
Verifying Imprecisely Working Arithmetic Circuits ∗

M. Huhn, K. Schneider, Th. Kropf, and G. Logothetis
Universität Karlsruhe

Institut für Rechnerentwurf und Fehlertoleranz (Prof. Dr.-Ing. D. Schmid)
P.O. Box 6980, 76128 Karlsruhe, Germany

mailto: {huhn,schneide,kropf,logo}@informatik.uni-karlsruhe.de
http://goethe.ira.uka.de/hvg/

Abstract

If real number calculations are implemented as circuits,
only a limited preciseness can be obtained. Hence, formal
verification can not be used to prove the equivalence be-
tween the mathematical specification based on real num-
bers and the corresponding hardware realization. Instead,
the number representation has to be taken into account in
that certain error bounds have to be verified.

For this reason, we propose formal methods to guide the
complete design flow of these circuits from the highest ab-
straction level down to the register-transfer level with for-
mal verification techniques that are appropriate for the cor-
responding level. Hence, our method is hybrid in the sense
that it combines different state-of-the-art verification tech-
niques. Using our method, we establish a more detailed no-
tion of correctness that considers beneath the control and
data flow also the preciseness of the numeric calculations.
We illustrate the method with the discrete cosine transform
as a real-world example.

1. Introduction

Many hardware systems implement algorithms that work on
the real numbers. Typical applications are consumer elec-
tronics like mobile phones or digital cameras which heavily
use digital signal processing to perform filter computations
like a Fast Fourier Transform (FFT) or a Discrete Cosine
Transform (DCT) [9].

Although the underlying algorithms assume real num-
bers, hardware realizations only allow a number representa-
tion with a finite, fixed number of bits. Therefore, hardware
implementations of these algorithms are only approxima-
tions where the real numbers are implemented with a lim-
ited preciseness.

∗This work has been financed by the ‘Deutsche Forschungsgemein-
schaft’ by projects Automated System Design, SFB 358/C2 and project
‘Verification of embedded systems’.

Most approaches to formal verification ignore this fact
and perform the verification at an abstract level, where the
data values are viewed as real numbers. Thereby, the con-
trol and data flow can be proven correct, which is clearly
necessary to avoid malfunctioning circuits. However, even
if the verification at the abstract level succeeds, the circuit
may still produce wrong results due to the impreciseness of
the data values.

To establish a more detailed notion of correctness for
these circuits, the impreciseness of the data words has to
be taken into account. We therefore propose a verification
flow that guides the design flow starting at the algorithmic
level down to the register-transfer level.

At the algorithmic level, we are able to compare differ-
ent algorithms where we view the data words as real num-
bers. For this reason, we propose to usecomputer algebra
or automated theorem proving, in particularterm rewriting
as methods to solve the resulting verification problems. At
the next level of abstraction, the bitwidths of the circuits are
fixed. Hence, our verification problem is now to verify that
certain error bounds for the results are met. To determine
these error bounds, we propose to analyze the numerical
operations with a computer algebra system.

As usually a lot of optimizations are performed at the
register-transfer level, we must additionally be able to com-
pare different circuits at this level. It will turn out thatmodel
checking techniquesare most appropriate at this level. In
contrast to automated theorem proving, these methods al-
low a fully automated verification and moreover, they di-
rectly support a bit-oriented description. On the other hand,
they are restricted to finite state systems and can therefore
not deal with real numbers.

We illustrate the usefulness of our method by compar-
ing different algorithms for the discrete cosine transform
(DCT). In particular, we consider the verification problems
in the design flow at different abstraction levels and show
how these can be solved with state-of-the-art methods.

mailto: Michaela.Huhn@informatik.uni-karlsruhe.de, Klaus.Schneider@informatik.uni-karlsruhe.de, Thomas.Kropf@informatik.uni-karlsruhe.de logo@informatik.uni-karlsruhe.de
http://goethe.ira.uka.de/hvg/

Loeffler, Ligtenberg and Moschytz (LLMDCT):

L0,0 := x0 + x7 L1,0 := L0,0 + L0,3

L0,1 := x1 + x6 L1,1 := L0,1 + L0,2

L0,2 := x2 + x5 L1,2 := L0,1 − L0,2

L0,3 := x3 + x4 L1,3 := L0,0 − L0,3

L0,4 := x3 − x4 L1,4 := ROT0(L0,4, L0,7, 3)
L0,5 := x2 − x5 L1,5 := ROT0(L0,5, L0,6, 1)
L0,6 := x1 − x6 L1,6 := ROT1(L0,5, L0,6, 1)
L0,7 := x0 − x7 L1,7 := ROT1(L0,4, L0,7, 3)

L2,0 := L1,0 + L1,1 z0 := L2,0

L2,1 := L1,0 − L1,1 z1 := (L2,4 + L2,7)

L2,2 := ROT0(L1,2, L1,3, 6) z2 :=
√

2 L2,2

L2,3 := ROT1(L1,2, L1,3, 6) z3 :=
√

2 L2,5

L2,4 := L1,4 + L1,6 z4 := L2,1

L2,5 := L1,7 − L1,5 z5 :=
√

2 L2,6

L2,6 := L1,4 − L1,6 z6 :=
√

2 L2,3

L2,7 := L1,5 + L1,7 z7 := L2,7 − L2,4

Arai, Agui and Nakajiama (AANDCT):

L0,0 := x0 + x7 L1,0 := L0,0 + L0,3

L0,1 := x1 + x6 L1,1 := L0,1 + L0,2

L0,2 := x2 + x5 L1,2 := L0,1 − L0,2

L0,3 := x3 + x4 L1,3 := L0,0 − L0,3

L0,4 := x3 − x4 L1,4 := L0,4 + L0,5

L0,5 := x2 − x5 L1,5 := L0,5 + L0,6

L0,6 := x1 − x6 L1,6 := L0,6 + L0,7

L0,7 := x0 − x7 q0 := c2 − c6
q1 := c2 + c6

L2,0 := c4(L1,2 + L1,3) u0 := L1,0 + L1,1

u1 := L3,1 + L2,4

L2,2 := q0L1,4 + L2,5 u2 := L2,0 + L1,3

L2,3 := c4L1,5 u3 := L3,3 − L2,2

L2,4 := q1L1,6 + L2,5 u4 := L1,0 − L1,1

L2,5 := c6(L1,4 − L1,6) u5 := L3,3 − L2,2

L3,1 := L0,7 + L2,3 u6 := L1,3 − L2,0

L3,3 := L0,7 − L2,3 u7 := L3,1 − L2,4

Figure 1. Optimized DCT algorithms

2. The Discrete Cosine Transform

The DCT is a spectral transformation that is often used for
audio and image compression. Examples of DCT appli-
cations are GSM speech transcoding, JPEG still video and
MPEG motion video compression. For a more detailed pre-
sentation of the DCT and its application in JPEG see [9].

As the DCT is a representative of complex, data driven
algorithms based on real numbers, it is a good example to il-
lustrate our methods. We stress however that the techniques
presented in the following are not limited to the DCT.

2.1. Formal Definition of the DCT

The DCT is a two-dimensional operation that transforms a
matrixX ∈ R8×8 to a matrixY ∈ R8×8 according to the
following sum, whereai,j := 1

2 cos
(
(2j + 1)i π16

)
for i > 0

anda0,j := 1
2

√
2 holds:

yi,j :=
7∑
k=0

7∑
l=0

xk,l aj,l ai,k (1)

The two-dimensional DCT is often reduced to the one-
dimensional DCT that is defined as follows: Given a real
valued vector~x = (x0, . . . , x7) ∈ R8, the one-dimensional
DCT is a linear transformationΦ : R8 → R

8 with the con-
stantsai,j as defined above: y0

...
y7

 :=

 a0,0 . . . a0,7

... · · ·
...

a7,0 . . . a7,7

︸ ︷︷ ︸

=: A

·

 x0

...
x7

 (2)

Using the above matrixA, the two-dimensional DCT is
computed asY = AXA−1. Hence, the two-dimensional
DCT can be implemented by 16 applications of the one-
dimensional DCT (eight for the rows followed by eight
on the columns). Although the calculation of the two-
dimensional DCT by 16 one-dimensional DCTs is not opti-
mal, there exist efficient realizations of the one-dimensional
DCT that lead to almost optimal results also for the two-
dimensional case.

2.2. Optimized Implementations

Optimizations of the DCT can be obtained, if symmetries of
the trigonometric functions are exploited to share common
subterms. Note that the matrixA contains only 7 different
coefficientsc1, . . . ,c7 that are defined asck := cos

(
k π

16

)
.

In figure 1, the DCT algorithm (LLMDCT) by Loeffler,
Ligtenberg and Moschytz [7] is given. This implementation
makes use of trigonometric addition theorems to generate
additional common subterms. Moreover, it uses a rotation
operation is used which is defined as

ROT0(x0, x1, k) := x0ck + x1sk,
ROT1(x0, x1, k) := −x0sk + x1ck,

with sk := sin
(
k π

16

)
. Using an intermediate variable

` := ck(x0+x1), we get ROT0(x0, x1, k) := `+(sk−ck)x1

and ROT1(x0, x1, k) := −(sk + ck)x0 + `. This requires 3
multiplications and 3 additions instead of 4 multiplications
and 2 additions. As multiplications are in general more ex-
pensive than additions, this is reasonable. Summing up,

LLM DCT requires only 13 multiplications and 29 addi-
tions. Note however, that LLMDCT computes ascaled
DCT, i.e. we havezi = 2

√
2yi, where theyi are the original

DCT results. For most applications like JPEG, the scaled
values are sufficient.

One of the most efficient versions currently known is
based on the Discrete Fourier Transform and has been pre-
sented by Arai, Agui and Nakajiama [9]. This implemen-
tation is given in figure 1 as AANDCT. It only requires
5 multiplications and 29 additions (the additions for deter-
mining the constantsq0 and q1 can be done in advance).
In contrast to LLMDCT, AAN DCT makes use of further
non-trivial trigonometric laws to construct common sub-
terms. The AANDCT is related to the original DCT by the
following scaling equations:u0 = 2

√
2y0 andui = 4ciyi

for i = 1, . . . , 7.

3. Verifying DCT Implementations

In this section, we present our verification approach which
guides the design flow, ranging from the initial mathemat-
ical definition of the two-dimensional DCT to the final
register-transfer level implementation (figure 2). Obviously,
the verification problems differ for the various steps of fig-
ure 2.

one-dim.

with fixed
bit width

DCT

re
a

l n
u

m
b

e
rs

le
ve

l o
f

two-dim.
DCT

one-dim.
DCT

LLM_DCT AAN_DCT

b
it

le
ve

l

LLM_DCT
with fixed
bit width

LLM_DCT
with fixed
bit width,

lim. number
of arithm. units

AAN_DCT
with fixed
bit width

AAN_DCT
with fixed
bit width,

lim. number
of arithm. units

Figure 2. DCT Design Flow

3.1. At the level of real numbers

Symbolic computation. The reduction from the two-
dimensional DCT to 16 one-dimensional DCTs on the rows
and columns is an easy exercise in linear algebra. For an
automated proof of this step, computer algebra systems like
Mathematica [11] or Maple [3] are most appropriate. These
systems are tailored for symbolic calculations in mathemat-
ics. In particular, they offer data types and operations for

common mathematical structures like real numbers, ma-
trices, trigonometry, etc. . All required data types for the
DCT verification are available in the computer algebra sys-
tem Mathematica. The proof of the equivalence of equa-
tion 1 and the alternative definitionY = AXA−1 is done
by Mathematica’sSimplify command, which performs a
fully-automated proof in a matter of seconds.

The very same approach based on Mathematica can be
used to establish the equivalence of different implemen-
tations of the one-dimensional DCT as e.g. those given
in figure 1. For instance, for LLMDCT we show that
A · ~x − 1

4

√
2~z = ~0 where~z is the output vector of the

LLM DCT with input~x. As again symbolic simplification
is used, the proof is valid for arbitrary inputs. However, in
LLM DCT two out of eight vector coefficients cannot be re-
duced to zero, since Mathematica lacks some trigonometric
laws.

Term Rewriting. Alternatively, the correctness of DCT
variants on the basis of real numbers can be proven by term
rewriting, e.g. using the term rewrite system RRL [6]. Term
rewriting is a semiautomatic technique for proving theo-
rems in first order predicate calculus with equality. A finite
set of axioms specifying a first order theory can be extended
by a completion procedure to either obtain a decision pro-
cedure for the theory or to deduce the inconsistency of the
theory. A major application field for term rewriting is the
reasoning on abstract data types which specify the structure
of data using constructors and the operations on them in
terms of recursive equations.

Compared to computer algebra, the advantage of term
rewriting is that it is not restricted to given data types. The
disadvantage is that the verification has to be done in a more
interactive manner. In particular, we first have to specify a
data type for real numbers in form of a term rewrite system.

In the following, we illustrate how to prove the equiva-
lence of equation 2 and LLMDCT by RRL. First, we have
to establish parts of the real number theory by listing some
required axioms. In particular, the optimizations used in
the DCT algorithms rely on the fact that real numbers are
an algebraic field and some properties of the trigonometric
functions. The required axioms are listed in the upper part
of table 1. Additionally, the operators+ and∗ are specified
to be associative and commutative1.

We enter all these laws as rewrite rules and add opera-
tor precedences to establish the rewrite directions. Then we
obtain a confluent rewrite system by means of the Knuth-
Bendix completion procedure. After that we add the ad-
dition theorems on trigonometric functions that are used in
LLM DCT (given in the lower part of table 1). The resulting

1Essentially, the laws of table 1 specify that the real numbers are math-
ematically speaking an algebraic field. Hence, we have not characterized
the reals completely. In particular, we do not need the supremum axiom.

Laws for the data typeReal
x+ 0 := x s1 = c7
x ∗ 1 := x s2 = c6
x ∗ 0 := 0 s3 = c5
x ∗ (y + z) := (x ∗ y) + (x ∗ z) s4 = c4
x+−(x) := 0 s5 = c3
x ∗ −(y) := −(x ∗ y) s6 = c2
−(−(x)) := x s7 = c1√

2 ∗
√

2 := 1 + 1 s0 = 0 = c8√
2 ∗ c4 = 1 s8 = 1 = c0

c4 + c4 =
√

2

Addition theorems for cos√
2 ∗ c1 := c3 + c5

√
2 ∗ c5 := c1 − c7√

2 ∗ c3 := c1 + c7
√

2 ∗ c7 := c3 − c5

Table 1. Axioms for the real numbers

rewrite system is then powerful enough to prove for all coef-
ficientszi = 2

√
2yi by simple rewriting (using the boolean

ring method).

3.2. From the real number to the bit level

The optimized DCT algorithms are targeted towards hard-
ware implementation. As emphasized before, this requires
the use of a bit vector representation of the real numbers,
where usually a fixpoint number representation is used. For
this reason, the constantsck are scaled by2n, wheren
is the corresponding bitwidth, i.e. they are replaced with
c̃i := b2ncic. Hence, the results of the DCT are also scaled
by the factor2n. As the (scaled) real numbers are approx-
imated by integers (which are implemented with a finite
number of bits) the implementations are often viewed as
integer DCTs.

We now establish suitable bounds for computing the
LLM DCT versus the original DCT (the other compar-
isons can be done in the same lines). We first obtain that
zi = 2

√
2yi holds fori ∈ {0, 2, 3, 4, 5, 7} no matter what

integer constants̃ci ∈ Z are used. Hence, the finite number
representation is not critical for these outputs. However, the
outputsy1 andy6 crucially depend on the choice of the in-
teger constants̃ci ∈ Z. We determine the following limit
for
∣∣z1 − 2

√
2y1

∣∣:
δ1(n) :=

(
|2c̃4c̃7 − c̃3 + c̃5|+ |2c̃4c̃5 − c̃1 + c̃7|+
|2c̃4c̃3 − c̃1 − c̃7|+ |2c̃4c̃1 − c̃3 − c̃5|

)
2x̂

x̂ := 2n−1 − 1 is thereby the largest number that can be
implemented with the corresponding number of bits2. Note

2Forn + 1 bits, we havêx = 2n − 1, since we need one bit for the
sign.

that the above term evaluates to0 if we could use the real
valued constantsck := cos

(
k π

16

)
, or even2nck instead of

c̃k ∈ Z. However, it can be easily shown that there are no
integer constants̃ci that would reduce the above term to 0.
Hence, the outputs will differ and the above term gives us
an upper bound for the error. This upper bound in terms
of the number of bits is given in figure 3. The line with
the circles gives the value ofδ1(n), while the line with the
crosses gives80δ1(n)/(2n − 1). It can be seen thatδ1(n)
converges quickly to zero while80δ1(n)/(2n − 1) is lim-
ited by roughly2π. This means that the integer version of
LLM DCT is exact for the outputsz0, z2, z3, z4, z5, and
z7 and is correct at least up to the last three bits for the
outputsz1 and z6. As similar result can be obtained for∣∣z6 − 2

√
2y6

∣∣.

Bits0 5 10 15 20 25 30
0

1

2

3

4

5

6

Figure 3. Analytically determined error
bounds for fixed bitwidths

3.3. At the bit level

Model checking. Symbolic model checking of temporal
logics has become a very popular verification method for
reactive systems. Specifications are given in temporal log-
ics like CTL [4]. The model checking itself is based on
computing fixpoints of state set transformers. These state
sets are represented by their characteristic functions which
are implemented by OBDDs [1].

The advantage of the method is that it works fully auto-
matic, the disadvantage is that only finite state systems can
be modeled. Consequently, we can not reason at the level
of real numbers, i.e. these methods can only be used to
compare different DCT algorithms with the same number
of bits.

Moreover, one usually has to fight the state explosion
problem that arises from the very large finite state models.
In particular, it is well-known that the multiplication func-
tion can only be represented with OBDDs of exponential
size. Although the optimizations of the DCT algorithms
aim at using as few multiplication operations as possible,
still too much of the complexity remains for a reasonable

representation with OBDDs. We have chosen SMV [8] for
the verification of the bit level specifications. However, al-
though SMV is a quite efficient tool, our experiments were
limited to about 4 bits.

To fight the complexity problem, a couple of enhanced
verification techniques have been developed to verify larger
systems. In particular, the abstraction methods developed in
[5] are important means to fight the complexity in the DCT
example. We use a special abstraction technique based on
the Chinese Remainder Theorem (CRT): The CRT states
that given relatively prime numbersp1, . . . , pn, two num-
berso ≤ a, b ≤ o + p1 · . . . · pn are equal iff for all
i, we havea mod pi = b mod pi. As additionally the
laws(i1 + i2) mod p = ((i1 mod p) + (i2 mod p) mod p,
(i1 ∗ i2) mod p = ((i1 mod p) ∗ (i2 mod p) mod p, and
(i1− i2) mod p = ((i1 mod p)− (i2 mod p) mod p hold,
we can reduce the equality of DCT results to the equality of
the corresponding remainders wrt.pi. This allows us to re-
duce the problem with large bitwidths to a finite number of
problems with only a small number of bits. For example, us-
ing the numbersp1 = 11, p2 = 13, p3 = 14, andp4 = 15,
the range−105105 ≤ x ≤ 105105 is covered which con-
tains all 17 bit broad integers. The abstraction technique al-
lowed to reduce the problem to the remainders which only
have 4 bits. The runtimes using SMV were about 140 sec-
onds and roughly 200000 BDD nodes were required which
needed 30 MBytes of main memory. Using the CRT ab-
straction, we were able to verify circuits with more than 20
bits (see also [10]).

Another way to fight the state explosion problem in the
verification of arithmetic circuits has been proposed in [2]
by introducing Binary Moment Diagrams (BMDs). BMDs
allow a compact representation of functions that only have
exponentially sized BDDs (e.g. the multiplication). For
our experiments on BMDs, we used the latest version of
WSMV implemented at the Carnegie Mellon University.
WSMV is an extension of SMV based on BMDs.

However, while the runtime for 4 bits was only 17.72
seconds on a Sun Ultra 1 Station, we did not manage to
run it for more than 4 bits and stopped the processes after
20 hours. The problem was not the storage consumption of
WSMV: the process ran with only about 40 MByte of main
memory, but runtime grew too rapidly with the bitwidth.
For us, it seems that BMDs are very efficient in terms of
storage consumption, but runtime can become very large
even with small BMDs.

4. Conclusions

We have shown that formal verification can be applied to
circuits that implement algorithms working on real numbers
at various abstraction levels of the design. The presented
method makes use of state-of-the-art techniques that are

suited for the corresponding abstraction level. Clearly, at
the levels where the number representation of finitely many
bits has to be considered, the correctness can only be stated
wrt. certain error bounds. We have shown how formal veri-
fication can guide the entire design process and how formal
verification tools can be used to compute error bounds and
verify the correctness of the circuits wrt. to these bounds.

In particular, we have shown the use of computer algebra
and term rewrite systems at the algorithmic level, where we
can reason on the real numbers. Computer algebra systems
are also useful for determining error bounds for the bit level
that can then be verified using model checking techniques.
We have also shown that modern abstraction techniques en-
ables the latter to verify extremely large state spaces. Model
checking techniques can also be applied to optimized se-
quential register-transfer level circuits where they addition-
ally verify the correctness of the scheduling.

References

[1] R. Bryant. Graph-Based Algorithms for Boolean Func-
tion Manipulation. IEEE Transactions on Computers, C-
35(8):677–691, August 1986.

[2] R. Bryant and Y.-A. Chen. Verification or Arithmetic Cir-
cuits with Binary Moment Diagrams. InACM/IEEE De-
sign Automation Conference (DAC), Pittsburgh, June 1995.
Carnegie Mellon University.

[3] B. Char, K. Geddes, G. Gonnet, B. Leong, M. Monagan, and
S. Watt.Maple V Language Reference Manual. 1992.

[4] E. Clarke and E. Emerson. Design and Synthesis of Syn-
chronization Skeletons using Branching Time Temporal
Logic. In D. Kozen, editor,Workshop on Logics of Pro-
grams, volume 131 ofLecture Notes in Computer Science,
pages 52–71, Yorktown Heights, New York, May 1981.
Springer-Verlag.

[5] E. Clarke, O. Grumberg, and D. Long. Model checking and
abstraction.ACM Transactions on Programming Languages
and systems, 16(5):1512–1542, September 1994.

[6] D. Kapur and H. Zhang. RRL: a rewrite rule laboratory.
In Lusk and Overbeek, editors,Conference on Automated
Deduction (CADE), pages 768–769. Springer-Verlag, 1988.

[7] C. Loeffler, A. Ligtenberg, and G. Moschytz. Practical fast
1-D DCT algorithms with 11 multiplications. InInterna-
tional Conference on Acoustics, Speech, and Signal Process-
ing 1989 (ICASSP ’89), pages 988–99, 1989.

[8] K. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, Norwell Massachusetts, 1993.

[9] W. Pennebaker and J. Mitchell.JPEG Still Image Data Com-
pression Standard. Van Nostrand Reinhold, ISBN 0-442-
01272-1, 1993.

[10] K. Schneider and M. Huhn. Comparing model-checking and
term-rewriting in the verification of an embedded system. In
F. Rammig, editor,DIPES98: International IFIP Workshop
on Distributed and Parallel Embedded Systems, pages 93–
102. Kluwer, January 1999.

[11] S. Wolfram.Mathematica - A System for Doing Mathemat-
ics by Computer. 1991.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

