
A Reordering Technique for E�cient Code Motion

Luiz C. V. dos Santos and Jochen A. G. Jess

Design Automation Section, Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

fluiz, jessg@ics.ele.tue.nl

Abstract

Emerging design problems are prompting the use of
code motion and speculative execution in high-level
synthesis to shorten schedules and meet tight time-
constraints. However, some code motions are not

worth doing from a worst-case execution perspec-
tive. We propose a technique that selects the most
promising code motions, thereby increasing the den-
sity of optimal solutions in the search space.

1 Introduction

The combination of intensive data-
ow, complex control-

ow and tight time-constraints creates design problems re-
quiring multiple functional units. The usual scope for ex-
ploitation of parallelism is the basic block (BB) [2]. Since the
parallelism in a BB is limited, the multiple functional units
are poorly utilized. This prompts the use of instruction-
level parallelism (ILP) techniques [2] in high-level synthesis
(HLS), for instance by moving operations across BB bound-
aries, which is called code motion. Code motions ahead of
branches may lead to speculative execution. Early ILP com-
piler techniques [2] are oriented to architectures with abun-
dant resources. In HLS, however, ASICs and ASIPs are de-
signed with as few resources as possible. Consequently, the
direct application of those techniques may expose too much
parallelism. Relaxing control dependences for the sake of
global scheduling, leads to a trade-o�: on the one hand,
it improves exploitation of parallelism; on the other hand,
it increases the size of the solution space. Therefore, we
propose a technique that prevents the generation of inferior
solutions (Section 3). We show experimental evidence that
our technique increases the density of optimal solutions in
the search space, paving the way to a faster exploration of
alternative solutions (Section 4).

2 Our modeling

To represent behavior, we use a data
ow graph (DFG). An
example of DFG is shown in Figure 1b for the description in
Figure 1a. Circles represent operations. Pentagons denote
either branch (B) or merge (M) nodes controlled by a con-
ditional (ck). See [4] for an explanation on DFG semantics.

To keep track of code motion, we use a condensation
of the DFG, the so-called basic-block control
ow graph

(BBCG). In the BBCG, the nodes represent BBs or junc-
tions (either a branch (B) or a merge (M)) and the edges
represent the
ow of control. All operations in the DFG
enclosed by a pair of branch, merge, input or output nodes
are condensed into a BB in the BBCG. All branch (merge)
nodes in the DFG controlled by the same conditional become
a single branch (merge) node. All inputs are contracted to
a single source node; all outputs, to a sink node. Given the
DFG in Figure 1b, its BBCG appears in Figure 1c.

The relation between a DFG and its BBCG is kept
by means of links. A link � connects an operation on in
the DFG with a basic block BBi in the BBCG, written

on
�
! BBi (e.g. each arrow represents a link in Figure

1c). When a link � points to the BB where the operation
was initially described, we say that � is an initial link. We
write on!= BBi when on is not linked to BBi and we write

BBi
�

! BBj when there is a path from BBi to BBj .
Given a DFG and a set of resource constraints, our goal

is to derive a state machine graph SMG = (S; T), where
S is set of states, and T is the set of transitions. Figures
1d and 1e show alternative SMGs for the DFG in Figure
1b, assuming 1 adder, 1 subtracter and 1 comparator. For
Figure 1d, exploitation of ILP is limited to BBs, whereas
code motion is used for Figure 1e. We assume that every
operation on is mapped to a single module type �(on) (e.g.
� (m) = adder in Figure 1). When two operations available
for scheduling at a given state map to the same module
type, a priority encoding is used to break ties. A priority
encoding � is a permutation of the operations in the DFG.
When operation on precedes operation om in a permutation
�, written on�� om, then on has the priority over om.

In our approach, solutions are encoded by priority encod-
ings. An explorer creates priority encodings � and a con-
structor builds a solution for each � and evaluates its cost,
i.e. the schedule length of the longest path in the SMG.
The explorer searches for the solution with lowest cost and
checks if it satis�es a time constraint Tc. The constructor
consists of a scheduler and a parallelizer. The parallelizer
manages code motion and speculation and assigns opera-
tions to states while the SMG is generated on the
y. Given
a current state sk, the parallelizer keeps a set Ak of available
(or ready) operations [1] for scheduling in state sk. From Ak,
the scheduler selects an operation on for executing in state
sk. After scheduling sk, next states are scheduled and so
on. In a top-down traversal of the BBCG, it is as if each
BB were split on the
y into a sequence of successive states.
Every set Ak is ordered by the same priority encoding �.
Given a state sk and an ordered set Ak, the scheduler selects
the �rst operation on 2 Ak satisfying resource constraints.

x = i1 – i2

y = i3 – i4

if (x > i5)

z = x + i6

else

z = x – y

o1 = z + i7

o2 = i8 + i9

I

J

K

L

[k]

[l]
[t 1]
[m]

[n]
[p]

[q]
(a) (b)

10 10

kl

mn

p

q

t1

B B B

M
0 1

c1

I

K J

L

B

M

0 1

0 1

k

l

mn

q

t1

p

(c) (d) (e)

s0

s1
s3s2

s4

s5

s0

s1
s2

s3

m,l,t1

k

l,t1

n m

p

q

k,q

n

p

Figure 1: A behavioral description, its DFG, BBCG and resulting SMGs

3 Preventing ine�cient code motions

Figure 2 shows a behavioral description, its BBCG and two
SMGs obtained assuming 1 adder, 1 subtracter and 1 com-
parator. Since operations a and b depend only on the in-
puts, they are both available at state s0 within BB I, i.e.
A0 = fa; bg. Solutions SMG1 and SMG2 are induced by �1

(with b��1
a) and by �2 (with a��2

b), respectively. Note
that the schedule length of the left path is increased by the
execution of b in the �rst state of SMG1, as compared to
SMG2. The reason is that a and b can not be scheduled
in a same state because �(a) = �(b) = subtracter. Given
the encoding �1 in Figure 2c we have A0 = (b; a). If we
reorder this set such that A0 = (a; b), the code motion of b
that places it in state s0 is prevented and solution SMG1

(which is inferior) is not constructed. The example illus-
trates that the parallelism actually exploitable is hinted by
a convenient interpretation of the links: given two available
operations with same � , the execution of the operation that
is linked to the currently visited BB should have the priority
over the other. However, this is valid only if we can guaran-
tee that some operations must execute within a given BB,
while others can be postponed. This requires a data-
ow
analysis technique which �nds a so-called set of lowest links
from the set of initial links [7], as summarized next.

3.1 The notion of lowest links

Given an operation om and its initial link, each lowest link is
determined such that it points to the latest BB downwards
on a given control path, where om can be legally executed.
Our analysis checks if an operation om can be legally moved
down from BBi to BBj , i.e. om should not move if it kills a
value [7], no conditional should move past the point where
the control decision is due and no operation should move
through the sink, as formalized next:

De�nition 1. Given the basic blocks BBi and BBj

with BBi
�

! BBj , the operation om is free to move
from BBi to BBj , written free(om; BBi; BBj), i�:
:kill(om; BBi; BBj)^ (om 6= conditional)^ (BBj 6= sink):

Algorithm 1 derives the set of lowest from the set of ini-
tial links. CONS(om) represents the operations consuming
the value produced by om. The DFG is visited by depth-
�rst search. Procedure visit(om) propagates an operation

om from its initial BB towards the initial BB of some con-
sumer on. Procedure �nd boundary(om; BBi; BBk) returns
the latest BB to which om is free to move on control paths
from BBi to BBk.

Algorithm 1. Finding the lowest links
procedure �nd lowest links ()
mark initial links;
foreach input vi of DFG

foreach om 2 CONS(vi)
visit (om);

delete initial links;

procedure visit (om)
if (om is visited) return;
mark om as visited;
foreach on 2 CONS(om)

visit (on);

foreach BBi with om
�i
! BBi

foreach BBk with on
�k
! BBk

BBj := �nd boundary (om; BBi; BBk);
create a new link � such that on

�
! BBj ;

The lowest links capture the maximal freedom for moving
operations downwards, as formalized next.

Theorem 1. If there is a path p from the source to BBj

such that operation on was not scheduled within any BB in
path p, and if there exists a lowest link connecting operation
on with BBj , then on must be scheduled within BBj .
Proof: This theorem is proven in [7].

3.2 A precedence relation based on the lowest links

If operation a is linked to the BB being visited, say BBi,

and operation b is linked to BBj , with BBi
�

! BBj , then a

must be scheduled inBBi (Theorem 1), whereas the schedul-
ing of b can be postponed, since b is free to move down to
BBj . This suggests that a should have the precedence over
b. Precedence is de�ned only between operations with same
module type, since only in that case their parallel execution
might be impaired due to the lack resources, as follows:

De�nition 2. Given the set of lowest links � and some
� 2 �, let ��;i denote the precedence relation induced by
the set of links � when the basic block BBi is visited. We
say that a precedes b at basic block BBi, written a ��;i b,

i�: (�(a) = �(b)) ^ ((a = b) _ (a
�
! BBi) ^ (b!= BBi):

x := in1 – in2;
if (in3 > x)

y := in4 – in5;
z := y + x;

else
z := x + in3;

out1 := z + in6;

I

J

K
L

[a]
[c1]
[b]
[d]

[e]

[f]

I

J

L

a

bK
0 1

B1

M1

s2

s3

s4

e

f

c1 c1

c1

s1 a

s0 b

s1

s2

s3

e

d

f

c1 c1

c1

s0 a

d b

(a) (b) (c) (d)

SMG1 SMG2BBCGdescription

+ – >
resource constraints

�1 � (b, a, d, e, f)

�2 � (a, b, d, e, f)

Figure 2: Example of code motion ahead of branch junction

30

40

50

60

70

80

90

100

110

8 10 12 14 16 18 20 22

’A’
’B’
’C’

30

40

50

60

70

80

90

100

110

8 10 12 14 16 18 20 22

’A’
’B’
’C’

schedule length schedule length

#states #states

(a) (b)
Figure 3: The search space without and with reordering, respectively

3.3 Reordering the sets of available operations

Given two operations a and b, our idea is to make the prece-
dence relation ��;i prevail over the priority encoding either
when a ��;i b or when b ��;i a. Otherwise, the ordering
implied by �� is kept. This is formalized by a new linear
ordering ��;i for each BBi, as follows:

a ��;i b () (a ��;i b)_ (:(b ��;i a)^ (a �� b)): (1)

The linear order ��;i is the modi�cation of the original
linear order �� so as to capture the results of our data-
ow
analysis. Suppose that BBi is visited and, given the current
state sk within BBi, let a; b 2 Ak. Assume that both a

and b map to module type � and are such that b �� a,
but a ��;i b. When we order the set Ak according to ��;i,
instead of ��, the scheduler assigns a to state sk and the
code motion of b to BBi is prevented if no more resources of
type � are free within BBi. Thus, reordering Ak e�ectuates
the pruning of code moves.

4 Experimental results

Our experiments are performed with and without reorder-
ing under largely unrestricted code motion and speculation
and for several priority encodings generated randomly. Let
(Li; Si) be the i

th solution in the search space, where Li

is the schedule length of the longest path in the SMG and
Si is the number of states. Let �L = max(Li) �min(Li)
be the range of observed schedule lengths. We apply 100
priority encodings to example \s2r" and we construct 100
SMGs for di�erent resource constraints (cases A, B and C
in Table 1). The plot in Figure 3a, where each point rep-
resents a SMG, shows the e�ect in the search space without
reordering. Observe that �L increases when the number
of resources decreases. This means that exposed parallelism
which is not accommodated leads to many inferior solutions.
By repeating the same experiments with our reordering, the
plot in Figure 3b is obtained. Compare Figures 3a and 3b,
and note that inferior solutions are pruned, since �L is re-
duced from 3 to 2, for case C; from 4 to 3, for case B and
from 7 to 2, for case A.

Table 1 reports statistics on Li for several examples and
resource constraints. The minimal value of Li, its mean
value and its standard deviation (�) are given, along with
the percentage of solutions with minimal Li, i.e. the den-
sity of optimal solutions. Note that with reordering the
mean value either decreases or remains the same and � de-
creases for most examples. Therefore, our technique not
only shortens schedules on average, but also spreads them
over a smaller range of lengths. Observe that reordering in-
creases the density of optimal solutions in the search space,

Table 1: Impact on schedule length Li without and with reordering

example case resource constraints min without with

alu add sub mul cmp Li mean �[%] density mean �[%] density

kim1 B 0 1 1 0 1 8 9.0 5.3 10% 8.8 4.6 23%

C 0 2 1 0 1 6 7.0 6.6 7% 6.9 5.7 12%

rotor A 1 0 0 0 0 11 13.6 12.8 12% 11.0 0.0 100%

B 2 0 0 0 0 8 8.3 5.5 67% 8.0 0.0 100%

E 1 0 0 2 0 9 10.6 5.4 2% 9.8 3.6 15%

F 2 0 0 2 0 8 8.0 0.0 100% 8.0 0.0 100%

s2r A 1 0 0 0 0 14 18.0 9.5 1% 14.7 3.5 41%

B 2 0 0 0 0 8 10.4 7.8 1% 9.5 6.1 16%

C 3 0 0 0 0 8 9.1 9.0 41% 8.9 8.7 62%

E 1 0 0 2 0 12 15.0 8.4 1% 13.1 5.7 25%

F 2 0 0 2 0 8 10.3 8.2 2% 10.0 7.6 16%

G 3 0 0 2 0 8 9.7 11.4 31% 9.4 11.0 45%

kim2 A 0 1 1 1 1 49 64 6.2 0% 59 4.5 0.1%

C 0 1 2 1 1 49 63 5.1 0% 59 4.3 0.1%

D 0 1 1 2 1 47 61 5.9 0% 58 5.0 0.1%

except for a few examples where it remains the same.

�

��

��

��

��

��

��

��

	�

�
 �� �� �� �� �� �� �� �� �	 �

Tc

density [%]

with
without

Figure 4: Density of solutions satisfying a given Tc

For the example \kim2", case D, Figure 4 shows the den-
sity of solutions satisfying a given time constraint Tc, i.e. the
percentages obtained by adding the densities of all solutions
with Li � Tc. Note that, when Tc = 56, 5% of the solutions
without reordering satisfy the time constraint, against about
25% with reordering. About 70% of the solutions observed
without reordering have Li > 59, whereas only 30% of such
inferior solutions are observed with reordering. In summary,
without reordering, more solutions have to be explored on
average to meet a given Tc.

5 Related Work and Conclusions

Our method is more conscious of data-
ow properties than
related methods such as [8] [6], which assign priorities to
operations according to their initial BBs, but do not check
if the operations could move further down. In [6] the prece-
dence of operations linked to BBs on a same path is enforced,
regardless of which BB is currently visited. In our tech-
nique, we use distinct precedence relations for each visited
BB depending on the current links. Tree-Based Scheduling
(TBS) [5] casts the control
ow into trees. Operations are

propagated towards the leaves within a single tree. Unlike
TBS, our method is global: downward code motion is not
restricted to nested conditional trees. TBS propagates op-
erations down to remove redundant operations on a path,
instead of our more general notion of maximal freedom for
downward code motion, which also supports the execution
of operations more than once on a same path [7]. Path-
Based Scheduling has been extended to relieve the required
�xed order [3], but its reordering is performed inside BBs
only, improving the utilization of parallelism within a BB,
but limiting the exploitation of parallelism with complex
control
ow, since speculative code motions are not allowed.

Our method is designed to avoid the greed of classical
built-in scheduling heuristics. Although optimal solutions
may still be overlooked, it increases the density of solutions
satisfying a time constraint. Our reordering seems a�ord-
able: in Equation 1, the test a �� b takes constant time
and the test a ��;i b may require the enumeration of all
links from a and b, typically a small fraction of the total
number of operations. Since our reordering improves the
quality of global scheduling and relies on an e�cient test on
precedence, it seems a viable option for a HLS tool.

References

[1] A. Aiken et al., \Resource-Constrained Software Pipelining",
IEEE Trans. Parallel and Distributed Syst., vol. 6(12), pp. 1248-
1270, Dec. 1995.

[2] U. Banerjee et al., \Automatic Program Parallelization", Proc.
of the IEEE, vol. 81(2), pp. 211-243, Feb. 1993.

[3] R. Bergamaschi et. al.,\Control-Flow Versus Data-Flow Based
Scheduling: Combinining Both Approaches in an Adaptive
Scheduling System", IEEE Trans. on VLSI Systems, vol. 5, no.1,
pp.82-100, March 1997.

[4] J. van Eijndhoven and L. Stok, \A Data Flow Exchange Stan-
dard", Proc. Europ. Conf. Design Automation, pp. 193-199, 1992.

[5] S.Huang et al.,"A tree-based scheduling algorithm for control
dominated circuits", Proc. ACM/IEEE Design Automation Con-
ference, pp. 578-58, 1993.

[6] S.-M. Moon and K. Ebcioglu, \An E�cient Resource-Constrained
Global Scheduling Technique for Superscalar and VLIW Proces-
sors", Proc. Int. Simp. on Microarchitecture, pp. 55-71, 1992.

[7] L. C. V. dos Santos, \Exploiting instruction-level parallelism:
a constructive approach", PhD Thesis, Eindhoven University of
Technology, The Netherlands, November, 1998.

[8] M. Smith et al., \E�cient Superscalar Performance Through
Boosting", Proc. Int. Conf. Archit. Support for Prog. Lang. and
Operating Syst., pp. 248-259, 1992.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

