
Formal Specification and Verification of a Dataflow Processor Array∗

Thomas A. Henzinger Xiaojun Liu Shaz Qadeer Sriram K. Rajamani
EECS Department, University of California at Berkeley, CA 94720-1770, USA

Email:{tah,liuxj,shaz,sriramr }@eecs.berkeley.edu

Abstract

We describe the formal specification and verification of the VGI
parallel DSP chip [1], which contains 64 compute processors
with ∼30K gates in each processor. Our effort coincided in time
with the “informal” verification stage of the chip. By interacting
with the designers, we produced an abstract but executable spec-
ification of the design which embodies the programmer’s view
of the system. Given the size of the design, an automatic check
that even one of the 64 processors satisfies its specification is
well beyond the scope of current verification tools. However,
the check can be decomposed using assume-guarantee reason-
ing. For VGI, the implementation and specification operate at
different time scales: several steps of the implementation corre-
spond to a single step in the specification. We generalized both
the assume-guarantee method and our model checker MOCHA to
allow compositional verification for such applications. We used
our proof rule to decompose the verification problem of the VGI
chip into smaller proof obligations that were discharged auto-
matically by MOCHA. Using our formal approach, we uncovered
and fixed subtle bugs that were unknown to the designers.

1 Introduction

The VGI chip [1] is an array of DSP processors designed to
be part of a system for web-based image processing [2]. The
VGI chip contains a total of 96 processors and has approxi-
mately 6M transistors. Of the 96 processors, 64 are identical
3-stage pipelined compute processors. Each compute processor
has about 30,000 logic gates. Data is communicated between
the processors by means of FIFO queues. No assumption is
made about the relative speeds at which data is produced and
consumed in the processors. Hence, to transfer data reliably an
elaborate handshake mechanism is used between the sender and
the receiver. In addition, the interaction between the control of
the pipeline and the control of the communication unit is quite
complex.

In this work, we focus on the verification of the 64 com-
pute processors and the communication between them. A sin-
gle processor was designed partly in VHDL and partly in circuit
schematics. We translated the description into the language of
Reactive Modules [3], which is the input language to our model

∗This research was supported in part by the National Science Foundation CA-
REER award CCR-01708, by the Defense Advanced Research Projects Agency
grant NAG2-1214, and by the Semiconductor Research Corporation contracts
324.041 and 683.003.

checker MOCHA [4]. After a number of discussions with the de-
signers, we produced a formal specification of the design which
embodies the programmer’s view of the system, also in Reac-
tive Modules. The sheer size of the design together with the
well-known state explosion problem precluded the direct use of
model checking techniques to verify the implementation against
the specification. Existing techniques that flatten the design hi-
erarchy and use BDD-based state exploration [5] can verify de-
signs with at most 50–100 latches reliably. Clearly, the VGI de-
sign, which has about 800 latches per compute processor, is well
beyond the scope of such tools. We demonstrate how model
checking can be scaled up using assume-guarantee reasoning
to handle the VGI design. To the best of our knowledge, the
largest design that has been ever verified using model checking
has been reported by Eirı́ksson [6]. Compositional techniques
used in that effort for decomposing the verification task did not
readily apply to the VGI, because the implementation and speci-
fication operate on different time scales (several consecutive im-
plementation steps realize a single specification step). We de-
veloped novel compositional techniques for decomposing refine-
ment proofs with variable time scales. We then applied these
techniques to obtain proof obligations that were small enough
to be discharged automatically by MOCHA. In the process, we
found several subtle bugs that were unknown to the designers.
Three of these bugs will be explained in the discussion in Sec-
tion 5.

Step 1: formal specification. A significant part of the veri-
fication effort was invested in producing a correct specification.
Only an informal specification of the design existed in the form
of English description and elaborate timing diagrams. The fact
that no behavioral description of the design was available (the
datapath was designed directly in schematic) made the task of
producing the specification even more difficult.

A number of features are desirable in the specification for the
VGI chip. First, the specification should be at a level of abstrac-
tion such that a high degree of confidence in its correctness can
be established by informal means such as code review. Specifi-
cally, the specification should embody the view that the program-
mer/compiler has of the VGI chip, which is that of a dataflow
architecture with a set of processing elements connected through
queues. For this high-level view, every processing element be-
haves as if each instruction is executed atomically in one step,
and the communication between the processors behaves like
FIFO queues. The behavior of a program written with this high-
level view should not depend on the delay in transferring a data
token from one processor to another. Such FIFO queues can be
modeled using nondeterministic delay. This makes necessary the

0-7803-5832-X /99/$10.00 ©1999 IEEE.

availability of nondeterminism in the specification language.

Second, the specification should have an operational as well as
a mathematical semantics. Operational semantics permits the ex-
ecution of specifications; mathematical semantics permits their
formal verification. Executability is especially desirable in the
case of the VGI processor because the design is part of a bigger
system. If all essential features of the design that are necessary
for correct interaction with the environment have been captured
by the specification, it can be used in place of the actual design
for simulating the system.

Third, the design itself (the “implementation”) should be de-
scribable in the same language as the specification, and a refine-
ment operator should be available for relating the implementa-
tion and the specification. In our case, the refinement operator
must relate two different time scales. The implementation has a
clock signalclk with activity on both theHIGHandLOWphases
in different parts of the design. For instance, in the execute phase
of the pipeline a bus carries an operand whenclk is HIGH and
the result whenclk is LOW. But the specification does not men-
tion clk at all. In fact, the whole computation happens in just
one step. Thus, one round in the specification is equal to two
rounds in the implementation, one withclk = HIGH and one
with clk = LOW. Therefore, our formal notion of refinement
samples the implementation wheneverclk is LOWand checks if
the sampled behavior is present in the specification.

Reactive Modules, our modeling language for both specifica-
tion and implementation, has all the desirable features mentioned
above — mathematical semantics, executability, and support for
nondeterminism and sampling.

Step 2: formal verification. Since VGI is a very big design,
model checking cannot be applied directly. Previously, assume-
guarantee methods have been developed for decomposing a re-
finement verification task into smaller proof obligations that can
be discharged automatically with a model checker. In assume-
guarantee reasoning [3, 7, 8, 9, 10], the different components of
the implementation are verified in isolation by making appro-
priate assumptions about their environments. The environment
assumptions are then discharged separately. In order to keep the
sizes of the individual proof obligations within the capacity lim-
its of model checking, it is essential to specify the environment
assumptions for implementation components abstractly in terms
of specification signals, using “abstraction modules” [10] (also
called “refinement maps” [9]).

In the case of VGI, the specification describes the behavior
of the implementation only at the sampling instants. Conse-
quently, the abstraction modules specify the values of implemen-
tation signals only at those instants. But the correct behavior of
implementation components may depend on assumptions about
the environment between sampling instants. Hence, for carrying
out refinement-based proofs in situations where the time scales
of the implementation and specification differ, we (1) introduce
a new sampling operator that can sample the signal values of
a module with some environment constraint between sampling
instants, and (2) generalize the assume-guarantee proof rule to
work with the sampling operator. The details of the generalized
proof rule can be found in [11]; here we demonstrate its efficacy
in verifying the VGI chip. Working with specifications at an ab-

stract level of temporal granularity is not new. While a processor
pipeline takes several steps to execute an intruction, its ISA spec-
ification executes an instruction atomically in a single step, and
the pipeline state can be related to the ISA state by an abstraction
function that uses the “pipeline flushing” operation [12]. Clock
abstraction on dynamic switch-level circuits [13, 14] generates
gate-level circuits without clocks to make their verification eas-
ier. Temporal abstraction hierarchies [15] have been used for
efficient state space exploration. However, we are not aware of
any compositional refinement checks between implementations
and specifications that operate at different time scales.

In order to handle the proof obligations that are generated by
our new assume-guarantee rule, we extended the model checker
MOCHA with the capability for dealing with the sampling op-
erator in refinement checks. We are not aware of any other
model checker that currently offers such a capability. Using
the enhanced version of MOCHA we discovered several bugs
in the VGI design and fixed them. In this process, we found
it extremely useful to employ MOCHA as a debugging tool
that supports the concurrent activities of (re)design and formal
(re)verification: design insights would suggest the definition of
refinement maps for model checking, and MOCHA would pro-
duce error traces that suggest corrections to the design. In this
way, design and formal verification become a single activity
(“formal design”) that involves similar mental processes, rather
than two decoupled activities, one followed by the other with
little interaction.

2 The Problem

A compute processor in the VGI chip has an instruction memory,
a register file containing three register pairs, a 3-stage pipelined
datapath, a control unit, and three data output buses and one con-
trol output bus for sending tokens to other processors. Each reg-
ister pair can be configured either as a queue or as general pur-
pose registers. Each output bus may or may not be connected to
another processor. A processorP can send data to another pro-
cessorQ if a data output bus ofP is connected to a register pair
of Q that has been configured as a queue. A handshake protocol
is used betweenP andQ for transferring data reliably. There is a
programmable interconnection network that allows any proces-
sor to be connected to any other processor. In a typical dataflow
computation, programs are loaded into the instruction memory
of some subset of the set of processors, and the appropriate data
connections between the processors are made by programming
the network. Each processor with its own program acts as an
“actor” in a data flow network, consuming tokens from its input
and producing tokens at its output. In any network of compute
processors, each processor is in a certainconfigurationdepend-
ing on the register pairs configured as queues, and the output
buses connected to downstream processors. LetCVGI denote this
set of 23×24 = 128 configurations. Figure 1 shows a processor
configuration where the register pair R2–R3 is configured as a
queue, and a data and a control output queue are configured to
send out tokens.

Our specification for the processor configuration shown in
Figure 1 consists of modulesISA , DataQueue , and Con-

PROCESSOR P2

ALU

P
I
P
E
L
A
T

PROCESSOR P3

CONTROL

MIR2REG

MIR1REG

PROGRAM
MEMORY

PROCESSOR P1

T

U

O

L

Regfile/DataQueue

From Processor P4

From Processor P5

R2
R4
R6 R7

R3
R5

ControlQueue

Regfile/DataQueue

ControlQueue

Figure 1: Configuration with three input and two output queues

trolQueue .1 The moduleISA contains modules such as pro-
gram memory, register file, control unit, and ALU, and is a speci-
fication of the pipelined datapath of processorP1. Every instruc-
tion gets executed atomically in one round in theISA . The spec-
ification for the data output bus ofP1 together with the queue
of processorP2 is a 4-place FIFO bufferDataQueue . The four
places inDataQueue correspond to the two places of the queue
of P2 and the two sets of latches inlout andpipelat . The
moduleControlQueue is identical toDataQueue except for
the data width and is the specification for the control output
bus ofP1 together with the queue of processorP3. Perform-
ing verification against the composition ofISA , DataQueue ,
andControlQueue will ensure that instructions are executed
correctly and data is transferred reliably fromP1 to P2 andP3.
We can similarly write specifications for processorsP2 andP3.
Then the specification for the network of processorsP1, P2, and
P3 can be obtained by composing the specifications of the indi-
vidual processors. In Figure 2, note that the register pair R2–
R3 is missing. Since they have been configured as an input
queue, they are part of the distributed output queue of an up-
stream processor, and is specified in that processor. Our veri-
fication methodology, described in the next section, will let us
prove that an arbitrary network of compute processors satisfies
its specification.

3 The Methodology

We model both implementations and specifications as Reactive
Modules [3]. For the purposes of this discussion, a reactive mod-
ule comprises a finite set of variables, partitioned intoexternal
(input) andinterface(output) variables, and rules for initializing
and updating their values in each round of operation. Both the
initial value and the update of a variable can depend on another
variable with zero-delay. These zero-delay dependencies impose
a partial order on the evaluation of the variable values in each
round. The parallel compositionP‖Q of two modulesP andQ
is obtained by connecting the variables with the same names and
is defined only if (1) the set of interface variables of modulesP

1The dotted rectangle in the lower portion of Figure 2 shows refinement maps.
We defer their description to Section 4.

ISA

Control
Queue

Data
Queue

CONTROL

ALU

R4 R5

R6 R7

PROGRAM
MEMORY

exsend

numAUXILIARY

VARIABLES

REFINEMENT

MAPSsendackp

pipelat a s
stallpipe
abus r
sendack
send

Figure 2: Specification module for refinement check

and Q are disjoint, and (2) there is no zero-delay cycle in the
composition. IfP‖Q is defined, thenP andQ are said to becom-
patible. A states of a moduleP is an assignment of values to all
its variables. A states is initial if it can result from executing the
initializing rules ofP. We writes→P t if starting from states,
variables ofP can be updated according to the update rules ofP
to reach the statet. A finite sequences0,s1,s2, . . . ,sn of states
is a trace of P if s0 is an initial state and for alli < n, we have
thatsi →P si+1. The trace language LP of a moduleP is the set
of all traces ofP. Let P be a module andϕ a predicate over the
variables ofP. Theϕ-sampleof a traceτ, denoted byτϕ, is the
subsequence ofτ obtained by selecting all states ofτ that sat-
isfy ϕ. We say thatP refines Q, denoted byP� Q, if (1) every
variable ofQ is a variable ofP, (2) every interface variable of
Q is an interface variable ofP, and (3) the trace language ofP
projected onto the variables ofQ is a subset of the trace language
of Q.

When we discuss the refinement checkP�Q, we refer toP as
the implementation andQ as the specification. The implementa-
tion and specification we are concerned with have been described
earlier in Section 2. We would like to prove that the implemen-
tation refines the specification in as automatic a way as possible.
Two features of the implementation make this verification task
specially daunting.

• The implementation consists of a possible maximum of 64
compute processors. Each processor is quite big with around 800
latches and 1700 variables. The sheer size of the implementation
precludes a direct use of model checking and makes composi-
tional reasoning essential. In assume-guarantee reasoning, the
different components of the implementation can be verified in
isolation by making appropriate assumptions about their environ-
ments. These environment assumptions must then be discharged
separately. A crucial aspect of this decomposition process is the
use of “refinement maps.” We illustrate this in an abstract setting
in the following way. Consider, for example, an implementation
that is the parallel composition of two modulesP andQ and letP′

andQ′ be their respective specifications. We would like to verify
the modulesP andQ one at a time. The environment ofP might
contain signals that are not present in the specification. Hence,
we write abstract definitions of these implementation signals in
terms of specification signals in the form of a moduleRP and

use it along withQ′ to construct the environmentEP = Q′‖RP

of P. A similar approach is taken for moduleQ to generate its
environmentEQ. Then, we use the following proof rule [3, 10]:

P‖EP � EQ

Q‖EQ � EP

P‖Q � EP‖EQ � P′‖Q′
(1)

Note thatEP is used in the environment ofP to proveEQ and
EQ is used in the environment ofQ to proveEP. The use of
environment assumptions in a circular fashion is crucial for de-
composing verification tasks.
• The implementation is based on level-sensitive latches syn-

chronized by a single clock. There are latches of both kind —
transparent high and transparent low— and computation is per-
formed in both phases of the clock in different parts of the im-
plementation. Moreover, there are a number of gated latches,
i.e., latches whose enabling signals depend on signals other than
the clock. We model these phenomena through an explicit clock
variableclk that toggles every round. Thus, a round in the im-
plementation corresponds to half a clock cycle. Being at a more
abstract level, the specification does not mention the clock at all,
and a round in the specification corresponds to two rounds of the
implementation. One way to compare an implementation with
a specification that operates at a coarser time scale is to sample
the values of the implementation signals at appropriate time in-
stants. We would then like to show that every sampled trace of
the implementation is a trace of the specification.

Notice that if the implementation and specification have dif-
ferent time scales, the refinement maps will constrain the value
of implementation signals only at the sampled time instances.
But, sometimes a module in the implementation might depend
on the behavior of the environment between sampling points.
For example, it might be important that the environment main-
tains the value of a signal constant from one sampling instant
to another. Therefore, the sampling operator might need to con-
strain the behavior of a module between sampling instants. Let
P be a module,T a module compatible withP, andϕ a predicate
on the variables of moduleP. Then, we define the following two
sampling operators:

• Sampleϕ(P) is a module with the same set of external and
interface variables asP, and with the trace language given
by the set{τϕ|τ is a trace ofP}.

• Sampleϕ(P,T) is a module with the same set of external and
interface variables asP, and with the trace language given
by the set{τϕ|τ is a trace ofP‖T}.

Note that the moduleSampleϕ(P,T) is different from the module
Sampleϕ(P‖T). The former module has the same set of interface
variables asP while the latter has the same set of interface vari-
ables asP‖T.

We generalize the assume-guarantee proof rule described
above as follows:

Sampleϕ(P,TP)‖EP � EQ

Sampleϕ(Q,TQ)‖EQ � EP

P‖Q � TP‖TQ

Sampleϕ(P‖Q) � EP‖EQ � P′‖Q′
(2)

A formal treatment of the correctness of this proof rule can be
found in [11]. The intent behind the first antecedent in the above
rule is to prove thatSampleϕ(P) refinesEQ under a “suitable”
environment. A suitable environment constrains the inputs toP
using the specification componentEP. SinceEP operates at a
coarser time scale thanP, it can constrain the inputs toP only at
the sample points (which are specified byϕ). An additional tem-
poral assumptionTP on the inputs toP is needed, which spec-
ifies detailed timing assumptions at the finer time scale, about
the abstract values supplied byEP. A similar assumptionTQ is
needed to prove thatSample(Q) refinesEP. Finally, it needs to
be proved that the implementationP‖Q indeed satisfies the tim-
ing assumptionsTP‖TQ. We can further decompose this part of
the proof using the assume-guarantee rule in (1) and avoid con-
structingP‖Q. Note that the first two antecedents state a refine-
ment relation at an abstract time scale specified byϕ, and the last
antecedent states a refinement relation at the detailed time scale.

4 The Proof

Each compute processor in VGI starts a computation in the pos-
itive phase of the clock and finishes it in the negative phase of
the clock. We decided to sample at the end of each computation.
Hence, the sampling predicateϕ is clk = LOW. In the rest of
this section, we useϕ to refer toclk = LOW. In Section 2, we
showed how to obtain a specification for an arbitrary network
of processors. Our goal is to verify that an arbitrary network of
processors implements its corresponding specification, using re-
finement checking. LetP1,P2, . . . ,Pn be the compute processors
in an arbitrary network, and letQ1,Q2, . . . ,Qn be their respec-
tive specifications. For the correct functioning of a processor it
is essential that all input signals change only whenclk is HIGH.
Let Ti be a module that says that all external signals ofPi change
only whenclk is HIGH.

The verification problem is to check

Sampleϕ(P1‖P2‖ . . .‖Pn)�Q1‖Q2‖ . . .‖Qn

We can apply our new assume-guarantee rule as follows:

Sampleϕ(Pi ,Ti) � Qi for all 1≤ i ≤ n
P1‖P2‖ . . .‖Pn � T1‖T2‖ . . .‖Tn

Sampleϕ(P1‖P2‖ . . .‖Pn) � Q1‖Q2‖ . . .‖Qn

The second antecedent says that the inputs of any processor in
the network change only whenclk is HIGH. Since any input
to a processor has to be the output of some other processor,
this antecedent can be discharged easily by proving that for all
1≤ i ≤ n, the outputs ofPi change only whenclk is HIGH. This
is an easy proof local to each processor and computationally triv-
ial. In the first antecedent, there aren symmetric proof obliga-
tions, one for eachPi . ForX ∈ CVGI, letY be its specification and
TX be the environment constraint that says that all inputs change
only whenclk is HIGH. If we proveSampleϕ(X,TX) � Y for
eachX ∈ CVGI, then we have proved thatSampleϕ(Pi ,Ti) � Qi

for all 1≤ i ≤ n. Thus, we have decomposed the proof of an
arbitrary network of compute processors to|CVGI| proofs about
individual processor configurations that have 800 latches each.

This is still beyond the scope of monolithic model checking.
We show how to discharge this proof for a single processor con-
figuration, with further applications of the generalized assume-
guarantee rule described earlier. We implemented support for the
Sample operator in MOCHA, in order to carry out this refinement
check.

We describe the compositional proof for the configuration in
Figure 1 whose specification is given in Figure 2. We describe
a compute processor in more detail. The processor has a 3-stage
pipeline — the fetch stageIF , the execute stageEX, and the
communicate stageCOM, with pipelat latches betweenIF
andEX, andlout latches betweenEX andCOM. There is feed-
back from theEX stage to theIF stage. TheIF stage is con-
trolled bymir1reg and fetches data from the input queues, the
register file, or the feedback. The signalstallempty is as-
serted if an instruction wants to read from an input queue that
is empty. TheEX stage contains the ALU and is controlled by
mir2reg , a delayed version ofmir1reg . The output of the
ALU abus r can be written back to the register file or sent
out on one or more queues. For receiving data/control tokens,
the downstream processor should have a register pair configured
as a 2-place queue. Every data or control token that is com-
puted is latched intolout . If the first send fails, then theCOM
stage keeps on sending the data inlout until the send succeeds.
Signalssend and sendack are used for handshake between
the sender and the receiver. In the meantime, other instructions
might be executing in theEXstage of the pipeline. The pipeline
is stalled and a signalstallpipe asserted when theCOMstage
is trying to send a token and the instruction in theEXstage also
wants to send out a token. The invariant that synchronizes the
operation of theISA and the pipeline is that the instruction be-
ing executed by theISA is the instruction in theIF stage of the
implementation.

To decompose the proof, we wrote refinement maps for
send , sendack , abus r , stallpipe , andpipelat a s
as shown in the dotted rectangle in Figure 2. In order to write re-
finement maps forsend andstallpipe , we had to add auxil-
iary history variablesexsend , num, andsendackp . The vari-
ableexsend is true whenever the the current instruction in the
EX phase wants to send. The variablenum keeps track of the
number of items in the receiver’s 2-place input queue. The vari-
ablesendackp predicts the implementation’ssendack . The
refinement map forabus r is written in terms of the two stall
signals and the output of the ALU in the specification. Using
these refinement maps, the proof can be decomposed nicely in
the reverse direction of the flow of data in the processor.

1. The output queue is verified using the refinement maps
for abus r , send , and stallpipe . Intuitively, this
means that data written into the queue is not lost, no data
is written twice, and correct behavior is preserved going
into and coming out of stalls (eitherstallempty or
stallpipe).

2. The refinement map forsend is verified using the refine-
ment map forsendack .

3. The refinement map forsendack is verified using the re-
finement maps forstallpipe andsend .

4. The refinement map forstallpipe is verified using re-
finement maps forsend andsendack of both the control
and data queues.

5. The refinement map forabus r is verified using the refine-
ment map for thepipelat a s signals, which are inputs
to theEXstage. Since the bus is generated by the data path
of the implementation, this proof amounts to verifying the
correctness of the data path. At the time of writing this
paper, we have not been able to complete this proof. We
believe that this is essentially a combinational verification
problem that is amenable to existing techniques geared for
combinational verification.

6. The refinement map forpipelat a s is verified using the
refinement map forabus r . This lemma amounts to veri-
fying the correctness of feedback from theEX stage to the
register file and thepipelat a s registers.

In each lemma described above, the part of the implementa-
tion under investigation was sampled atclk equal toLOWun-
der some timing assumptions on the inputs between sampling
instants. For example, in Lemma 1, it was assumed that the
send signal does not change value whenclk changes from
LOWto HIGH, and all signals at the receiver end (such asread
andsave d) change values only whenclk is HIGH. All such
assumptions were discharged separately. Notice the circular de-
pendencies between Lemmas 1, 2, 3, and 4, and also Lemmas 5
and 6. For Lemmas 2, 3, 4, 5, and 6, we also wrote supporting re-
finement maps formir1reg andmir2reg . These supporting
refinements were verified separately. In total, about 35 lemmas
needed to be proved. In every lemma except Lemma 5, we used
symmetry arguments [16] to reduce the datapath width to just 1
bit. In Lemma 5, the symmetry is broken because of arithmetic
operations and hence the full datapath width of 16 bits needs
to be considered. Thus, assume-guarantee reasoning provides
a clean separation between the verification of the datapath and
control of the processor. It is clear in the overall proof that the
datapath width is irrelevant in verifying the control that is mov-
ing data around. This also suggests that compositional reasoning
provides a formal framework under which combinational verifi-
cation of the datapath and FSM verification of the control can
coexist. None of the individual lemmas took more than a few
minutes on a 625 MHz DEC Alpha 21164.

5 Discussion

In this section, we describe the bugs we found in the design. We
fixed all the bugs and verified our fixes with MOCHA.

1. If the sending processor writes two successive values into
the queue and the receiving processor waits for one cycle
and then does two successive reads, the second read returns
an incorrect value.

2. Supposestallempty is asserted in cyclen but released
in cyclen+1. Also, suppose send to an output queue fails in
cyclen+1. Then althoughstallpipe should be asserted

in cyclen+ 2, it is not and as a result the instruction inEX
stage gets clobbered.

3. A particular sequence of events involving 4 sends and 4
reads interleaved in a specific way, with a stall at a precise
moment clobbers the data in thelout register. This results
in the loss of an output token. The error trace that led to the
discovery of this bug had ten steps.

We now describe the process by which we found these bugs
and the insights we gained about the interaction between design
and verification. We found all these bugs while doing the proof
of Lemma 1, the lemma stating the correctness of the data trans-
fer between the sender and the receiver. Recall that we needed
refinement maps for the environment signalsabus r , send and
stallpipe . Initially, we tried to write the refinement maps
based on the definitions of these signals in the implementation.
But, we got error traces. We kept on strengthening the maps
to increasingly constrain the environment until the lemma was
proved. At this point, we had correct abstract definitions of
these environment signals that we could translate down to def-
initions in terms of implementation signals. These design fixes
were quite complicated and we actually had to do some logic de-
sign ourselves. In this way, MOCHA can be used as a debugging
tool which tests a proposed design fix by looking at all possi-
ble sequences of events. If an error trace is generated then it
can be examined to further refine the fix. Thus, the distinction
between verifying and designing gets blurred and actually both
activities proceed in parallel. We believe that design and veri-
fication are symbiotic activities in the sense that the designer’s
intuition embodied in refinement maps aids verification and the
model checker aids the designer by testing that a proposed solu-
tion is correct under all possible situations. We believe that the
mental processes involved in doing verification exist when the
design is being created and therefore, given the right interface to
a verification tool, it is not a big burden to do “formal design.”

We have shown by our verification of the VGI chip that com-
positional model checking under the assume-guarantee paradigm
can scale to “real” designs. We also believe that it is a general
technique not just limited to DSP chips. In our proof, the first
step that decomposes the proof obligation on a network of pro-
cessors to one on a single processor relies on the symmetry inher-
ent in VGI. But the second step involving proof decomposition
with the aid of refinement maps is quite general and applicable
to a variety of large and complex designs [6, 10, 16].

References

[1] V. Srini, J. Thendean, S. Ueng, and J. Rabaey, “A parallel
DSP with memory and I/O processors,” inProceedings of
the SPIE Conference 3452, pp. 2–13, 1998.

[2] V. Srini and J. Rabaey, “An architecture for web-based im-
age processing,” inProceedings of the SPIE Conference
3166, pp. 90–101, 1997.

[3] R. Alur and T. Henzinger, “Reactive modules,” inProceed-
ings of the 11th Annual Symposium on Logic in Computer
Science, pp. 207–218, IEEE Computer Society Press, 1996.

[4] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani,
and S. Tasiran, “MOCHA: Modularity in model check-
ing,” in CAV 98: Computer Aided Verification, LNCS 1427,
pp. 521–525, Springer, 1998.

[5] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli,
F. Somenzi, A. Aziz, S.-T. Cheng, S. Edwards, S. Khatri,
Y. Kukimoto, A. Pardo, S. Qadeer, R. Ranjan, S. Sarwary,
T. Shiple, G. Swamy, and T. Villa, “VIS: A system for ver-
ification and synthesis,” inCAV 96: Computer Aided Veri-
fication, LNCS 1102, pp. 428–432, Springer, 1996.

[6] Á. Eı́riksson, “The formal design of 1M-gate ASICs,” in
FMCAD 98: Formal Methods in Computer-Aided Design,
LNCS 1522, pp. 49–63, Springer, 1998.

[7] E. Stark, “A proof technique for rely/guarantee properties,”
in Proceedings of the 5th Conference on Foundations of
Software Technology and Theoretical Computer Science,
LNCS 206, pp. 369–391, Springer, 1985.

[8] M. Abadi and L. Lamport, “Conjoining specifications,”
ACM Transactions on Programming Languages and Sys-
tems, vol. 17, no. 3, pp. 507–534, 1995.

[9] K. McMillan, “A compositional rule for hardware design
refinement,” in CAV 97: Computer Aided Verification,
LNCS 1254, pp. 24–35, Springer, 1997.

[10] T. Henzinger, S. Qadeer, and S. Rajamani, “You assume,
we guarantee: methodology and case studies,” inCAV 98:
Computer Aided Verification, LNCS 1427, pp. 440–451,
Springer, 1998.

[11] T. Henzinger, S. Qadeer, and S. Rajamani, “Assume-
guarantee refinement between different time scales,” in
CAV 99: Computer Aided Verification, LNCS 1633,
pp. 208–221, Springer, 1999.

[12] J. Burch and D. Dill, “Automatic verification of pipelined
microprocessor control,” inCAV 94: Computer Aided Ver-
ification, LNCS 818, pp. 68–80, Springer, 1994.

[13] S. Jain, R. Bryant, and A. Jain, “Automatic clock abstrac-
tion from sequential circuits,” inProceedings of the 32nd
Design Automation Conference, pp. 707–711, 1995.

[14] A. Kuehlmann, A. Srinivasan, and D. LaPotin, “Verity —
A formal verification program for custom CMOS circuits,”
IBM Journal on Research and Development, vol. 39, no. 1-
2, pp. 149–165, 1995.

[15] R. Alur, T. Henzinger, and S. Rajamani, “Symbolic ex-
ploration of transition hierarchies,” inTACAS 98: Tools
and Algorithms for Construction and Analysis of Systems,
LNCS 1384, pp. 330–344, Springer, 1998.

[16] K. McMillan, “Verification of an implementation of Toma-
sulo’s algorithm by compositional model checking,” in
CAV 98: Computer Aided Verification, LNCS 1427,
Springer, 1998.

	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

