
A Methodology and Design Environment for DSP ASIC Fixed Point Refinement

R.Cmar, L.Rijnders, P.Schaumont, S.Vernalde and I.Bolsens
IMEC, Kapeldreef 75, 3001 Leuven, Belgium

Abstract

Complex signal processing algorithms are specified in
floating point precision. When their hardware implemen-
tation requires fixed point precision, type refinement is
needed. The paper presents a methodology and design en-
vironment for this quantization process.

The method uses independent strategies for fixing MSB
and LSB weights of fixed point signals. It enables short de-
sign cycles by combining the strengths of both analytical
and simulation based methods.

1 Introduction

Modern signal processing ASICs, such as integrated ca-
ble modems and wireless multimedia terminals, are speci-
fied with algorithms in floating point precision. Often, the
architectural style with which these algorithms are imple-
mented is precision-limited, and relies on a fixed point rep-
resentation. This requires a designer to translate floating
point types into fixed point types, using a refinement strat-
egy. For each refined floating point number, a fixed point
characteristic (including fractional and integral wordlength,
overflow and rounding behavior) must be chosen.

Traditionally, this type refinement is a manual and time
consuming job. One reason for this is the enormous search
space that is present due to the multitude of wordlengths.
Several tools exist which support elaborate capturing of the
system fixed-point specification into a behavioral descrip-
tion like in [4]. Still, the burden of wordlength decision is
completely on the designer.

There are two kinds of approaches that increase the de-
signers’ support in quantization to a more substantial level.

� Thesimulation based approach[1] which compares
the performance of the whole system with a reference
model. The wordlengths are chosen heuristically while
observing some error criterion. This process is re-
peated until wordlengths converge. A more elaborate
solution which uses the technique of operator over-
loading and monitoring of signal characteristics was
presented in [2].

This method yields precise results but ([3]) it can lead
to long simulations in the case of slow convergence,
which is not acceptable for complex systems.

� Another method suggests ananalytical approach [3].
Wordlengths are derived using source code structure,
local annotations, and an (analytical) interpolation
method. This method yields results very fast, but ([1])
it is a conservative approach which leads to overesti-
mation of signal wordlengths.

Since both methods clearly have strengths and weak-
nesses, we propose a smooth combination of both tech-
niques. In a combined technique, fast convergence speed
is desired, while at the same time wordlength estimation
should be optimal. Therefore, we developed a technique
that combines simulation statistics and analysis.

The technique uses a separate strategy for fixing of the
MSB and LSB weights of a fixed point signal. It was inte-
grated and tested into a C++ based design environment [5]
which is used for the design of high speed ASICs.

We introduce our technique as follows. In Section 2, it is
indicated how fixed point data types are described in C++.
Next, we outline the characteristics of our method by a mo-
tivational example (Section 3). Following this, Section 4
gives a detailed description of the quantization approach.
Next, Section 5 elaborates on the design flow, while Sec-
tion 6 comments on the obtained results. Finally, the main
strengths of our approach are summarized in the conclu-
sions.

2 Design environment

The fixed-point modeling is integrated in our design en-
vironment [5]. The environment allows simulation and syn-
thesis of a digital hardware system using exclusively a C++
object oriented description. The constructed systems con-
sist of several communicating processors. Each processor
is described first behaviorally at high level and next at clock
cycle true level. A simulation engine performs processor
execution and their communication. Finally, a code genera-
tor enables translation of the cycle true C++ description to
synthesizable VHDL.

2.1 Fixed-point modeling

In our design environment, fixed point data types are rep-
resented by a dedicated object type rather than a standard

float, double or int. This object type, calledsig , can ex-
press both the fixed-point and floating-point signal behav-
iors.

The constructor issig(name, dtype) for fixed-
point signal representation, andsig(name) for floating-
point representation.

Thedtype is an object which carries information of the
wordlength and the quantization behavior. The constructor
is:

dtype(name, n, f, vtype, msbspec, lsbspec)

� n is the total wordlength
� f is the number of fractional bits
� vtype specifies the signal representation, two’s com-

plement (tc) or unsigned (ns)
� msbspec selects the MSB mode to be wrap-around

(wp), saturation (st) or error (er). The latter produces
an error message during simulation in case of overflow.
This is an indication for the designer to increase the
wordlength or to select another MSB mode.

� lsbspec specifies the LSB rounding mode, i.e.
round-off (rd) or floor (fl).

In the following we will use the termsLSB positionand
MSB positionreferring to the absolute position with respect
to the binary point. HenceMSB = n� f , LSB = f .

2.2 Fixed-point arithmetic

When working with fixed-point arithmetic, it is vital to
have an efficient representation of values and simulation of
operations. For this purpose, all operations are performed
with floating point arithmetic. Only when assigning a sig-
nal, the quantization is performed. In the case an interme-
diate result needs to be quantized, acast operator is avail-
able.

sig a("a",T1);
sig b("b",T2);
sig c("c",T3);
c = a * b;

In the above example the multiplicationa�b is a floating-
point operation having as input two fixed-point values of
typesT1 andT2 respectively. During the assignment toc
the floating point result is automatically casted through the
specified quantization scheme defined by typeT3.

2.3 RT description style

The notion of time in modeling component behav-
ior gives rise to the concept of registered (reg) and
non-registered signals (sig). For arrays these become
regarray andsigarray respectively. The overloading
of operators for these classes expresses a large scale of op-
erations allowing our description of the algorithm to differ
with ANSI-C only in the declaration. Example:

dtype T1("T1",8,5,ns,st,rd);
sigarray a("a", N, T1);
regarray b("b", N, T1);
sig c("c", T1);
reg d("d", T1);
...
c = a[1] * b[2];
d = c + d;

3 Motivational example

In order to demonstrate our fixed-point quantization re-
finement, let’s consider the following algorithm which is a
simplified symbol-spaced adaptive LMS equalizer shown in
Figure 1. The behavioral C++ description that corresponds
to this circuit is shown next.

// constructor definition
int N = 3;
sigarray c("c", N);
regarray d("d", N);
sigarray v("v", N+1);
sig x("x", T_input);
sig y("y");
sig w("w");
reg b("a");
reg s("s");

// initialization
double coef[] = { -0.11, 1.2, -0.11 };
for (i = 0; i < N; i++)

c[i] = coef[i];

// execution
while (1) {

d[0] = get(x);
for (i = N-1; i > 0; i--)

d[i] = d[i-1];
v[0] = 0;
for (i = 1; i <= N; i++)

v[i] = v[i-1] + d[i-1] * c[i-1];
w = v[N] - b * s;
y = w > 0 ? 1 : -1;
b = b + 0.001 * s * (w - y);
s = y;
put(y);

}

As seen in the source code, the input signalx is fed into
the delay-lined and subsequently equalized by the FIR fil-
ter with constant coefficientsc . The result stored inv[N]
corrected by the feedback pathb*s enters the slicer to ob-
tain the outputy with values 1 and -1 as the system works
with the binary PAM signal. The slicer errorw-y is used
for adaptation of the single feedback coefficientsb.

The problem to solve in this example is to determine the
fixed point signal types. Current techniques would take one
of the following approaches:

� exhaustive algorithm simulation with relevant input
stimuli in order to obtain a good view on the quanti-
zation. This approach won’t guarantee avoiding over-
flows for untested stimuli input and it needs many iter-
ations for LSB determination

v[3]
x

+

clock

slicer

FIR filter

+

*

y

-+

+

- w

s

b

Figure 1. Processor example

� statical analysis of the source code (i.e. parsing) in or-
der to obtain the signal flow graph structure and anal-
ysis for the worst case type propagation. This can lead
to conservative results.

We will show that the efficient quantization of this al-
gorithm can be achieved using a combined approach which
has a short and safe determination process. Our combined
approach is comprised of statistical-based monitoring and
quasi-analytical range estimation at the MSB side. The LSB
side determination is based on the novel simulation strategy
which approaches an analytical error calculation. All tech-
niques use the same description and can be applied during
the same simulation run.

4 Quantization approaches

For the quantization determination we exploit the con-
cept of the operator overloading which is also recognized
in [2], [4] to be a valuable strategy. In our case the opera-
tors defined for signal objects perform several simultaneous
tasks during the simulation. In addition to the fixed-point
simulation two quantization determination processes are ex-
ecuted. Therange monitoringtechnique is used to find an
optimal MSB position and theerror monitoringapproach
is used to determine an optimal LSB position. This is il-
lustrated in Figure 2 and further described in the following
sections.

4.1 MSB-side: Range monitoring

Range monitoring is a method which estimates a signal
range by determining the minimum and maximum values
that occur in a signal. Then a safe MSB position of sig-
nals can be selected to prevent unwanted overflows. Three
alternative approaches are proposed.

Statistic-based

This approach allows monitoring of the range information
through the overloading of the assignment operator, and

A B

+

range monitoring
information

error monitoring
information

fixed-point
value

+ operation

error propagation
action

range propagation
action

C

Figure 2. + operator overloading for range and
error monitoring

keeping track of the signal range during simulation. Af-
ter the simulation the stimuli-dependent MSB positions are
obtained. They can however be underestimated.

Quasi-analytical

An additional approach that we advocate is a quasi-
analytical one. Overloading of arithmetic operations here
supportsrange propagation. When declaring signals with
type information their range is automatically determined.
Alternatively, a range can be explicitly attributed. In the
following example the signal typeT1 defines the range of
the signala to be(�2; 2), which is subsequently overridden
to the fractional range(�1:5; 1:5).

dtype T1("t1", 7,5, tc);
sig a("a", T1);
a.range(-1.5, 1.5);

The operators which perform the arithmetic operations
will now perform also the range propagation. The table
shows the range propagation (minimum-side only) for sev-
eral operators:

a + b min = a.min + b.min
a - b min = a.min - b.max
a * b min = MIN(a.min * b.min, a.min * b.max,

a.max * b.min, a.max * b.max)
c = a c.min = MIN(c.min, a.min)

When applied to feedback signals, range propagation can
become unstable and causeexplosionof the MSB. This can
be avoided by setting the range explicitly for these feedback
signals with therange() method or by using a saturation
type definition.

We call this method quasi-analytical because it combines
simulation and analysis. The worst case range estimation is
typically obtained with a very short simulation, ideally it
needs only one iteration. However the finding of a safe sig-
nal range requires completecoverage of a code execution.

Analytical

A perfect evaluation of the signal range is enabled by con-
structing a signal flowgraph out of the source code and
analyzing the data flow using the same range propagation
mechanism.

4.2 LSB-side: Error monitoring

Error monitoring is based on a combined fixed-
point/floating-point simulation. The goal is to determine
and minimize precision loss due to the finite wordlengths.

Each signal object contains two data members, repre-
senting the fixed-point and floating-point value. The algo-
rithm is executed with two simultaneous calculations for
each operation in the same simulation. One is perform-
ing computations with specified fixed-point behavior and
another with the floating-point values. At the same time,
we keep track of the difference between floating-point and
fixed-point values (�).

A

+ *

T("t",7,5,tc)

Q
fixed1

float

fixed2

float

1 2∆ ∆

Figure 3. Derivation of error statistics for a
signal (Q = quantization with defined type)

During the simulation, the error� from the input and
already quantized signals propagates (error propagation)
through all signals in a system. During signal assignments
the difference error statistics are collected (Figure 3), both
for input (consumed) difference error�1 and output (pro-
duced) difference error�2. These signal statistics include
the mean error (�), the standard deviation (�) and the maxi-
mum absolute error (�). These measures are directly related
to the LSB position determination.

Divergence of the floating-point and the fixed-point cal-
culation might occur in case of sensitive feedback signals.
This is a consequence of the strong correlation of error val-
ues between iterations. As a result the statistics become ir-
relevant. To break the loop theerror() method is intro-
duced to define an explicit difference error�2 for a signal.
The following example defines this difference for the signal
a to be a uniform random variable with� = 0:0156 and
� = 0 which corresponds to the type definition with the
LSB positionf = 5.

sig a("a");
a.error(0.0156);

Quantizing feedback signal paths still requires the final
verification of the system stability and precision. This is
due to effects like limit cycles.

This approach outperforms the strategy where the
floating-point and the fixed-point simulation are executed
in two separated runs. The advantages are that:

� the error difference statistics are effectively gathered
for each signal in the system (no need for huge signal
databases)

� it is guaranteed that the floating-point and fixed-point
simulations take the same control decisions through-
out the simulation. Such control decisions can be
determined by a relational expression, which can be
different for floating-point and fixed-point simulation.
Therefore the relational operations are evaluated uni-
formly, that is, the floating-point simulation is steered
by fixed-point control decisions.

5 Design flow

type definition
partial

measures
performance

floating-point C++

simulation

input stimuli

MSB explosion

LSB divergence

x.
ra

ng
e(

m
in

,m
ax

)

x.
er

ro
r (

si
gm

a)

for signal x

for signal x

M
S

B
 &

 L
S

B
 a

na
ly

si
s

fixed-point C++

Figure 4. Design flow

Our design flow of floating-point to fixed-point refine-
ment is shown in Figure 4. The input to our design flow
is a floating-point description compliant to our C++ design
model. Based on the simulation with a partial type defini-
tion (like quantization of input signals) the fixed-point de-
scription is derived. The simulation generates several quan-
tization measures which must be properly interpreted in or-
der to determine optimal MSB and LSB positions of all
signals. This is the topic of the following sections. A re-
iteration might be needed in case of feedback signals. The
methodsrangeanderror (which affect MSB and LSB in-
dependently unlike the type definition which affects both)
were already introduced to solve possible divergence prob-
lems. Another possible iteration is needed when the perfor-
mance results are not satisfactory. This is an implication of
the partial type definition, which must then be revised.

5.1 Refinement rules for MSB side

The goal of this step is to decide for an MSB mode (satu-
rated, wrap-around or error-typed) of signals and to resolve
an optimal MSB position. The MSB refinement usually
starts with the floating-point representation of all signals in
the design except for the input signals. Signals which are
already quantized are checked against overflows. Let’s de-
fine a functionQ (assuming 2’s complement numbers) that
takes the range values as parameters and returns the required
MSB

Q(minR;maxR) =MSB = b+ 1 :

2b�1 < MAX(jminRj; jmaxRj) � 2b

The two range monitoring methods, statistic-based (stat)
and range-propagation (prop), can show one of the follow-
ing relationships.

a)Q(minprop;maxprop) = Q(minstat;maxstat)
It shows that the signal is guaranteed by both techniques not
to overflow. The signal can safely be specified with MSB as
obtained by simulation and the nonsaturated (error-type or
wrap-around) MSB mode.

b)Q(minprop;maxprop) >> Q(minstat;maxstat)
It shows that the range propagation gives very pessimistic
result. Typically this is the case when an accumulation vari-
able is concerned. It is recommended to switch the type into
the saturation mode or to use the explicit saturation (range
method) on the floating-point type.

For all signals in saturation the simulation generates also
the information of guard range boundaries for safe hardware
implementation of the saturation scheme.

c)Q(minprop;maxprop) > Q(minstat;maxstat)
This situation gives the trade-off to choose either MSB spec-
ification based on the range propagation or the saturation
mode type based on the simulation. Still it is possible that
simulation didn’t trigger the worst case behavior.

5.2 Refinement rules for LSB side

In order to obtain the LSB side quantization, both the
LSB position and mode (round or floor) has to be deter-
mined.

The LSB refinement process should start with a fixed-
point specification of input signals. The input signal quan-
tization in DSP applications is typically known as the input
comes from an AD converter and/or a SNR scenario is spec-
ified.

The signals which are to be refined for LSB should have
either the floating-point or large LSB position definition.
Feedback signals should be identified and set to explicit
LSB behavior through applying theerror method if they
cause the floating-point/fixed-point divergence.

After simulation the�, � and� statistics give the upper-
bound for LSB specification. This means a higher LSB

precision is not required because it doesn’t bring any im-
provement (i.e. the LSB part is drowned in quantization or
external noise). The rule is:

2�LSB < � �Kem

TheKem is the empirical constant which was found to give
optimal results for the range(1; 4). The smallerKem is
applied, the more conservative determination of LSB is ob-
tained.

Further decrease of LSB quantization can proceed de-
pending on the specific precision requirements (�, �, �) of
e.g. output signals.

Already quantized signals are checked for correctness
of quantization. They bring different values of�1 and
�2 (see Figure 3) which yields information on consumed
precisionLSB1 and produced precisionLSB2. Generally
LSB1 � LSB2. If LSB2 < LSB1 a precision loss due
to quantization occurs. The designer must resolve whether
it is intentional or not. Note that the floating-point signals
poseLSB1 = LSB2 = LSB.

The feedback signals simulated witherror method might
showLSB2 > LSB1. It implies that the precision loss
which might cause instability of system behavior is detected
in the feedback path.

The type refinement from the round-type to floor-type
specification will bring a shift of the� measure. If such a
shift is unacceptable the signal must stay round-typed, oth-
erwise the floor-type is recommended as it leads to a cheaper
hardware implementation.

6 Results

MSB determination

The goal to determine optimized MSB values for all signals
of the motivational example was achieved after two itera-
tions which is shown in Table 1.

The algorithm was evaluated with the statistic-based and
quasi-analytical technique in the same simulation run which
took only a fraction of a second for this example. The
columns show respectively: signal name, number of ac-
cesses, minimum, maximum and msb values observed by
the statistic-based approach. Next to this: minimum, max-
imum and msb value inferred by range propagation ap-
proach. Shown rightmost is the decided msb value obtained
through applying the MSB refinement rules.

In the constructor definition we inserted
x.range(-1.5,1.5) to initialize the range propa-
gation. The first iteration gave satisfactory determination
of all signals except forb andw. These suffered from the
range propagation explosion caused by feedback effects.

For the second iterationb.range(-0.2,0.2) was
added to help the range propagation method by specifying
the realistic saturation on the signalb. Consequentlyb and
w were successfully resolved. The boundary for the hard-
ware saturation of the signalb was also obtained.

1st iteration
statistic-based range-propagation

name #n min max msb min max msb MSB
c 0 1 -0.11 -0.11 -2 -0.11 -0.11 -2 -2
c 1 1 1.20 1.20 2 1.20 1.20 2 2
c 2 1 -0.11 -0.11 -2 -0.11 -0.11 -2 -2

x 2000 -1.16 1.16 2 -2.00 2.00 2 2(st)
x.range -1.50 1.50

d 0 2000 -1.16 1.16 2 -1.50 1.50 2 2
d 1 2000 -1.16 1.16 2 -1.50 1.50 2 2
d 2 2000 -1.16 1.16 2 -1.50 1.50 2 2
v 1 2000 -0.13 0.13 -1 -0.17 0.17 -1 -1
v 2 2000 -1.44 1.48 2 -1.97 1.97 2 2
v 3 2000 -1.37 1.39 2 -2.13 2.13 3 3

w 2000 -1.36 1.37 2 -22.0 22.0 6 ?
b 2000 -0.00 0.07 -2 -19.9 19.9 6 ?
y 2000 -1.00 1.00 2 -1.00 1.00 2 2

2nd iteration
.......

w 2000 -1.36 1.37 2 -2.33 2.33 3 3
b 2000 -0.00 0.07 -2 -0.21 0.21 -1 -1(st)

b.range -0.20 0.20

Table 1. MSB analysis

name #n � � � LSB
x 2000 1.5e-02 -2.9e-04 9.0e-03 6

.......
v 1 2000 1.7e-03 3.2e-05 1.0e-03 9
v 2 2000 2.0e-02 -3.2e-04 1.1e-02 6
v 3 2000 2.1e-02 -2.8e-04 1.1e-02 6

w 2000 2.2e-02 -2.9e-04 1.1e-02 6
b 2000 6.0e-04 -2.6e-04 1.8e-04 12
y 2000 0.0e+00 0.0e+00 0.0e+00 0

Table 2. LSB analysis

LSB determination

The determination of the worst case LSB is shown in Table
2. The columns denote respectively: signal name, number
of assignments,�, � and� statistic measures. Shown right-
most is the inferred LSB position obtained through applying
the LSB refinement rule withKem = 2. We quantized the
input signalx with the format<7,5,tc> and one iteration
resolved LSB positions of all signals. The following simu-
lation with the derived quantization of all signals confirmed
the stability of the system.

In order to see the impact of the LSB refinement the
SQNR (signal-to-quantization-noise ratio) measure is ob-
served. For example, SQNR of the signalw before the
LSB refinement (with quantizing the input signalx only)
was 39.8 dB, and after the LSB refinement (all signals quan-
tized) 39.1 dB.

6.1 Complex example

Figure 5 shows the timing recovery loop system which
contained 61 signals subject to the fixed-point refinement.
A safe MSB quantization was achieved when putting 7 sig-

Interpolator Timing error

Loop filterNCO

detector

in

out

errmu ctr

lferr

Figure 5. Timing recovery loop for PAM sig-
nals

nals to the saturation mode. 2 feedback signals required
saturation due to the MSB explosion, while the other 5 sig-
nals were the knowledge-based choice. The rest (54 signals)
remained in the non-saturated mode with MSB overhead of
0.22 bits per signal compared to statistic-based results. Only
2 iterations were needed to resolve the MSB weights. In the
LSB quantization there was only themu signal inside of
NCO (out of the 2 feedback signals in the system) of which
the error calculation was unstable. Applying the overrul-
ing error method subsequently solved the problem. After
finding a stable quantization of themu signal one iteration
successfully determined all other LSB weights.

7 Conclusions

A strategy for fixed point refinement in the hardware de-
sign of DSP algorithms was presented. We relied on C++
to embed this strategy in an object-oriented hardware de-
sign system. The fixed point refinement uses separate ap-
proaches for the MSB and LSB side of a signal, and we
described the quantization rules for each of those. Our tech-
nique marries the advantages of a pure simulation based ap-
proach and a pure analysis based approach, which are the
two main techniques in use at the moment. The result is
a quantization strategy that allows determination of a safe
quantization in a few number of iterations. The strategy has
been successfully applied in a number of advanced signal
processors, including a cable modem and a DECT base sta-
tion signal processor.

References

[1] W.Sung, K.Kum ”Simulation-Based Word-Length Optimization
Method for Fixed-Point Digital Signal Processing Systems”, IEEE
Transactions on Signal Processing, vol.43, pp.3087-3090, Dec.1995

[2] S.Kim, K.Kum, W.Sung, ”Fixed-Point Optimization Utility for C and
C++ Based Digital Signal Processing Programs”, Workshop on VLSI
and Signal Processing ’95, Osaka, pp.197-206, Nov. 1995

[3] M.Willems, V.Bursgens, H.Keding, T.Grotker, H.Meyr, ”System
Level Fixed-Point Design Based on an Interpolative Approach”, Proc.
of the DAC, Anaheim, 1997

[4] Frontier Design,http://www.frontierd.com/artlibrary.htm

[5] P.Schaumont, S.Vernalde, L.Rijnders, M.Engels, I.Bolsens, ”A Pro-
gramming Environment for the Design of Complex High Speed
ASICs”, Proc. of the DAC, Anaheim, 1997

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

