and compared.

The prototype is built on the basis of existing tools. Al-
though the library is still incomplete, it achieves a satisfying
flexibility. Current work involves the design of powerful op-
timization modules such as loop optimization and address
generation unit exploitation.

However, retargetable code generation is only a part of
a design space exploration environment. Target processors
evaluation requires compilers to be combined with many
other tools, such as system prototyping frameworks, syn-
thesis tools, instruction set simulators, etc. Among these
connections, synthesis and system specification are of par-
ticular interest.

Processor synthesis In a context of design space explo-
ration, candidate architectures have to be evaluated. Al-
though compiling significant parts of the application is nec-

C source code

#define LENGTH 16
int x[LENGTH];
int h[LENGTH];

cv()
{

int y;
int i;
int ∗px = x;
int ∗ph = &h[LENGTH - 1];

y = 0;

for (i = 0; i < LENGTH; ++i)
y += ∗px++ ∗ ∗ph--;

}

Processor #1 - parallelism matrix

MVC r10,60 || MVC r3,<.x,0> || MVC r1,0
ADDu r4,r10,<.h,0> || MVC r2,0

<L:cv.L3,0>:
LOAD r8,(r3) || LOAD r9,(r4) || ADDu r3,r3,4
MULi r7,r8,r9 || SUBu r4,r4,4
ADDi r1,r1,r7

<L:cv.L1,0>:
ADD r2,r2,1
LESS r11,r2,16
BTRUE r11,<L:cv.L3,0>

Processor #2 - valid groups

MVC Y14,0 || MVC Y15,0
ST (FP+cv.y),Y14 || MVCu Y16,60
ADDu Acc,Y16,<.h,0>
ST (FP+cv.i),Y15 || MVCu Y17,<.x,0>
ST (FP+cv.ph),Acc
ST (FP+cv.px),Y17

<L:cv.L3,0>:
LD AR9,(FP+cv.px) || LD AR11,(FP+cv.ph)
LD Acc,(FP+cv.y) || LD Y10,(AR11)
LD X8,(AR9)
MULACC Acc,Acc,X8,Y10
ST (FP+cv.y),Acc
LD Y12,(FP+cv.px)
ADDu Acc,Y12,4
ST (FP+cv.px),Acc
LD Y13,(FP+cv.ph)
SUBi Acc,Y13,4
ST (FP+cv.ph),Acc

<L:cv.L1,0>:
LD Y7,(FP+cv.i)
ADDi Acc,Y7,1
ST (FP+cv.i),Acc
LD Acc,(FP+cv.i)
BRANCH_INF Acc,16,<L:cv.L3,0>

Figure 5: Examples of compacted code for the two proces-
sors

essary, this is not sufficient. Resulting code and profil-
ing information have to be used to evaluate the code size
and the number of execution cycles. However, in order to
evaluate execution time, the machine cycle is essential. A
first approach is to build an estimation model, using many
high-level information: number of registers, data-path struc-
ture, etc. The second approach consists of applying a partial
synthesis, until this information is available.

Furthermore, processor synthesis is a necessary step as
soon as the final processor is defined. An efficient specifi-
cation in a hardware description language has then to be
produced, starting from a high-level, behavioral instruction
set model.

System prototyping The second interesting topic is directly
related to hardware/software co-design. In such a context,
choosing a target processor implementing software parts of
the design depends upon the global system. Therefore, it
seems particularly interesting to study the combination of
a retargetable code generation framework and rapid system
prototyping tools like Ptolemy, COSSAP, SPW, etc. With a
tool like Ptolemy, the generation of assembly code for a few
DSP processors is supported. To this end, a library of prede-
fined components is available. Therefore, taking advantage
of a flexible compilation framework in order to define such
libraries for many different target processors could be con-
sidered.

References

[1] Jean Claude Bauer, Étienne Closse, Éric Flamand,
Michel Poize, Jacques Pulou, and Patrick Penier.
SAXO: A Retargetable Optimized Compiler for DSPs.
In Proc. of ICSPAT, 1997.

[2] François Charot, Gwendal Le Fol, and Vincent Messé.
Programmable Processor Modelling for Retargetable
Compiler Design and Architecture Exploration. Tech-
nical Report 1167, IRISA, January 1998.

[3] Joseph A. Fisher, Paolo Taraboschi, and Giuseppe Des-
oli. Custom-Fit Processors : Letting Applications De-
fine Architectures. Technical report, HP Laboratories,
1996.

[4] Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh
Khare, Nikil Dutt, and Alex Nicolau. EXPRESSION:
A Language for Architecture Exploration through Com-
piler/Simulator Retargetability. In Proc. of DATE con-
ference, 1999.

[5] Silvina Hanono and Srinivas Devadas. Instruction Se-
lection, Resource Allocation and Scheduling in the
AVIV Retargetable Code Generator. In Proc. of the
Design Automation Conference, 1998.

[6] Dirk Lanneer, Johan Van Praet, Augusli Kifli, Koen
Schoofs, Werner Geurts, Filip Thoen, and Gert
Goossens. CHESS: Retargetable Code Generation
for Embedded DSP Processors. In Code Generation
for Embedded Processors. Kluwer Academic Publishers,
1995.

[7] Rainer Leupers and Peter Marwedel. Retargetable
Code Generation based on Structural Processor De-
scriptions. Design Automation for Embedded Systems,
3(1):1–36, January 1998.

[8] Clifford Liem, Pierre Paulin, Marco Cornero, and
Ahmed Jerraya. Industrial Experience Using Rule-
Driven Retargetable Code Generation for Multimedia
Applications. In Proc. International Symposium on
System Synthesis, September 1995.

[9] Erven Rohou, François Bodin, André Seznec, Gwen-
dal Le Fol, François Charot, and Frédéric Raimbault.
SALTO: System for Assembly-Language Transforma-
tion and Optimization. Technical Report 2980, INRIA,
September 1996.

[10] SPAM Research Group,
http://www.ee.princeton.edu/spam/. SPAM Compiler
User’s Manual, September 1997.

[11] S. Tjiang. An Olive Twig. Technical report, Synopsys
Inc., 1993.

[12] J. Wilberg, A. Kuth, H.-T. Vierhaus, R. Camposano,
and W. Rosentiel. A Design Exploration Environment.
In Proc. of the 6th Great Lakes Symposium on VLSI,
pages 77–80, 1996.

	Main Page
	CODES'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

