
PROPTEST: A Property Based Test Pattern Generator for Sequential

Circuits Using Test Compaction�

Ruifeng Guo Sudhakar M. Reddy Irith Pomeranz
Electrical & Computer Engineering Department

University of Iowa, Iowa City, IA 52242

Abstract

We describe a property based test generation

procedure that uses static compaction to generate

test sequences that achieve high fault coverages at

a low computational complexity. A class of test

compaction procedures are proposed and used in

the property based test generator. Experimental

results indicate that these compaction procedures

can be used to implement the proposed test gen-

erator to achieve high fault coverage with rela-

tively smaller run times.

1. Introduction

Generation of tests to detect faults in synchronous se-
quential circuits is a challenging problem. Scalable meth-
ods to perform test generation have been under study
for a large number of years. The existing methods can
be classi�ed into four categories. The �rst category of
methods uses the branch and bound technique to derive
tests for target faults[1-8]. The second category uses fault
simulation to direct the search for a test sequence for the
target faults[9-14]. The third category uses certain ob-
served properties of test sequences in deriving input se-
quences that have similar properties, and are useful as
test sequences[15, 16]. The fourth type of methods is
based on pseudo-random or special purpose test genera-
tor circuits that produce e�ective test sequences [17-19].
Fault simulation based test generators have the ad-

vantage that they can be adapted to new fault models

�Research reported was supported in part by SRC Grant 98-TJ-

645 and NSF Grant MIP-9725053.

or di�erent circuit descriptions(e.g., RTL instead of gate
level) with minimal e�ort by using a fault simulator suit-
able for the new fault model and/or circuit description.
The existence of asynchronous elements in circuits can
also be accommodated. Recent e�orts in developing fault
simulation based test generators have mostly used ge-
netic optimization techniques to engineer test sequences
for target faults [11-14]. These procedures have recently
achieved high fault coverages but require a large compu-
tational e�ort.

The property based test generator reported in [15] uses
only logic simulation in deriving a test sequence whose
coverage is determined by fault simulation. The run time
of this method is small but as of now it has not achieved
as high a fault coverage as the genetic optimization based
test generation procedures.

In [23], a static test generation procedure that com-
bines fault simulation based and property based test gen-
eration was described. The procedure achieves high fault
coverage with relatively low computational e�ort by tak-
ing advantage of several techniques, including static test
compaction. Since the procedure does not use determin-
istic test generation steps such as implication or branch
and bound, it does not identify undetectable faults. This
drawback is the property of test generators, including
the simulation based test generators, that do not use any
deterministic test generation procedures.

In this work, we study the e�ects of using a proposed
class of compaction techniques in a test generation proce-
dure that combines fault simulation based and property
based test generation. The results show that a faster
test compaction procedure does not necessarily result in
a faster test generation procedure for all circuits and that
the proposed procedures have an advantage over existing
ones in producing high fault coverages at short run times.

The paper is organized as follows: In Section 2, we
describe the motivation for the proposed test genera-
tion procedure. In Section 3, we give an overview of
the test generation procedure. The static test sequence
compaction procedures used in this work are described in
Section 4. In Section 5 we provide experimental results.
Section 6 concludes the paper.

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

2. Preliminaries

The proposed procedure as well as the procedure in [23]
is inspired by the following recent results related to test
sequence generation for synchronous sequential circuits.
(i) The lengths of the test sequences generated by a
variety of test generators can be reduced quite signi�-
cantly (over 50%) by omitting test vectors from a test
sequence[20]. This reduction in test length is achieved
without loss of fault coverage [20]. The process of reduc-
ing the length of a given test sequence is called static test
compaction. Since static test compaction reduces the test
length without reducing the fault coverage, one may ar-
gue that static test compaction retains vectors useful to
achieve the fault coverage while omitting other vectors
in order to reduce the test length. If the fault cover-
age of a given test sequence is not maximum, then static
compaction often results in a shorter test sequence with
fault coverage higher than that of the original sequence
[20]. This happens in spite of the fact that the com-
pacted sequence is obtained by omitting some input vec-
tors from the original test sequence. This again implies
that static compaction enriches the quality of the test se-
quence. Thus, one may argue that static compaction im-
plicitly captures properties desirable in an e�ective test
sequence for the circuit under test.

(ii) Genetic optimization has been used successfully to
obtain test sequences with high fault coverage[13, 14].
The basic steps in genetic optimization are mutation and
crossover. Mutation is the process of complementing bits
in a given sequence. The earliest sequential circuit test
generator of [9] also used complementation of bits of a
given sequence(e.g., a functional test sequence) to derive
new sequences that detect other faults and/or to improve
the fault coverage of a given sequence. We use mutation
as a way to perturb a given test vector in this work.

(iii) In [17], it was observed that holding the inputs of
a sequential circuit at �xed values for several clock cycles
improves the fault coverage obtained by a pseudo-random
sequence generated, for example, by an LFSR. In this ap-
proach, an input vector generated by a pseudo-random
pattern generator is held for a predetermined number of
cycles. In terms of state traversal, holding the inputs
constant makes the circuit traverse potentially di�erent
states appearing in the state table under the column cor-
responding to the held input vector. Test sequences that
traverse large numbers of states were observed to be ef-
fective in detecting faults in several works [14-16].

Summarizing, the experimental results presented in
several recent works indicate that static test compaction
based on omitting vectors in a test sequence, perturba-
tion, and holding of inputs constant in a test sequence
may lead to a more e�ective test sequence.

In this work as well as in [23], static test compaction,

perturbation, and input holding are used together to pro-
duce an ATPG tool that is highly eÆcient and e�ective
in achieving high fault coverage.

3. Overview of the Test Generation Procedure

The following are the basic steps used in the ATPG pro-
posed here and in [23].
Step 1: Generate a random input sequence S0 of

length L. Set i = 0.
Step 2: Fault Simulate Si on the circuit under test.

Let Fi be the set of faults detected by input sequence Si.
Step 3: Use static test sequence compaction on Si to

obtain a compacted test sequence Sic whose fault cover-
age is the same as that of Si or higher, i.e., Sic detects
all the faults in Fi and possibly additional faults.
Step 4: Check the termination condition. If satis�ed,

stop.
Step 5: Extend Sic by appending a suÆx Sisu to ob-

tain an input sequence Si+1 = Sic �Sisu. The suÆx Sisu is
obtained by randomly picking a vector, say v, in Sic, ran-
domly perturbing it to obtain a vector v', and including n
copies of v' in consecutive positions of Sisu (inclusion of n
copies of v' corresponds to holding the inputs constant at
v' for n cycles). The value of n is randomly determined.
The extension of Sic into Si+1 by adding vectors to the
suÆx Sisu continues until the length of Si+1 reaches a
predetermined value.
Step 6: Set i = i+1 and go to Step 2
Termination Condition: The procedure can be ter-

minated when a predetermined number of consecutive
sequence expansion steps do not increase the fault cover-
age, when the desired fault coverage is obtained, or when
the allowed run time is exceeded.
It can be seen that a test sequence for a given circuit

is derived by the procedure outlined above by starting
with a random sequence. The procedure iterates over
static test compaction and sequence expansion. Expan-
sion is done through random selection, perturbation, and
holding of vectors in the compacted sequence.
Several methods to extend the compacted sequences in

Step 5 above were investigated in [23]. The test genera-
tor in [23] used the vector restoration-based static com-
paction described in [22]. As we show later, the com-
paction procedure can have a signi�cant e�ect on the
fault coverage and the run time of the test generation pro-
cedure. In this work, we introduce a family of compaction
procedures, and incorporate them into the test generator
procedure described above. We show that these proce-
dures are capable of speeding up the test generation pro-
cess and also achieve high fault coverages.

4. Static Test Sequence Compaction

Static test sequence compaction is used as a post-

processing step to test generation to reduce test sequence
length. Sequence compaction by omitting vectors from
a given test sequence has proven to be very e�ective in
reducing the test length[20]. A variation of this method
called vector restoration-based test sequence compaction
was introduced in[21] and led to fast and e�ective com-
paction procedures[21, 22]. The compaction methods we
describe next are variations of the method called Reverse
Order Restoration described in [22]. We next describe
these procedures. The �rst one is called Linear Reverse
Order Restoration and is similar to the one in [22]. The
second is a class of methods called Radix Reverse Order
Restoration which we introduce here for the �rst time.
We use an example to describe these compaction meth-
ods.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
f1 f2 f5 f7

f3 f6 f8
f4

Figure 1: Example for Reverse Order Vector

Restoration Based Test Compaction

Consider the example given in Figure 1. In Figure 1, a
test sequence T =< t1; t2; ::::::; t12 > of length 12 is shown
together with the faults detected on the application of an
input vector of this test sequence. In the example, the
test sequence T detects faults f1; f2; f3; f4; f5; f6; f7 and
f8. Faults f7 and f8 are detected on the application of
t12, faults f2; f3 and f4 are detected on the application
of t4, etc. A restoration based static test sequence com-
paction procedure derives a compacted test sequence Tc

by keeping only some of the test vectors in the given test
sequence T. Initially, the compacted sequence Tc is set to
a null sequence or to a pre�x of the original test sequence
T. In our method, we keep a pre�x of T that synchro-
nizes the fault-free circuit or a pre�x of arbitrary length.
For the example being considered, assume that t1 and t2
synchronize the fault-free circuit. Thus, initially, we set
the compacted sequence Tc to be Tc=< t1; t2 >.
Next, all the faults detected by the current Tc are

dropped. In the example, no faults are dropped at this
time. Next, the faults that are detected the latest by the
original test sequence T and not yet detected by the cur-
rent compacted sequence are identi�ed. In the example
being considered, these are faults f7 and f8. We extend
Tc to detect the target faults f7 and f8. Extending Tc is
done by concatenating a subsequence of T starting from
the vector at which the target faults are detected. In the
example, we concatenate t12 to Tc=< t1; t2 > to obtain
Tc=< t1; t2; t12 > which is simulated to check if it detects
the target faults f7 and f8 (actually only t12 is simulated
since the states reached by all the circuits with yet un-

detected faults and the fault free circuit are saved when
the pre�x < t1; t2 > was fault simulated).
If it does not detect them, t11 that precedes t12 as

well as t12 are concatenated to Tc=< t1; t2 > to see
if the extended sequence Tc=< t1; t2; t11; t12 > detects
f7 and f8. In Linear Reverse Order Restoration, the
length of the subsequence concatenated to Tc is extended
by one in each iteration. In the example under con-
sideration, we �rst try Tc=< t1; t2; t12 >, next we try
Tc=< t1; t2; t11; t12 >, then Tc=< t1; t2; t10; t11; t12 >,
and so on until we �nd a Tc that detects the target faults
f7 and f8. Assume that Tc=< t1; t2; t10; t11; t12 > de-
tects f7 and f8. Next, all the yet undetected faults are
simulated using Tc=< t1; t2; t10; t11; t12 >. As pointed
earlier, we only simulate < t10; t11; t12 > at this time
since the states of all faulty circuits with yet undetected
faults and the fault free circuit are saved after simulating
the pre�x < t1; t2 >. Detected faults are dropped. As-
sume that the current Tc=< t1; t2; t10; t11; t12 > detects
faults f1, f2 and f6 in addition to f7 and f8. Next, we
determine the yet undetected fault(s) detected the lat-
est by the original test sequence. In the example be-
ing considered, it is fault f5. We extend the current
compacted sequence Tc=< t1; t2; t10; t11; t12 > by con-
catenating t8, the vector at which the target fault f5
was detected by the original test sequence T. We con-
tinue to extend Tc to detect f5 by concatenating vec-
tors prior to t8 in T until the extended sequence de-
tects f5. Let this Tc be Tc=< t1; t2; t10; t11; t12; t7; t8 >.
The yet undetected faults are simulated using Tc =
< t1; t2; t10; t11; t12; < t7; t8 > and faults detected are
dropped. Actually, only < t7; t8 > is simulated in this
step because the states of the faulty circuits with yet un-
detected faults and the fault free circuit are saved after
simulating the pre�x < t1; t2; t10; t11; t12 >. Assume that
this Tc detects the remaining undetected faults f3 and f4.
Since all the faults detected by the original test sequence
are detected by Tc=< t1; t2; t10; t11; t12; t7; t8 >, it is the
desired compacted sequence. Two points are to be noted
with regard to Tc. (1) Tc contains vectors included in
T, however, the order in which the vectors appear are
reversed(for example t10 appears before t7) and (2) Tc is
derived by restoring vectors of T into Tc, and hence the
name Reverse Order Restoration.
In the Reverse Order Restoration method described

above, the compacted sequence was extended by one vec-
tor at a time to �nd a sequence that detects a set of target
faults. Thus, we call it Linear Reverse Order Restoration
(LROR). To restore n vectors, the LROR procedure per-
forms n iterations where the target faults are simulated
under a test sequence whose length increases by one at
every iteration. It was observed in [20] that a process of
this type can be speeded up by using binary search. In
the context of vector restoration, binary search implies

that 2i�1 vectors are restored in iteration i. Thus, to re-
store 15 vectors, LROR performs 15 iterations, whereas
using binary search, the �rst iteration restores 1 vector,
the second iteration restores 1+2 = 3 vectors, the third
iteration restores 1+2+4=7 vectors, and the fourth it-
eration restores the required 1+2+4+8=15 vectors, thus
completing the restoration in four iterations instead of
15. Binary search of this type was also used in [24].
In this work, we extend the notion of binary search to
radix search in a procedure we refer to as Radix Reverse
Order Restoration(RROR). Under radix search with a
radix r, ri�1 vectors are restored in iteration i. We use
1 � r � 2 in our implementation. Notice that RROR
includes LROR as a special case with radix r = 1.
One of the issues to be considered in radix search, also

occurring in binary search, is that the number of vec-
tors restored in the last iteration may be too large. For
example, consider the case where 10 vectors need to be
restored. Binary search will require 4 iterations and will
restore 15 vectors instead of 10. To remove the unnec-
essary vectors, we perform radix search on the vectors
added in the last iteration. Suppose that vectors tj1 to
tj2 were added in the last iteration. Let j2 � j1 + 1 =
L be the length of the subsequence between tj1 and tj2.
We consider the addition of L/r vectors instead of the
L vectors added in the last iteration. If this is suÆcient
to detect the target faults, we continue the radix search
with the sequence of length L/r, otherwise, we continue
the radix search over the sequence of length L-L/r that
remains.
For example, consider the case of binary search where

8 vectors were added in the last iteration. We consider
the addition of 4 vectors instead of 8. If this is suÆcient
to detect the target faults, we consider the addition of
only two vectors, otherwise, we consider the addition of
6 vectors, and so on.
Another important point to be noted for both LROR

and RROR is the following. If, during the restoration, we
include in Tc an input vector, say tj , that detects some
yet undetected faults di�erent from the target faults with
which we started, we augment the set of target faults by
including all the faults detected at tj . The restoration
is then done by considering sequences of vectors prior to
tj of length r1, r2, r3, and so on. This helps us avoid
adding long subsequences for the new faults added to the
set of target faults.
It should be noted that reverse order restoration was

independently done in [24]. However, in restoring vectors
for a new set of target faults in [24], test vectors are re-
stored such that the target faults are detected assuming
the initial state of the circuit is unknown. This is equiva-
lent to assuming that the current compacted sequence is
a null sequence in each step of restoration for a set of tar-
get faults. In the procedures described above and in [22],

the current compacted sequence is used as a pre�x for
the restored subsequence for the new set of target faults.
This in general leads to higher levels of compaction than
the procedure described in [24].
We applied the Linear and Radix Reverse Order

Restoration based test compaction described above to
the test sequences generated by the sequential test gener-
ator STRATEGATE[14] for several benchmark circuits.
We used radii r = 1.2, 1.5, 1.8 and 2.0. For two larger
ISCAS89 benchmark circuits s15850.1 and s38584.1, we
compacted a random sequence of length 40,000 since the
test sequences for these circuits generated by STRATE-
GATE were not available. These results are given in
Table 1. In Table 1 following the circuit name, we give
the length of the test sequences of STRATEGATE or
40,000 for the larger benchmark circuits given in the last
two rows. Next we give the length of the compacted
sequences and run time for the Linear Reverse Order
Restoration method. In the next eight columns, we give
the normalized compacted test sequence length and run
times for the Radix Reverse Order Restoration methods.
The normalized test sequence length and run times for
these methods are obtained by dividing the values for the
radix method by the values for the linear method given
in columns three and four. In the third row from the
bottom of the table we give the average values of the
normalized test sequence length and run times computed
over all the circuits above this row. The CPU times re-
ported are for the machine with a 400MHz Pentium II
processor and using the LINUX operating system.
The following points can be noted from Table 1:
(i) For the smaller benchmark circuits, the linear com-

paction method gives, on the average, approximately 10%
better test length compaction but requires proportion-
ately longer run time. For some circuits these di�erences
are higher. On the average among the RROR proce-
dures, the procedure with r=2.0 (i.e. binary restoration)
performs the poorest.
(ii) For the two larger benchmark circuits, the run

times of the radix compaction methods are much smaller
(approximately by a favor of 2 on the average) than that
for the linear compaction method. The radix compaction
methods lead to compacted test sequences for circuit
s38584.1 that are 24% to 42% longer than that for LROR.

5. Experimental Results on Test Generation

The results of test generation based on test sequence com-
paction for the smaller benchmark circuits of Table 1
are given in [23]. These results show that the proposed
test generator achieves the highest reported fault cov-
erages for all the circuits while utilizing relatively short
run times. As shown next, similar results are obtained for
the larger circuits by the test generators using the LROR

Table 1: Results Using LROR and RROR Procedures

LROR RROR
r=1.2 r=1.5 r=1.8 r=2.0

Ckt Len Len Time NL NT NL NT NL NT NL NT
s298 194 118 0.13 1.06 0.62 1.10 0.62 1.10 0.62 1.08 0.69
s344 86 46 0.03 1.02 1.33 1.02 1.67 1.02 1.33 1.02 1.33
s382 1486 540 0.74 1.06 0.65 1.06 0.62 1.06 0.62 1.06 0.61
s400 2424 579 0.85 1.44 0.84 1.17 0.76 1.77 0.86 1.77 0.86
s444 1945 587 1.23 1.21 0.54 1.43 0.64 1.42 0.54 1.43 0.63
s526 2642 998 3.03 1.55 0.56 1.56 0.87 1.30 0.46 1.23 0.48
s641 166 97 0.17 1.09 0.82 1.04 0.88 1.08 0.82 1.15 1.18
s713 176 88 0.11 1.09 1.18 1.18 1.18 1.18 1.18 1.20 1.36
s820 590 363 0.51 1.20 1.61 1.22 1.43 1.21 1.57 1.22 1.55
s832 701 460 0.85 1.04 0.96 1.04 0.89 1.04 0.96 1.05 1.15
s1196 574 231 0.40 1.00 0.97 0.97 1.00 0.97 1.00 1.01 1.25
s1238 625 230 0.43 1.00 1.00 1.02 1.02 1.02 1.05 1.06 1.26
s1423 3943 954 11.79 1.01 0.69 1.10 0.75 1.18 0.73 1.11 0.69
s1488 593 394 2.44 1.12 0.88 1.08 0.79 1.14 0.77 1.18 0.89
s1494 540 344 1.62 1.26 2.02 1.32 1.36 1.30 1.67 1.36 1.52
s5378 11481 634 38.28 1.25 0.98 1.06 0.93 1.20 0.95 1.23 0.97
s35932 257 146 176.60 1.01 0.62 1.01 0.65 1.04 0.65 1.04 0.67
am2910 2509 421 3.98 0.95 0.87 0.91 0.93 0.89 0.88 0.97 0.93
div16 1098 439 3.42 1.00 0.57 1.00 0.60 1.00 0.61 1.00 0.63

mult16 1696 165 1.88 0.99 0.99 1.02 0.98 1.01 0.98 1.04 0.99
pcont2 195 77 2.58 1.01 1.00 0.94 0.98 0.94 0.98 1.13 1.08
piir8 1003 433 57.56 1.00 0.53 1.03 0.56 1.03 0.56 1.04 0.60
piir8o 417 235 19.78 0.88 0.83 0.99 0.81 0.96 0.83 0.91 0.89

Average 1.0 1.0 1.10 0.9 1.10 0.91 1.12 0.9 1.14 0.97
s15850.1 40000 1986 2129 1.00 0.69 1.03 0.68 1.02 0.69 1.05 0.68
s38584.1 40000 11910 14538 1.24 0.43 1.36 0.44 1.42 0.42 1.38 0.42

NL: Normalized Length NT: Normalized Time

and RROR procedures. For the two larger benchmark
circuits, we embedded the �ve compaction methods com-
pared in Table 1 into the test generation procedure de-
scribed in Section 3. We set the length of the random
sequence used in Step 1 of the test generator to 5,000.
Since di�erent compaction procedures achieve di�erent
levels of compaction, we modi�ed the way in which the
compacted sequence Tc is extended. Instead of extending
Tc to a preselected length, the compacted sequence Tc is
initially extended by appending 5,000 vectors using the
random selection, perturbation, and hold as described in
Step 5 of Section 3. Thus the extended sequence now
would be of length equal to that of Tc plus 5,000. When
two extended sequences did not detect any additional
faults, in the subsequent iteration of the test sequence ex-
tension, we appended 40,000 vectors to Tc and stopped
the test generation procedure after compacting the re-
sulting test sequence. We also used a random sample
of 256 faults in the initial phases of the iterative proce-
dure. The fault sample was replenished as the faults in
the sample were detected. We applied the test generation
procedure as described above and using the �ve di�erent
compaction procedures described in Section 4 to circuits
s15850.1 and s38584.1. The results of this experiment are
given in Table 2. In Table 2, after the circuit name we
give the total number of faults followed by the number

of faults detected, and run times for the test generators
using LROR procedure and RROR procedure. The CPU
times reported are for the machine with a 400MHz Pen-
tium II processor and using the LINUX operating system.

From Table 2, it can be seen that for circuit s15850.1,
the test generator using the LROR procedure achieves
higher fault coverage than any of the RROR based test
generators. For s38584.1 circuit only one of the RROR
based test generators achieves higher fault coverage than
LROR based test generator. The run times of the RROR
based test generators are smaller than for LROR based
test generator.

In the next experiment we let the RROR based test
generators continue to generate tests for s15850.1 until
the run time exceeded that for LROR based test genera-
tor for this circuit. These results are reported in Table 3.
In Table 3, after the circuit name we give the number of
faults detected and run times for LROR and the RROR
based test generators. Even though approximately 50%
more run time was allowed for the RROR based test gen-
erators, the fault coverage for them remained much below
that for the LROR based test generator. Thus it appears
that even though the RROR compaction procedures are
in general faster than LROR procedure, test generators
based on RROR only may not necessarily lead to faster
test generation procedures for all circuits.

Table 2: Test Generation Using LROR and RROR Procedures

LROR RROR
r=1.2 r=1.5 r=1.8 r=2.0

Ckt Total Flt Time Flt Time Flt Time Flt Time Flt Time
s15850.1 11725 5621 2249 4976 1812 4917 1844 4834 1782 4916 1845
s38584.1 36303 26828 12306 26759 8242 26688 8431 26783 7981 26654 7190

Flt: Number of faults detected Time: CPU time in seconds

Table 3: Allowing Additional Run Time for RROR Procedures

LROR RROR
r=1.2 r=1.5 r=1.8 r=2.0

Ckt Flt Time Flt Time Flt Time Flt Time Flt Time
s15850.1 5621 2249 5127 3647 5065 3922 4965 3462 4988 4040

Flt: Number of faults detected Time: CPU time in seconds

In the next experiment we wanted to investigate us-
ing RROR compaction together with LROR compaction
to achieve higher fault coverage while keeping the run
time below that for LROR based test generators. In the
test generators, we used LROR compactions initially un-
til two extended sequences did not detect any additional
faults and then switched to an RROR compaction proce-
dure. The results of this experiment are given in Table 4.
The last eight columns of Table 4 give the results for the
cases combining LROR and RROR procedures. Compar-
ing the entries for s15850.1 circuit in Tables 3 and 4, it
can be seen that the fault coverages for test generators
using LROR followed by RROR went up while the run
times decreased, relative to test generators using RROR
only. The fault coverages of these procedures are higher
than that for LROR only based test generator for both
the circuits and run times are shorter. Similar results
can be observed for circuit s38584.1 by comparing the
corresponding entries in Tables 2 and 4.
In Table 5, we compare the results reported in

Table 4 with those obtained by the test generator
STRATEGATE[14]. STRATEGATE uses genetic opti-
mization techniques. From Tables 2 and 5 it can be
seen that all the test generation procedures reported here
detect more faults than STRATEGATE. Run times for
STRATEGATE are not directly comparable since the
workstation used by STRATEGATE is HP J200 with
256MB memory.

6. Conclusions

We proposed a class of static test sequence compaction
techniques for use in a new sequential circuit test gener-
ation procedure that uses test compaction to capture de-
sired properties of test sequences that achieve high fault
coverage. It was shown that faster test sequence com-
paction techniques may not always achieve higher fault
coverage even if they are given the same computation

time as a slower compaction procedure. We also showed
that using two di�erent compaction procedures in the
test generator leads to higher fault coverage at reduced
computation times.

References

[1] M. Abramovici, M. A. Breuer and A. D. Fried-
man, \Digital Systems Testing and Testable De-
sign," IEEE Press, 1990

[2] W.T. Cheng, \The Back Algorithm for Sequential
Test Generation," Int'l. Conf. on Computer Design,
1988, pp. 66-69

[3] W. -T. Cheng and S. Davidson, \Sequential Circuit
Test Generator(STG) Benchmark Results," Int'l
Symp. Circuits & Systems, May 1989, pp. 1938-1941

[4] W.-T. Cheng and T. Chakraborty, \Gentest - An
Automatic Test-Generation System for Sequential
Circuits," IEEE Computer, Vol. 22, No.4, April,
1989, pp. 28-35

[5] T. Niermann and J. Patel, \HITEC: A Test Gener-
ation Package for Sequential Circuits," in European
Conf. on Design Automation, 1991, pp. 214-218

[6] D. H. Lee and S. M. Reddy, \A New Test Generation
Method for Sequential Circuits," in Proc. Int'l Conf.
on Computer Aided Design, 1991, pp. 446-449

[7] X. Lin, I. Pomeranz and S. M. Reddy, \MIX: A Test
Generation System for Synchronous Sequential Cir-
cuits," in Proc. 11th Int'l conf. on VLSI Design, Jan.
1998, pp. 456-463

[8] T. Kelsey, K. Saluja and S. Lee, \An EÆcient Algo-
rithm for Sequential Circuit Test Generation," IEEE
Trans. on Computer, Vol. 42, Nov. 1993, pp. 1361-
1371

[9] S. Seshu, \On an Improved Diagnosis Program,"
IEEE Trans. on Electronic Computers, Vol. EC-12,
NO. 2, Feb. 1965, pp.76-79

Table 4: Test Generation Combining LROR and RROR Procedures

LROR LROR + RROR
r=1.2 r=1.5 r=1.8 r=2.0

Ckt Flt Time Flt Time Flt Time Flt Time Flt Time
s15850.1 5621 2249 5629 2048 5631 2006 5653 1968 5670 1953
s38584.1 26282 12306 26989 7454 26691 6344 26988 7092 26879 6315

Flt: Number of faults detected Time: CPU time in seconds

Table 5: Comparing Test Generation Results with STRATEGATE[14]

LROR LROR + RROR STRATEGATE

r=1.2 r=1.5 r=1.8 r=2.0

Ckt Flt Time Flt Time Flt Time Flt Time Flt Time Flt Time

s15850.1 5621 2249 5629 2048 5631 2006 5653 1968 5670 1953 4586 34920

s38584.1 26282 12306 26989 7454 26691 6344 26988 7092 26879 6315 26211 79560

Flt: Number of faults detected Time: CPU time in seconds

[10] T. J. Snethen, \Simulation-Oriented Fault Test Gen-
erator," in Proc. 14th Design Automation Conf.,
June 1977, pp. 88-93

[11] D. G. Saab, Y. G. Saab, and J. A. Abraham, \Cris:
A Test Cultivation Program for Sequential VLSI
Circuits," in Proc. IEEE Int'l Conf. on Computer-
Aided Design, Nov. 1992, pp. 216-219

[12] E. M. Rudnick, J. G. Holm, D. G. Saab and J. H.
Patel, \Application of Simple Genetic Algorithms to
Sequential Circuit Test Generation," in Proc. Euro-
pean Design and Test Conf., March 1994, pp. 40-45

[13] P. Prinetto, M. Rebaudengo and M. S. Reorda, \An
Automatic Test Generator for Large Sequential Cir-
cuits Based on Genetic Algorithm," in Proc. Int'l
Test Conf., 1994, pp. 240-249

[14] M.S. Hsiao, E.M. Rudnick and J.H. Patel, \Sequen-
tial Circuit Test Generation Using Dynamic State
Traversal," in Proc. 1996 Europ. Design & Test
Conf., March 1996, pp. 22-28

[15] I. Pomeranz and S. M. Reddy, \LOCSTEP: A Logic
Simulation Based Test Generation Procedure," in
Proc. 25th Fault-Tolerant Computing Symp., June
1995, pp. 110-119

[16] I. Pomeranz and S. M. Reddy, \ACTIVE-
LOCSTEP: A Test Generation Procedure Based on
Logic Simulation and Fault Activation," in Proc.
27th Fault-Tolerant Computing Symp., June 1997,
pp. 144-151

[17] L. Nechman, K. K. Saluja, S. Upadhyaya and R.
Reuse, \Random Pattern Testing for Sequential Cir-
cuits Revisited," in Proc. of 26th Fault-Tolerant
Computing Symp., June, 1996, pp. 44-52

[18] K.-H. Tsai, M. Marek-Sadowska, J. Rajski, \Scan-
Encoded Test Pattern Generation for BIST," in
Proc. Int'l Test Conf. , 1997, pp. 548-556

[19] I. Pomeranz and S. M. Reddy, \Built-in Test Gener-
ation for Synchronous Sequential Circuits," in Int'l.

Conf. on Computer-Aided Design, Nov. 1997, pp.
421-426

[20] I. Pomeranz and S.M. Reddy \On Static Com-
paction of Test Sequences for Synchronous Sequen-
tial Circuits", in Proc. 33rd Design Automation
Conf., June 1996, pp. 215-220

[21] I. Pomeranz and S.M. Reddy \Vector Restoration
Based Static Compaction of Test Sequences for Syn-
chronous Sequential Circuits", in Proc. Intn'l. Conf.
on Computer Design, Oct. 1997, pp.360-365

[22] R. Guo, I. Pomeranz and S.M. Reddy, \On
Speeding-Up Vector Restoration Based Static Com-
paction of Test Sequences for Sequential Circuits",
in Proc. Asian Test Symp., Dec. 1998, pp. 467-471

[23] R. Guo, I. Pomeranz and S.M. Reddy, \A Fault
Simulation Based Test Pattern Generator for Syn-
chronous Sequential Circuits,"Proc. VLSI Test
Symp., April, 1999

[24] S. Bommu, K. Doreswamy, S. Chakradhar, \Static
Test Sequence Compaction Based on Segment Re-
ordering and Accelerated Vector Restoration," Proc.
International Test Conf., 1998, pp. 954-961

[25] H.K. Lee and D.S. Ha \HOPE: An EÆcient Paral-
lel Fault Simulator for Synchronous Sequential Cir-
cuits," in Proc. 1992 Design Automation Conf., June
1992, pp. 336-340

[26] H.K. Lee and D.S. Ha \New Technique for Improv-
ing Parallel Fault Simulation in Synchronous Se-
quential Circuits," In Proc. 1993 Intn'l. Conf. on
Computer-Aided Design, Oct. 1993, pp. 10-17

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

